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Preface

Variational arguments are classical techniques whose use can be traced back
to the early development of the calculus of variations and further. Rooted in
the physical principle of least action they have wide applications in diverse
fields. The discovery of modern variational principles and nonsmooth analysis
further expand the range of applications of these techniques. The motivation
to write this book came from a desire to share our pleasure in applying such
variational techniques and promoting these powerful tools. Potential readers
of this book will be researchers and graduate students who might benefit from
using variational methods.

The only broad prerequisite we anticipate is a working knowledge of un-
dergraduate analysis and of the basic principles of functional analysis (e.g.,
those encountered in a typical introductory functional analysis course). We
hope to attract researchers from diverse areas – who may fruitfully use varia-
tional techniques – by providing them with a relatively systematical account
of the principles of variational analysis. We also hope to give further insight to
graduate students whose research already concentrates on variational analysis.
Keeping these two different reader groups in mind we arrange the material into
relatively independent blocks. We discuss various forms of variational princi-
ples early in Chapter 2. We then discuss applications of variational techniques
in different areas in Chapters 3–7. These applications can be read relatively
independently. We also try to put general principles and their applications
together

The recent monograph “Variational Analysis” by Rockafellar and Wets
[230] has already provided an authoritative and systematical account of vari-
ational analysis in finite dimensional spaces. We hope to supplement this with
a concise account of the essential tools of infinite-dimensional first-order vari-
ational analysis; these tools are presently scattered in the literature. We also
aim to illustrate applications in many different parts of analysis, optimization
and approximation, dynamical systems, mathematical economics and else-
where. Much of the material we present grows out of talks and short lecture
series we have given in the past several years. Thus, chapters in this book can
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easily be arranged to form material for a graduate level topics course. A fair
collection of suitable exercises is provided for this purpose. For many reasons,
we avoid pursuing maximum generality in the main corpus. We do, however,
aim at selecting proofs of results that best represent the general technique.

In addition, in order to make this book a useful reference for researchers
who use variational techniques, or think they might, we have included many
more extended guided exercises (with corresponding references) that either
give useful generalizations of the main text or illustrate significant relation-
ships with other results. Harder problems are marked by a ∗. The forthcoming
book “Variational Analysis in Infinite Dimensions” by Boris Mordukhovich
[191], to our great pleasure, is a comprehensive complement to the present
work.

We are indebted to many of our colleagues and students who read various
versions of our manuscript and provided us with valuable suggestions. Par-
ticularly, we thank Heinz Bauschke, Kirsty Eisenhart, Ovidiu Furdui, Warren
Hare, Marc Lassonde, Yuri Ledyaev, Boris Mordukhovich, Jean Paul Penot,
Jay Treiman, Jack Warga, and Herre Wiersma. We also thank Jiongmin Yong
for organizing a short lecture series in 2002 at Fudan university which provided
an excellent environment for the second author to test preliminary materials
for this book.

We hope our readers get as much pleasure from reading this material as
we have had during its writing.

Halifax, Nova Scotia, Canada and Kalamazoo, Michigan, USA Jonathan
Borwein

July 6, 2004 Qiji Zhu
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3.1 The Fréchet Subdifferential and Normal Cone . . . . . . . . . . . . . . . 41
3.2 Nonlocal Sum Rule and Viscosity Solutions . . . . . . . . . . . . . . . . . 49
3.3 Local Sum Rules and Constrained Minimization . . . . . . . . . . . . . 57
3.4 Mean Value Theorems and Applications . . . . . . . . . . . . . . . . . . . . 82
3.5 Chain rules and Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Multidirectional MVI and Solvability . . . . . . . . . . . . . . . . . . . . . . 99
3.7 Extremal principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Variational Techniques in Convex Analysis . . . . . . . . . . . . . . . . 115
4.1 Convex Functions and Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2 Subdifferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3 Sandwich Theorems and Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4 Fenchel Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.5 Convex Feasibility Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.6 Duality Inequalities for Sandwiched Functions . . . . . . . . . . . . . . . 157
4.7 Entropy Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



vi Contents

5 Variational Techniques and Multifunctions . . . . . . . . . . . . . . . . . 171
5.1 Multifunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.2 Subdifferentials as Multifunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3 Distance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.4 Coderivatives of Multifunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.5 Implicit Multifunction Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6 Variational Principles in Nonlinear Functional Analysis . . . . 247
6.1 Subdifferential and Asplund Spaces . . . . . . . . . . . . . . . . . . . . . . . . 247
6.2 Nonconvex Separation Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.3 Stegall Variational Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
6.4 Mountain Pass Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
6.5 One-Perturbation Variational Principles . . . . . . . . . . . . . . . . . . . . 287

7 Variational Techniques in the Presence of Symmetry . . . . . . 297
7.1 Nonsmooth Functions on Smooth Manifolds . . . . . . . . . . . . . . . . 297
7.2 Manifolds of Matrices and Spectral Functions . . . . . . . . . . . . . . . 305
7.3 Convex Spectral Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359



1

Introduction and Notation

1.1 Introduction

In this book, variational techniques refer to proofs by way of establishing that
an appropriate auxiliary function attains a minimum. This can be viewed
as a mathematical form of the principle of least action in physics. Since so
many important results in mathematics, in particular, in analysis have their
origins in the physical sciences, it is entirely natural that they can be related
in one way or another to variational techniques. The purpose of this book is
to provide an introduction to this powerful method, and its applications, to
researchers who are interested in using this method. The use of variational
arguments in mathematical proofs has a long history. This can be traced back
to Johann Bernoulli’s problem of the Brachistochrone and its solutions leading
to the development of the calculus of variations. Since then the method has
found numerous applications in various branches of mathematics. A simple
illustration of the variational argument is the following example.

Example 1.1.1 (Surjectivity of Derivatives) Suppose that f : IR → IR is dif-
ferentiable everywhere and suppose that

lim
|x|→∞

f(x)/|x| = +∞.

Then {f ′(x) | x ∈ IR} = IR.

Proof. Let r be an arbitrary real number. Define g(x) := f(x)−rx. We easily
check that g is coercive, i.e., g(x) → +∞ as |x| → ∞ and therfore attains a
(global) minimum at, say, x̄. Then 0 = g′(x̄) = f ′(x̄)− r. •

Two conditions are essential in this variational argument. The first is com-
pactness (to ensure the existence of the minimum) and the second is differ-
entiability of the auxiliary function (so that the differential characterization
of the results is possible). Two important discoveries in the 1970’s led to sig-
nificant useful relaxation on both conditions. First, the discovery of general
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variational principles led to the relaxation of the compactness assumptions.
Such principles typically assert that any lower semicontinuous (lsc) function,
bounded from below, may be perturbed slightly to ensure the existence of the
minimum. Second, the development of the nonsmooth analysis made possible
the use of nonsmooth auxiliary functions.

The emphasis in this book is on the new developments and applications
of variational techniques in the past several decades. Besides the use of varia-
tional principles and concepts that generalize that of a derivative for smooth
functions, one often needs to combine a variational principle with other suit-
able tools. For example, a decoupling method that mimics in nonconvex set-
tings the role of Fenchel duality or the Hahn–Banach theorem is an essential
element in deriving many calculus rules for subdifferentials; minimax theorems
play a crucial role alongside the variational principle in several important re-
sults in nonlinear functional analysis; and the analysis of spectral functions is a
combination of the variational principles with the symmetric property of these
functions with respect to certain groups. This is reflected in our arrangement
of the chapters. An important feature of the new variational techniques is that
they can handle nonsmooth functions, sets and multifunctions equally well.
In this book we emphasize the role of nonsmooth, most of the time extended
valued lower semicontinuous functions and their subdifferential. We illustrate
that sets and multifunctions can be handled by using related nonsmooth func-
tions. Other approaches are possible. For example Mordukhovich [191] starts
with variational geometry on closed sets and deals with functions and multi-
functions by examining their epigraphs and graphs.

Our intention in this book is to provide a concise introduction to the
essential tools of infinite-dimensional first-order variational analysis, tools that
are presently scattered in the literature. We also aim to illustrate applications
in many different parts of analysis, optimization and approximation, dynamic
systems and mathematical economics. To make the book more appealing to
readers who are not experts in the area of variational analysis we arrange the
applications right after general principles wherever possible. Materials here
can be used flexibly for a short lecture series or a topics course for graduate
students. They can also serve as a reference for researchers who are interested
in the theory or applications of the variational analysis methods.

1.2 Notation

We introduce some common notations in this section.
Let (X, d) be a metric space. We denote the closed ball centered at x with

radius r by Br(x). We will often work in a real Banach space. When X is
a Banach space we use X∗ and 〈·, ·〉 to denote its (topological) dual and the
duality pairing, respectively. The closed unit ball of a Banach space X is often
denoted by BX or B when the space is clear from the context.
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Let IR be the real numbers. Consider an extended-real-valued function
f : X → IR ∪ {+∞} . The domain of f is the set where it is finite and is
denoted by dom f := {x | f(x) < +∞}. The range of f is the set of all
the values of f and is denoted by range f := {f(x) | x ∈ dom f}. We call
an extended-valued function f proper provided that its domain is nonempty.
We say f : X → IR ∪ {+∞} is lower semicontinuous (lsc) at x provided that
lim infy→x f(y) ≥ f(x). We say that f is lsc if it is lsc everywhere in its
domain.

A subset S of a metric space (X, d) can often be better studied by using
related functions. The extended-valued indicator function of S,

ιS(x) = ι(S; x) :=

{
0 x ∈ S,
+∞ otherwise,

characterizes S. We also use the distance function

dS(x) = d(S; x) := inf{d(x, y) | y ∈ S}.

The distance function determines closed sets as shown in Exercises 1.3.1 and
1.3.2. On the other hand, to study a function f : X → IR ∪ {+∞} it is often
equally helpful to examine its epigraph and graph, related sets in X × IR,
defined by

epi f := {(x, r) ∈ X × IR | f(x) ≤ r}
and

graph f := {(x, f(x)) ∈ X × IR | x ∈ dom f}.
We denote the preimage of f : X → IR ∪ {+∞} of a subset S in IR by

f−1(S) := {x ∈ X | f(x) ∈ S}.

Two special cases which will be used often are f−1((−∞, a]), the sublevel
set, and f−1(a), the level set, of f at a ∈ IR. For a set S in a Banach space
X, we denote by intS, S, bd S, conv S, convS its interior, closure, boundary,
convex hull, closed convex hull, respectively, and we denote by diam(S) :=
sup{‖x−y‖ | x, y ∈ S} its diameter and by Br(S) := {x ∈ X | d(S; x) ≤ r} its
r-enlargement. Closed sets and lsc functions are closely related as illustrated
in Exercises 1.3.3, 1.3.4 and 1.3.5.

Another valuable tool in studying lsc functions is the inf-convolution of two
functions f and g on a Banach space X defined by (f2g)(x) := infy∈X [f(y)+
g(x− y)]. Exercise 1.3.7 shows how this operation generates nice functions.

Multifunctions (set-valued functions) are equally interesting and useful.
Denote by 2Y the collection of all subsets of Y . A multifunction F : X → 2Y

maps each x ∈ X to a subset F (x) of Y . It is completely determined by its
graph,

graph F := {(x, y) ∈ X × Y | y ∈ F (x)},
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a subset of the product space X × Y and, hence, by the indicator function
ιgraph F . The domain of a multifunction F is defined by domF := {x ∈ X |
F (x) 6= ∅}. The inverse of a multifunction F : X → 2Y is defined by

F−1(y) = {x ∈ X | y ∈ F (x)}.

Note that F−1 is a multifunction from Y to X. We say a multifunction F is
closed-valued provided that for every x ∈ domF , F (x) is a closed set. We say
the multifunction is closed if indeed the graph is a closed set in the product
space. These two concepts are different (Exercise 1.3.8).

The ability to use extended-valued functions to relate sets, functions and
multifunctions is one of the great advantages of the variational technique
which is designed to deal fluently with such functions. In this book, for the
most part, we shall focus on the theory for extended-valued functions. Cor-
responding results for sets and multifunctions are most often derivable by
reducing them to appropriate function formulations.

1.3 Exercises

Exercise 1.3.1 Show that x ∈ S if and only if dS(x) = 0.

Exercise 1.3.2 Suppose that S1 and S2 are two subsets of X. Show that
dS1 = dS2 if and only if S1 = S2.

Exercise 1.3.3 Prove that S is a closed set if and only if ιS is lsc.

Exercise 1.3.4 Prove that f is lsc if and only if epi f is closed.

Exercise 1.3.5 Prove that f is lsc if and only if its sublevel set at a,
f−1((−∞, a]), is closed for all a ∈ IR.

These results can be used to show the supremum of lsc functions is lsc.

Exercise 1.3.6 Let {fa}a∈A be a family of lsc functions. Prove that f :=
sup{fa, a ∈ A} is lsc. Hint: epi f =

⋂
a∈A epi fa.

Exercise 1.3.7 Let f be a lsc function bounded from below. Prove that if g
is Lipschitz with rank L, then so is f2g.

Exercise 1.3.8 Let F : X → 2Y be a multifunction. Show that if F has a
closed graph then F is closed-valued, but the converse is not true.
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Variational Principles

A lsc function on a noncompact set may well not attain its minimum. Roughly
speaking, a variational principle asserts that, for any extended-valued lsc func-
tion which is bounded below, one can add a small perturbation to make it
attain a minimum. Variational principles allow us to apply the variational
technique to extended-valued lsc functions systematically, and therefore sig-
nificantly extend the power of the variational technique. Usually, in a vari-
ational principle the better the geometric (smoothness) property of the un-
derlying space the nicer the perturbation function. There are many possible
settings. In this chapter, we focus on two of them: the Ekeland variational
principle which holds in any complete metric space and the Borwein–Preiss
smooth variational principle which ensures a smooth perturbation suffices in
any Banach space with a smooth norm. We will also present a variant of the
Borwein–Preiss variational principle derived by Deville, Godefroy and Zizler
with an elegant category proof.

These variational principles provide powerful tools in modern variational
analysis. Their applications cover numerous areas in both theory and applica-
tions of analysis including optimization, Banach space geometry, nonsmooth
analysis, economics, control theory and game theory, to name a few. As a
first taste we discuss some of their applications; these require minimum pre-
requisites in Banach space geometry, fixed point theory, an analytic proof of
the Gordan theorem of the alternative, a characterization of the level sets
associated with majorization and a variational proof of Birkhoff’s theorem on
the doubly stochastic matrices. Many other applications will be discussed in
subsequent chapters.

2.1 Ekeland Variational Principles

2.1.1 The Geometric Picture

Consider a lsc function f bounded below on a Banach space (X, ‖·‖). Clearly f
may not attain its minimum or, to put it geometrically, f may not have
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Fig. 2.1. Ekeland variational principle.
Top cone: f(x0)− ε|x− x0|

Middle cone: f(x1)− ε|x− x1|
Lower cone: f(y)− ε|x− y|

a supporting hyperplane. Ekeland’s variational principle provides a kind of
approximate substitute for the attainment of a minimum by asserting that,
for any ε > 0, f must have a supporting cone of the form f(y) − ε‖x − y‖.
One way to see how this happens geometrically is illustrated by Figure 2.1.
We start with a point z0 with f(z0) < infX f + ε and consider the cone
f(z0)− ε‖x− z0‖. If this cone does not support f then one can always find a
point z1 ∈ S0 := {x ∈ X | f(x) ≤ f(z)− ε‖x− z‖)} such that

f(z1) < inf
S0

f +
1
2
[f(z0)− inf

S0
f ].

If f(z1)−ε‖x−z1‖ still does not support f then we repeat the above process.
Such a procedure either finds the desired supporting cone or generates a se-
quence of nested closed sets (Si) whose diameters shrink to 0. In the latter
case, f(y)−ε‖x−y‖ is a supporting cone of f , where {y} =

⋂∞
i=1 Si. This line

of reasoning works similarly in a complete metric space. Moreover, it also pro-
vides a useful estimate on the distance between y and the initial ε-minimum
z0.

2.1.2 The Basic Form

We now turn to the analytic form of the geometric picture described above –
the Ekeland variational principle and its proof.

Theorem 2.1.1 (Ekeland Variational Principle) Let (X, d) be a complete
metric space and let f : X → IR ∪ {+∞} be a lsc function bounded from
below. Suppose that ε > 0 and z ∈ X satisfy
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f(z) < inf
X

f + ε.

Then there exists y ∈ X such that

(i) d(z, y) ≤ 1,
(ii) f(y) + εd(z, y) ≤ f(z), and
(iii) f(x) + εd(x, y) ≥ f(y), for all x ∈ X.

Proof. Define a sequence (zi) by induction starting with z0 := z. Suppose
that we have defined zi. Set

Si := {x ∈ X | f(x) + εd(x, zi) ≤ f(zi)}
and consider two possible cases: (a) infSi

f = f(zi). Then we define zi+1 := zi.
(b) infSi f < f(zi). We choose zi+1 ∈ Si such that

f(zi+1) < inf
Si

f +
1
2
[f(zi)− inf

Si

f ] =
1
2
[f(zi) + inf

Si

f ] < f(zi). (2.1.1)

We show that (zi) is a Cauchy sequence. In fact, if (a) ever happens then zi

is stationary for i large. Otherwise,

εd(zi, zi+1) ≤ f(zi)− f(zi+1). (2.1.2)

Adding (2.1.2) up from i to j − 1 > i we have

εd(zi, zj) ≤ f(zi)− f(zj). (2.1.3)

Observe that the sequence (f(zi)) is decreasing and bounded from below by
infX f , and therefore convergent. We conclude from (2.1.3) that (zi) is Cauchy.
Let y := limi→∞ zi. We show that y satisfies the conclusions of the theorem.
Setting i = 0 in (2.1.3) we have

εd(z, zj) + f(zj) ≤ f(z). (2.1.4)

Taking limits as j →∞ yields (ii). Since f(z)− f(y) ≤ f(z)− infX f < ε, (i)
follows from (ii). It remains to show that y satisfies (iii). Fixing i in (2.1.3)
and taking limits as j →∞ yields y ∈ Si. That is to say

y ∈
∞⋂

i=1

Si.

On the other hand, if x ∈ ⋂∞
i=1 Si then, for all i = 1, 2, . . . ,

εd(x, zi+1) ≤ f(zi+1)− f(x) ≤ f(zi+1)− inf
Si

f. (2.1.5)

It follows from (2.1.1) that f(zi+1) − infSi f ≤ f(zi) − f(zi+1), and there-
fore limi[f(zi+1) − infSi f ] = 0. Taking limits in (2.1.5) as i → ∞ we have
εd(x, y) = 0. It follows that
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∞⋂

i=1

Si = {y}. (2.1.6)

Notice that the sequence of sets (Si) is nested, i.e., for any i, Si+1 ⊂ Si. In
fact, for any x ∈ Si+1, f(x) + εd(x, zi+1) ≤ f(zi+1) and zi+1 ∈ Si yields

f(x) + εd(x, zi) ≤ f(x) + εd(x, zi+1) + εd(zi, zi+1)
≤ f(zi+1) + εd(zi, zi+1) ≤ f(zi), (2.1.7)

which implies that x ∈ Si. Now, for any x 6= y, it follows from (2.1.6) that
when i sufficiently large x 6∈ Si. Thus, f(x) + εd(x, zi) ≥ f(zi). Taking limits
as i →∞ we arrive at (iii). •

2.1.3 Other Forms

Since ε > 0 is arbitrary the supporting cone in the Ekeland’s variational
principle can be made as “flat” as one wishes. It turns out that in many
applications such a flat supporting cone is enough to replace the possibly
non-existent support plane. Another useful geometric observation is that one
can trade between a flatter supporting cone and a smaller distance between
the supporting point y and the initial ε-minimum z. The following form of this
tradeoff can easily be derived from Theorem 2.1.1 by an analytic argument.

Theorem 2.1.2 Let (X, d) be a complete metric space and let f : X → IR ∪
{+∞} be a lsc function bounded from below. Suppose that ε > 0 and z ∈ X
satisfy

f(z) < inf
X

f + ε.

Then, for any λ > 0 there exists y such that

(i) d(z, y) ≤ λ,
(ii) f(y) + (ε/λ)d(z, y) ≤ f(z), and
(iii) f(x) + (ε/λ)d(x, y) > f(y), for all x ∈ X \ {y}.
Proof. Exercise 2.1.1. •

The constant λ in Theorem 2.1.2 makes it very flexible. A frequent choice
is to take λ =

√
ε and so to balance the perturbations in (ii) and (iii).

Theorem 2.1.3 Let (X, d) be a complete metric space and let f : X → IR ∪
{+∞} be a lsc function bounded from below. Suppose that ε > 0 and z ∈ X
satisfy

f(z) < inf
X

f + ε.

Then, there exists y such that

(i) d(z, y) ≤ √
ε,
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(ii) f(y) +
√

εd(z, y) ≤ f(z), and
(iii) f(x) +

√
εd(x, y) > f(y), for all x ∈ X \ {y}.

Proof. Set λ =
√

ε in Theorem 2.1.2. •
When the approximate minimization point z in Theorem 2.1.2 is not ex-

plicitly known or is not important the following weak form of the Ekeland
variational principle is useful.

Theorem 2.1.4 Let (X, d) be a complete metric space and let f : X → IR ∪
{+∞} be a lsc function bounded from below. Then, for any ε > 0, there exists
y such that

f(x) +
√

εd(x, y) > f(y).

Proof. Exercise 2.1.6. •

2.1.4 Commentary and Exercises

Ekeland’s variational principle, appeared in [102], is inspired by the Bishop–
Phelps Theorem [22, 23] (see the next section). The original proof of the
Ekeland variational principle in [102] is similar to that of the Bishop–Phelps
Theorem using Zorn’s lemma. J. Lasry pointed out transfinite induction is not
needed and the proof given here is taken from the survey paper [103] and was
credited to M. Crandall. As an immediate application we can derive a version
of the results in Example 1.1.1 in infinite dimensional spaces (Exercises 2.1.2).

The lsc condition on f in the Ekeland variational principle can be relaxed
somewhat. We leave the details in Exercises 2.1.4 and 2.1.5.

Exercise 2.1.1 Prove Theorem 2.1.2. Hint: Apply Theorem 2.1.1 with the
metric d(·, ·)/λ.

Exercise 2.1.2 Let X be a Banach space and let f : X → IR be a Fréchet
differentiable function (see Section 3.1.1). Suppose that f is bounded from
below on any bounded set and satisfies

lim
‖x‖→∞

f(x)
‖x‖ = +∞.

Then the range of f ′, {f ′(x) | x ∈ X}, is dense in X∗.

Exercise 2.1.3 As a comparison, show that in Exercise 2.1.2, if X is a finite
dimensional Banach space, then f ′ is onto. (Note also the assumption that f
bounded from below on bounded sets is not necessary in finite dimensional
spaces).
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Exercise 2.1.4 We say a function f is partially lower semicontinuous (plsc)
at x provided that, for any xi → x with f(xi) monotone decreasing, one has
f(x) ≤ lim f(xi). Prove that in Theorems 2.1.1 and 2.1.2, the assumption that
f is lsc can be replaced by the weaker condition that f is plsc.

Exercise 2.1.5 Construct a class of plsc functions that are not lsc.

Exercise 2.1.6 Prove Theorem 2.1.4.



2.2 Geometric Forms Of the Variational Principle

In this section we discuss the Bishop–Phelps Theorem, the flower-petal theo-
rem and the drop theorem. They capture the essence of the Ekeland variational
principle from a geometric perspective.

2.2.1 The Bishop–Phelps Theorem

Among the three, the Bishop–Phelps Theorem [22, 23] is the closest to the
Ekeland variational principle in its geometric explanation.

Let X be a Banach space. For any x∗ ∈ X∗\{0} and any ε > 0 we say
that

K(x∗, ε) := {x ∈ X | ε‖x∗‖‖x‖ ≤ 〈x∗, x〉}
is a Bishop–Phelps cone associated with x∗ and ε. We illustrate this in Figure
2.2 with the classic “ice cream cone” in three dimensions, in which ε = 1/

√
2

and x∗ = (−1, 1, 1).

Fig. 2.2. A Bishop–Phelps cone.

Theorem 2.2.1 (Bishop–Phelps Theorem)Let X be a Banach space and let
S be a closed subset of X. Suppose that x∗ ∈ X∗ is bounded on S. Then, for
every ε > 0, S has a K(x∗, ε) support point y, i.e.,

{y} = S ∩ [K(x∗, ε) + y].
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Proof. Apply the Ekeland variational principle of Theorem 2.1.1 to the lsc
function f := −x∗/‖x∗‖+ ιS . We leave the details as an exercise. •

The geometric picture of the Bishop–Phelps Theorem and that of the
Ekeland variational principle are almost the same: the Bishop–Phelps cone
K(x∗, ε)+ y in Theorem 2.2.1 plays a role similar to that of f(y)− εd(x, y) in
Theorem 2.1.1. One can easily derive a Banach space version of the Ekeland
variational principle by applying the Bishop–Phelps Theorem to the epigraph
of a lsc function bounded from below (Exercise 2.2.2).

If we have additional information, e.g., known points inside and/or outside
the given set, then the supporting cone can be replaced by more delicately
constructed bounded sets. The flower-petal theorem and the drop theorem
discussed in the sequel are of this nature.

2.2.2 The Flower-Petal Theorem

Let X be a Banach space and let a, b ∈ X. We say that

Pγ(a, b) := {x ∈ X | γ‖a− x‖+ ‖x− b‖ ≤ ‖b− a‖}
is a flower petal associated with γ ∈ (0, +∞) and a, b ∈ X. A flower petal is
always convex, and interesting flower petals are formed when γ ∈ (0, 1) (see
Exercises 2.2.3 and 2.2.4).

Figure 2.3 draws the petals Pγ((0, 0), (1, 0)) for γ = 1/3, and γ = 1/2.

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

y

0.2 0.4 0.6 0.8 1 1.2 1.4

x

Fig. 2.3. Two flower petals.
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Theorem 2.2.2 (Flower Petal Theorem)Let X be a Banach space and let S
be a closed subset of X. Suppose that a ∈ S and b ∈ X\S with r ∈ (0, d(S; b))
and t = ‖b− a‖. Then, for any γ > 0, there exists y ∈ S ∩ Pγ(a, b) satisfying
‖y − a‖ ≤ (t− r)/γ such that Pγ(y, b) ∩ S = {y}.
Proof. Define f(x) := ‖x− b‖+ ιS(x). Then

f(a) < inf
X

f + (t− r).

Applying the Ekeland variational principle of Theorem 2.1.2 to the function
f(x) with and ε = t − r and λ = (t − r)/γ, we have that there exists y ∈ S
such that ‖y − a‖ < (t− r)/γ satisfying

‖y − b‖+ γ‖a− y‖ ≤ ‖a− b‖
and

‖x− b‖+ γ‖x− y‖ > ‖y − b‖, for all x ∈ S\{y}.
The first inequality says y ∈ Pγ(a, b) while the second implies that Pγ(y, b) ∩
S = {y}. •

2.2.3 The Drop Theorem

Let X be a Banach space, let C be a convex subset of X and let a ∈ X. We
say that

[a, C] := conv({a} ∪ C) = {a + t(c− a) | c ∈ C}
is the drop associated with a and C.

The following lemma provides useful information on the relationship be-
tween drops and flower petals. This is illustrated in Figure 2.4 and the easy
proof is left as an exercise.

Lemma 2.2.3 (Drop and Flower Petal) Let X be a Banach space, let a, b ∈ X
and let γ ∈ (0, 1). Then

B‖a−b‖(1−γ)/(1+γ)(b) ⊂ Pγ(a, b),

so that
[a,B‖a−b‖(1−γ)/(1+γ)(b)] ⊂ Pγ(a, b).

Proof. Exercise 2.2.5. •
Now we can deduce the drop theorem from the flower petal theorem.

Theorem 2.2.4 (The Drop Theorem)Let X be a Banach space and let S be
a closed subset of X. Suppose that b ∈ X\S and r ∈ (0, d(S; b)). Then, for
any ε > 0, there exists y ∈ bd(S) satisfying ‖y − b‖ ≤ d(S; b) + ε such that
[y,Br(b)] ∩ S = {y}.
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Fig. 2.4. A petal capturing a ball.

Proof. Choose a ∈ S satisfying ‖a− b‖ < d(S; b) + ε and choose

γ =
‖a− b‖ − r

‖a− b‖+ r
∈ (0, 1).

It follows from Theorem 2.2.2 that there exists y ∈ S ∩ Pγ(a, b) such that
Pγ(y, b) ∩ S = {y}. Clearly, y ∈ bd(S). Moreover, y ∈ Pγ(a, b) implies that
‖y − b‖ < ‖a − b‖ < d(S; y) + ε. Finally, it follows from Lemma 2.2.3 and
r = 1−γ

1+γ ‖a− b‖ that [y,Br(b)] ∩ S = {y}. •

2.2.4 The Equivalence with Completeness

Actually, all the results discussed in this section and the Ekeland variational
principle are equivalent provided that one states them in sufficiently general
form (see e.g. [130]). In the setting of a general metric space, the Ekeland vari-
ational principle is more flexible in various applications. More importantly it
shows that completeness, rather than the linear structure of the underlying
space, is the essential feature. In fact, the Ekeland variational principle char-
acterizes the completeness of a metric space.

Theorem 2.2.5 (Ekeland Variational Principle and Completeness) Let (X, d)
be a metric space. Then X is complete if and only if for every lsc function
f : X → IR ∪ {+∞} bounded from below and for every ε > 0 there exists a
point y ∈ X satisfying

f(y) ≤ inf
X

f + ε,
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and
f(x) + εd(x, y) ≥ f(y), for all x ∈ X.

Proof. The “if” part follows from Theorem 2.1.4. We prove the “only if” part.
Let (xi) be a Cauchy sequence. Then, the function f(x) := limi→∞ d(xi, x)
is well-defined and nonnegative. Since the distance function is Lipschitz with
respect to x we see that f is continuous. Moreover, since (xi) is a Cauchy
sequence we have f(xi) → 0 as i → ∞ so that infX f = 0. For ε ∈ (0, 1)
choose y such that f(y) ≤ ε and

f(y) ≤ f(x) + εd(x, y), for all x ∈ X (2.2.1)

Letting x = xi in (2.2.1) and taking limits as i →∞ we obtain f(y) ≤ εf(y)
so that f(y) = 0. That is to say limi→∞ xi = y. •

2.2.5 Commentary and Exercises

The Bishop–Phelps theorem is the earliest of this type [22, 23]. In fact, this im-
portant result in Banach space geometry is the main inspiration for Ekeland’s
variational principle (see [103]). The drop theorem was discovered by Danes
[91]. The relationship among the Ekeland variational principle, the drop theo-
rem and the flower-petal theorem were discussed in Penot [211] and Rolewicz
[232]. The book [136] by Hyers, Isac and Rassias is a nice reference containing
many other variations and applications of the Ekeland variational principle.

Exercise 2.2.1 Provide details for the proof of Theorem 2.2.1.

Exercise 2.2.2 Deduce the Ekeland variational principle in a Banach space
by applying the Bishop–Phelps Theorem to the epigraph of a lsc function.

Exercise 2.2.3 Show that, for γ > 1, Pγ(a, b) = {a} and P1(a, b) = {λa +
(1− λ)b | λ ∈ [0, 1]}.
Exercise 2.2.4 Prove that Pγ(a, b) is convex.

Exercise 2.2.5 Prove Lemma 2.2.3.



2.3 Applications to Fixed Point Theorems

Let X be a set and let f be a map from X to itself. We say x is a fixed
point of f if f(x) = x. Fixed points of a mapping often represent equilibrium
states of some underlying system, and they are consequently of great impor-
tance. Therefore, conditions ensuring the existence and uniqueness of fixed
point(s) are the subject of extensive study in analysis. We now use Ekeland’s
variational principle to deduce several fixed point theorems.

2.3.1 The Banach Fixed Point Theorem

Let (X, d) be a complete metric space and let φ be a map from X to itself.
We say that φ is a contraction provided that there exists k ∈ (0, 1) such that

d(φ(x), φ(y)) ≤ kd(x, y), for all x, y ∈ X.

Theorem 2.3.1 (Banach Fixed Point Theorem) Let (X, d) be a complete
metric space. Suppose that φ : X → X is a contraction. Then φ has a unique
fixed point.

Proof. Define f(x) := d(x, φ(x)). Applying Theorem 2.1.1 to f with ε ∈
(0, 1− k), we have y ∈ X such that

f(x) + εd(x, y) ≥ f(y), for all x ∈ X.

In particular, setting x = φ(y) we have

d(y, φ(y)) ≤ d(φ(y), φ2(y)) + εd(y, φ(y)) ≤ (k + ε)d(y, φ(y)).

Thus, y must be a fixed point. The uniqueness follows directly from the fact
that φ is a contraction and is left as an exercise. •

2.3.2 Clarke’s Refinement

Clarke observed that the argument in the proof of the Banach fixed point
theorem works under weaker conditions. Let (X, d) be a complete metric space.
For x, y ∈ X we define the segment between x and y by

[x, y] := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}. (2.3.1)

Definition 2.3.2 (Directional Contraction)Let (X, d) be a complete metric
space and let φ be a map from X to itself. We say that φ is a directional
contraction provided that
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(i) φ is continuous, and
(ii) there exists k ∈ (0, 1) such that, for any x ∈ X with φ(x) 6= x there exists

z ∈ [x, φ(x)]\{x} such that

d(φ(x), φ(z)) ≤ kd(x, z).

Theorem 2.3.3 Let (X, d) be a complete metric space. Suppose that φ : X →
X is a directional contraction. Then φ admits a fixed point.

Proof. Define
f(x) := d(x, φ(x)).

Then f is continuous and bounded from below (by 0). Applying the Ekeland
variational principle of Theorem 2.1.1 to f with ε ∈ (0, 1 − k) we conclude
that there exists y ∈ X such that

f(y) ≤ f(x) + εd(x, y), for all x ∈ X. (2.3.2)

If φ(y) = y, we are done. Otherwise, since φ is a directional contraction there
exists a point z 6= y with z ∈ [y, φ(y)], i.e.,

d(y, z) + d(z, φ(y)) = d(y, φ(y)) = f(y) (2.3.3)

satisfying

d(φ(z), φ(y)) ≤ kd(z, y). (2.3.4)

Letting x = z in (2.3.2) and using (2.3.3) we have

d(y, z) + d(z, y) ≤ d(z, φ(z)) + εd(z, y)

or

d(y, z) ≤ d(z, φ(z))− d(z, φ(y)) + εd(z, y) (2.3.5)

By the triangle inequality and (2.3.4) we have

d(z, φ(z))− d(z, φ(y)) ≤ d(φ(y), φ(z)) ≤ kd(y, z). (2.3.6)

Combining (2.3.5) and (2.3.6) we have

d(y, z) ≤ (k + ε)d(y, z),

a contradiction. •
Clearly any contraction is a directional contraction. Therefore, Theo-

rem 2.3.3 generalizes the Banach fixed point theorem. The following is an
example where Theorem 2.3.3 applies when the Banach contraction theorem
does not.
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Example 2.3.4 Consider X = IR2 with a metric induced by the norm ‖x‖ =
‖(x1, x2)‖ = |x1| + |x2|. A segment between two points (a1, a2) and (b1, b2)
consists of the closed rectangle having the two points as diagonally opposite
corners. Define

φ(x1, x2) =
(3x1

2
− x2

3
, x1 +

x2

3

)
.

Then φ is a directional contraction. Indeed, if y = φ(x) 6= x. Then y2 6= x2

(for otherwise we will also have y1 = x1). Now the set [x, y] contains points
of the form (x1, t) with t arbitrarily close to x2 but not equal to x2. For such
points we have

d(φ(x1, t), φ(x1, x2)) =
2
3
d((x1, t), (x1, x2)),

so that φ is a directional contraction. We can directly check that the fixed
points of φ are all points of the form (x, 3x/2). Since φ has more than one
fixed point clearly the Banach fixed point theorem does not apply to this
mapping.

2.3.3 The Caristi–Kirk Fixed Point Theorem

A similar argument can be used to prove the Caristi–Kirk fixed point theorem
for multifunctions. For a multifunction F : X → 2X , we say that x is a fixed
point for F provided that x ∈ F (x).

Theorem 2.3.5 (Caristi–Kirk Fixed Point Theorem) Let (X, d) be a com-
plete metric space and let f : X → IR∪{+∞} be a proper lsc function bounded
below. Suppose F : X → 2X is a multifunction with a closed graph satisfying

f(y) ≤ f(x)− d(x, y), for all (x, y) ∈ graphF. (2.3.7)

Then F has a fixed point.

Proof. Define a metric ρ on X × X by ρ((x1, y1), (x2, y2)) := d(x1, x2) +
d(y1, y2) for any (x1, y1), (x2, y2) ∈ X × X. Then (X × X, ρ) is a complete
metric space. Let ε ∈ (0, 1/2) and define g : X×X → IR ∪ {+∞} by g(x, y) :=
f(x)− (1− ε)d(x, y) + ιgraph F (x, y). Then g is a lsc function bounded below
(exercise). Applying the Ekeland variational principle of Theorem 2.1.1 to g
we see that there exists (x∗, y∗) ∈ graph F such that

g(x∗, y∗) ≤ g(x, y) + ερ((x, y), (x∗, y∗)), for all (x, y) ∈ X ×X.

So for all (x, y) ∈ graphF,

f(x∗)− (1− ε)d(x∗, y∗)
≤ f(x)− (1− ε)d(x, y) + ε(d(x, x∗) + d(y, y∗)). (2.3.8)

Suppose z∗ ∈ F (y∗). Letting (x, y) = (y∗, z∗) in (2.3.8) we have
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f(x∗)− (1− ε)d(x∗, y∗) ≤ f(y∗)− (1− ε)d(y∗, z∗) + ε(d(y∗, x∗) + d(z∗, y∗)).

It follows that

0 ≤ f(x∗)− f(y∗)− d(x∗, y∗) ≤ −(1− 2ε)d(y∗, z∗),

so we must have y∗ = z∗. That is to say y∗ is a fixed point of F . •
We observe that it follows from the above proof that F (y∗) = {y∗}.

2.3.4 Commentary and Exercises

The variational proof of the Banach fixed point theorem appeared in [103].
While the variational argument provides an elegant confirmation of the exis-
tence of the fixed point it does not, however, provide an algorithm for finding
such a fixed point as Banach’s original proof does. For comparison, a proof us-
ing an interactive algorithm is outlined in the guided exercises below. Clarke’s
refinement is taken from [87]. Theorem 2.3.5 is due to Caristi and Kirk [155]
and applications of this theorem can be found in [101]. A very nice general
reference book for the metric fixed point theory is [123].

Exercise 2.3.1 Let X be a Banach space and let x, y ∈ X. Show that the
segment between x and y defined in (2.3.1) has the following representation:

[x, y] = {λx + (1− λ)y | λ ∈ [0, 1]}.
Exercise 2.3.2 Prove the uniqueness of the fixed point in Theorem 2.3.1.

Exercise 2.3.3 Let f : IRN → IRN be a C1 mapping. Show that f is a con-
traction if and only if sup{‖f ′(x)‖ : x ∈ IRN} < 1.

Exercise 2.3.4 Prove that Kepler’s equation

x = a + b sin(x), b ∈ (0, 1)

has a unique solution.

Exercise 2.3.5 (Iteration Method) Let (X, d) be a complete metric space
and let φ : X → X be a contraction. Define for an arbitrarily fixed x0 ∈ X,
x1 = φ(x0), . . . , xi = φ(xi−1). Show that (xi) is a Cauchy sequence and x =
limi→∞ xi is a fixed point for φ.

Exercise 2.3.6 (Error Estimate) Let (X, d) be a complete metric space and
let φ : X → X be a contraction with contraction constant k ∈ (0, 1). Establish
the following error estimate for the iteration method in Exercise 2.3.5.

‖xi − x‖ ≤ ki

1− k
‖x1 − x0‖.

Exercise 2.3.7 Deduce the Banach fixed point theorem from the Caristi–
Kirk fixed point theorem. Hint: Define f(x) = d(x, φ(x))/(1− k).



2.4 Variational Principles in Finite Dimensional Spaces

One drawback of the Ekeland variational principle is that the perturbation
involved therein is intrinsically nonsmooth. This is largely overcome in the
smooth variational principle due to Borwein and Preiss. We discuss a Euclid-
ean space version in this section to illustrate the nature of this result. The
general version will be discussed in the next section.

2.4.1 Smooth Variational Principles in Euclidean Spaces

Theorem 2.4.1 (Smooth Variational Principle in a Euclidean Space) Let
f : IRN → IR ∪ {+∞} be a lsc function bounded from below, let λ > 0 and let
p ≥ 1. Suppose that ε > 0 and z ∈ X satisfy

f(z) ≤ inf
X

f + ε.

Then, there exists y ∈ X such that

(i) ‖z − y‖ ≤ λ,
(ii) f(y) + ε

λp ‖y − z‖p ≤ f(z), and
(iii) f(x) + ε

λp ‖x− z‖p ≥ f(y) + ε
λp ‖y − z‖p, for all x ∈ X.

Proof. Observing that the function x → f(x) + ε
λp ‖x− z‖p approaches +∞

as ‖x‖ → ∞, it must attain its minimum at some y ∈ X. It is an easy matter
to check that y satisfies the conclusion of the theorem. •

This very explicit formulation which is illustrated in Figure 2.5 – for
f(x) = 1/x, z = 1, ε = 1, λ = 1/2, with p = 3/2 and p = 2 – can be mimicked
in Hilbert space and many other classical reflexive Banach spaces [46]. It is
interesting to compare this result with the Ekeland variational principle geo-
metrically. The Ekeland variational principle says that one can support a lsc
function f near its approximate minimum point by a cone with small slope
while the Borwein–Preiss variational principle asserts that under stronger con-
ditions this cone can be replaced by a parabolic function with a small deriva-
tive at the supporting point. We must caution the readers that although this
picture is helpful in understanding the naturalness of the Borwein–Preiss vari-
ational principle it is not entirely accurate in the general case, as the support
function is usually the sum of an infinite sequence of parabolic functions.

This result can also be stated in the form of an approximate Fermat prin-
ciple in the Euclidean space IRN .

Lemma 2.4.2 (Approximate Fermat Principle for Smooth Functions) Let
f : IRN → IR be a smooth function bounded from below. Then there exists a
sequence xi ∈ IRN such that f(xi) → infIRN f and f ′(xi) → 0.

Proof. Exercise 2.4.3. •
We delay the discussion of the general form of the Borwein–Preiss varia-

tional principle until the next section and digress to some applications.
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Fig. 2.5. Smooth attained perturbations of 1/x

2.4.2 Gordan Alternatives

We start with an analytical proof of the Gordan alternative.

Theorem 2.4.3 (Gordan Alternative) Let a1, . . . , aM ∈ IRN . Then, exactly
one of the following systems has a solution:

M∑
m=1

λmam = 0,

M∑
m=1

λm = 1, 0 ≤ λm, m = 1, . . . ,M, (2.4.1)

〈am, x〉 < 0 for m = 1, . . . , M, x ∈ IRN . (2.4.2)

Proof. We need only prove the following statements are equivalent:

(i) The function

f(x) := ln
( M∑

m=1

exp 〈am, x〉
)

is bounded below.
(ii) System (2.4.1) is solvable.
(iii) System (2.4.2) is unsolvable.

The implications (ii)⇒ (iii) ⇒ (i) are easy and left as exercises. It remains to
show (i) ⇒ (ii). Applying the approximate Fermat principle of Lemma 2.4.2
we deduce that there is a sequence (xi) in IRN satisfying
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‖f ′(xi)‖ =
∥∥∥

M∑
m=1

λi
mam

∥∥∥ → 0, (2.4.3)

where the scalars

λi
m =

exp 〈am, xi〉∑M
l=0 exp 〈al, xi〉

> 0, m = 1, . . . , M

satisfy
∑M

m=1 λi
m = 1. Without loss of generality we may assume that λi

m →
λm, m = 1, . . . ,M . Taking limits in (2.4.3) we see that λm, m = 1, . . . , M is
a set of solutions of (2.4.1). •

2.4.3 Majorization

For a vector x = (x1, . . . , xN ) ∈ IRN , we use x↓ to denote the vector derived
from x by rearranging its components in nonincreasing order. For x, y ∈ IRN ,
we say that x is majorized by y, denoted by x ≺ y, provided that

∑N
n=1 xn =∑N

n=1 yn and
∑k

n=1 x↓n ≤
∑k

n=1 y↓n for k = 1, . . . , N .

Example 2.4.4 Let x ∈ IRN be a vector with nonnegative components sat-
isfying

∑N
n=1 xn = 1. Then

(1/N, 1/N, . . . , 1/N) ≺ x ≺ (1, 0, . . . , 0).

The concept of majorization arises naturally in physics and economics. For
example, if we use x ∈ IRN

+ (the nonnegative orthant of IRN ) to represent
the distribution of wealth within an economic system, then x ≺ y means the
distribution represented by x is more even than that of y. Example 2.4.4 then
describes the two extremal cases of wealth distribution.

Given a vector y ∈ IRN the level set of y with respect to the majorization
defined by l(y) := {x ∈ IRN | x ≺ y} is often of interest. It turns out that this
level set is the convex hull of all the possible vectors derived from permuting
the components of y. We will give a variational proof of this fact using a
method similar to that of the variational proof of the Gordon alternatives. To
do so we will need the following characterization of majorization.

Lemma 2.4.5 Let x, y ∈ IRN . Then x ≺ y if and only if, for any z ∈ IRN ,
〈z↓, x↓〉 ≤ 〈z↓, y↓〉.
Proof. Using Abel’s formula we can write

〈z↓, y↓〉 − 〈z↓, x↓〉 = 〈z↓, y↓ − x↓〉

=
N−1∑

k=1

(
(z↓k − z↓k+1)×

k∑
n=1

(y↓n − x↓n)
)

+ z↓N

N∑
n=1

(y↓n − x↓n).
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Now to see the necessity we observe that x ≺ y implies
∑k

n=1(y
↓
n−x↓n) ≥ 0 for

k = 1, . . . , N−1 and
∑N

n=1(y
↓
n−x↓n) = 0. Thus, the last term in the right hand

side of the previous equality is 0. Moreover, in the remaining sum each term
is the product of two nonnegative factors, and therefore it is nonnegative. We
now prove sufficiency. Suppose that, for any z ∈ IRN ,

0 ≤ 〈z↓, y↓〉 − 〈z↓, x↓〉 =
N−1∑

k=1

(
(z↓k − z↓k+1)×

k∑
n=1

(y↓n− x↓n)
)

+ z↓N

N∑
n=1

(y↓n− x↓n).

Setting z =
∑k

n=1 en for k = 1, . . . , N − 1 (where {en : n = 1, . . . , N} is
the standard basis of IRN ) we have

∑k
n=1 y↓n ≥ ∑k

n=1 x↓n, and setting z =
±∑N

n=1 en we have
∑N

n=1 yn =
∑N

n=1 xn. •
Let us denote by P (N) the set of N × N permutation matrices (those

matrices derived by permuting the rows or the columns of the identity matrix).
Then we can state the characterization of the level set of a vector with respect
to majorization as follows.

Theorem 2.4.6 (Representation of Level Sets of the Majorization) Let y ∈
IRN . Then

l(y) = conv{Py : P ∈ P (N)}.
Proof. It is not hard to check that l(y) is convex and, for any P ∈ P (N),
Py ∈ l(y). Thus, conv{Py : P ∈ P (N)} ⊂ l(y) (Exercise 2.4.8).

We now prove the reversed inclusion. For any x ≺ y, by Lemma 2.4.5 there
exists P = P (z) ∈ P (N) satisfies

〈z, Py〉 = 〈z↓, y↓〉 ≥ 〈z↓, x↓〉 ≥ 〈z, x〉. (2.4.4)

Observe that P (N) is a finite set (with N ! elements to be precise). Thus, the
function

f(z) := ln
( ∑

P∈P (N)

exp〈z, Py − x〉
)
.

is defined for all z ∈ IRN , is differentiable, and is bounded from below by 0.
By the approximate Fermat principle of Lemma 2.4.2 we can select a sequence
(zi) in IRN such that

0 = lim
i→∞

f ′(zi) =
∑

P∈P (N)

λi
P (Py − x). (2.4.5)

where

λi
P =

exp〈zi, Py − x〉∑
P∈P (N) exp〈zi, Py − x〉 .

Clearly, λi
P > 0 and

∑
P∈P (N) λi

P = 1. Thus, taking a subsequence if nec-
essary we may assume that, for each P ∈ P (N), limi→∞ λi

P = λP ≥ 0 and∑
P∈P (N) λP = 1. Now taking limits as i →∞ in (2.4.5) we have
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∑

P∈P (N)

λP (Py − x) = 0.

Thus, x =
∑

P∈P (N) λP Py, as was to be shown. •

2.4.4 Doubly Stochastic Matrices

We use E(N) to denote the Euclidean space of all real N by N square matrices
with inner product

〈A,B〉 = tr(B>A) =
N∑

n,m=1

anmbnm, A,B ∈ E(N).

A matrix A = (anm) ∈ E(N) is doubly stochastic provided that the entries
of A are all nonnegative,

∑N
n=1 anm = 1 for m = 1, . . . , N and

∑N
m=1 anm = 1

for n = 1, . . . , N . Clearly every P ∈ P (N) is doubly stochastic and they pro-
vide the simplest examples of doubly stochastic matrices. Birkhoff’s theorem
asserts that any doubly stochastic matrix can be represented as a convex com-
bination of permutation matrices. We now apply the method in the previous
section to give a variational proof of Birkhoff’s thoerem.

For A = (anm) ∈ E(N), we denote rn(A) = {m | anm 6= 0}, the set of
indices of columns containing nonzero elements of the nth row of A and we
use #(S) to signal the number of elements in set S. Then a doubly stochastic
matrix has the following interesting property.

Lemma 2.4.7 Let A ∈ E(N) be a doubly stochastic matrix. Then, for any
1 ≤ n1 < n2 < · · · < nK ≤ N ,

#
( K⋃

k=1

rnk
(A)

)
≥ K. (2.4.6)

Proof. We prove by contradiction. Suppose (2.4.6) is violated for some K.
Permuting the rows of A if necessary we may assume that

#
( K⋃

k=1

rk(A)
)

< K. (2.4.7)

Rearranging the order of the columns of A if needed we may assume

A =
(O B

C D

)
,

where O is a K by L submatrix of A with all entries equal to 0. By (2.4.7)
we have L > N −K. On the other hand, since A is doubly stochastic, every



2.4 In Finite Dimensional Spaces 25

column of C and every row of B add up to 1. That leads to L + K ≤ N , a
contradiction. •

Condition (2.4.6) actually ensures a matrix has a diagonal with all elements
nonzero which is made precise in the next lemma.

Lemma 2.4.8 Let A ∈ E(N). Suppose that A satisfies condition (2.4.6).
Then for some P ∈ P (N), the entries in A corresponding to the 1’s in P are
all nonzero. In particular, any doubly stochastic matrix has the above property.

Proof. We use induction on N . The lemma holds trivially when N = 1. Now
suppose that the lemma holds for any integer less than N . We prove it is true
for N . First suppose that, for any 1 ≤ n1 < n2 < · · · < nK ≤ N , K < N

#
( K⋃

k=1

rnk
(A)

)
≥ K + 1. (2.4.8)

Then pick a nonzero element of A, say aNN and consider the submatrix A′

of A derived by eliminating the Nth row and Nth column of A. Then A′

satisfies condition (2.4.6), and therefore there exists P ′ ∈ P (N − 1) such that
the entries in A′ corresponding to the 1’s in P ′ are all nonzero. It remains to
define P ∈ P (N) as

P =
(P ′ 0

0 1

)
.

Now consider the case when (2.4.8) fails so that there exist 1 ≤ n1 < n2 <
· · · < nK ≤ N , K < N satisfying

#
( K⋃

k=1

rnk
(A)

)
= K. (2.4.9)

By rearranging the rows and columns of A we may assume that nk = k, k =
1, . . . , K and

⋃K
k=1 rk(A) = {1, . . . , K}. Then

A =
(

B O
C D

)
,

where B ∈ E(K), D ∈ E(N −K) and O is a K by N −K submatrix with all
entries equal to 0. Observe that for any 1 ≤ n1 < · · · < nL ≤ K,

L⋃

l=1

rnl
(B) =

L⋃

l=1

rnl
(A).

Thus,

#
( L⋃

l=1

rnl
(B)

)
≥ L,
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and therefore B satisfies condition (2.4.6). On the other hand for any K +1 ≤
n1 < · · · < nL ≤ N ,

[ K⋃

k=1

rk(A)
]
∪

[ L⋃

l=1

rnl
(A)

]
= {1, . . . , K} ∪

[ L⋃

l=1

rnl
(D)

]
.

Thus, D also satisfies condition (2.4.6). By the induction hypothesis we have
P1 ∈ P (K) and P2 ∈ P (N − K) such that the elements in B and D cor-
responding to the 1’s in P1 and P2, respectively, are all nonzero. It follows
that

P =
(P1 O

O P2

)
∈ P (N),

and the elements in A corresponding to the 1’s in P are all nonzero. •
We now establish the following analogue of (2.4.4).

Lemma 2.4.9 Let A ∈ E(N) be a doubly stochastic matrix. Then for any
B ∈ E(N) there exists P ∈ P (N) such that

〈B,A− P 〉 ≥ 0.

Proof. We use an induction argument on the number of nonzero elements
of A. Since every row and column of A sums to 1, A has at least N nonzero
elements. If A has exactly N nonzero elements then they must all be 1, so
that A itself is a permutation matrix and the lemma holds trivially. Suppose
now that A has more than N nonzero elements. By Lemma 2.4.8 there exists
P ∈ P (N) such that the entries in A corresponding to the 1’s in P are all
nonzero. Let t ∈ (0, 1) be the minimum of these N positive elements. Then we
can verify that A1 = (A− tP )/(1− t) is a doubly stochastic matrix and has at
least one fewer nonzero elements than A. Thus, by the induction hypothesis
there exists Q ∈ P (N) such that

〈B, A1 −Q〉 ≥ 0.

Multiplying the above inequality by 1− t we have 〈B, A− tP − (1− t)Q〉 ≥ 0,
and therefore at least one of 〈B,A− P 〉 or 〈B,A−Q〉 is nonnegative. •

Now we are ready to present a variational proof for the Birkhoff theorem.

Theorem 2.4.10 (Birkhoff)Let A(N) be the set of all N×N doubly stochas-
tic matrices. Then

A(N) = conv{P | P ∈ P (N)}.
Proof. It is an easy matter to verify that A(N) is convex and P (N) ⊂ A(N).
Thus, conv P (N) ⊂ A(N).
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To prove the reversed inclusion, define a function f on E(N) by

f(B) := ln
( ∑

P∈P (N)

exp〈B, A− P 〉
)

.

Then f is defined for all B ∈ E(N), is differentiable and is bounded from
below by 0. By the approximate Fermat principle of Theorem 2.4.2 we can
select a sequence (Bi) in E(N) such that

0 = lim
i→∞

f ′(Bi) = lim
i→∞

∑

P∈P (N)

λi
P (A− P ). (2.4.10)

where

λi
P =

exp〈Bi, A− P 〉∑
P∈P (N) exp〈Bi, A− P 〉 .

Clearly, λi
P > 0 and

∑
P∈P (N) λi

P = 1. Thus, taking a subsequence if nec-
essary we may assume that for each P ∈ P (N), limi→∞ λi

P = λP ≥ 0 and∑
P∈P (N) λP = 1. Now taking limits as i →∞ in (2.4.10) we have

∑

P∈P (N)

λP (A− P ) = 0.

It follows that A =
∑

P∈P (N) λP P , as was to be shown. •
Majorization and doubly stochastic matrices are closely related. Their re-

lationship is described in the next theorem.

Theorem 2.4.11 (Doubly Stochastic Matrices and Majorization) A nonneg-
ative matrix A is doubly stochastic if and only if Ax ≺ x for any vector
x ∈ IRN .

Proof. We use en, n = 1, . . . , N , to denote the standard basis of IRN .
Let Ax ≺ x for all x ∈ IRN . Choosing x to be en, n = 1, . . . , N we can

deduce that the sum of elements of each column of A is 1. Next let x =∑N
n=1 en; we can conclude that the sum of elements of each row of A is 1.

Thus, A is doubly stochastic.
Conversely, let A be doubly stochastic and let y = Ax. To prove y ≺ x we

may assume, without loss of generality, that the coordinates of both x and y
are in nonincreasing order. Now note that for any k, 1 ≤ k ≤ N , we have

k∑
m=1

ym =
k∑

m=1

N∑
n=1

amnxn.

If we put tn =
∑k

m=1 amn, then tn ∈ [0, 1] and
∑N

n=1 tn = k. We have
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k∑
m=1

ym −
k∑

m=1

xm =
N∑

n=1

tnxn −
k∑

m=1

xm

=
N∑

n=1

tnxn −
k∑

m=1

xm + (k −
N∑

n=1

tn)xk

=
k∑

n=1

(tn − 1)(xn − xk) +
N∑

n=k+1

tn(xn − xk)

≤ 0.

Further, when k = N we must have equality here simply because A is doubly
stochastic. Thus, y ≺ x. •

Combining Theorems 2.4.6, 2.4.11 and 2.4.10 we have

Corollary 2.4.12 Let y ∈ IRN . Then l(y) = {Ay | A ∈ A(N)}.

2.4.5 Commentary and Exercises

Theorem 2.4.1 is a finite dimensional form of the Borwein–Preiss variational
principle [46]. The approximate Fermat principle of Lemma 2.4.2 was sug-
gested by [132]. The variational proof of Gordan’s alternative is taken from
[62] which can also be used in other related problems (Exercises 2.4.4 and
2.4.5).

Geometrically, Gordan’s alternative [125] is clearly a consequence of the
separation theorem: it says either 0 is contained in the convex hull of
a0, . . . , aM or it can be strictly separated from this convex hull. Thus, the
proof of Theorem 2.4.3 shows that with an appropriate auxiliary function
variational method can be used in the place of a separation theorem – a fun-
damental result in analysis.

Majorization and doubly stochastic matrices are import concepts in matrix
theory with many applications in physics and economics. Ando [3], Bhatia
[20] and Horn and Johnson [133, 134] are excellent sources for the background
and preliminaries for these concepts and related topics. Birkhoff’s theorem
appeared in [21]. Lemma 2.4.8 is a matrix form of Hall’s matching condition
[129]. Lemma 2.4.7 was established in König [158]. The variational proofs
for the representation of the level sets with respect to the majorization and
Birkhoff’s theorem given here follow [267].

Exercise 2.4.1 Supply the details for the proof of Theorem 2.4.1.

Exercise 2.4.2 Prove the implications (ii) ⇒ (iii) ⇒ (i) in the proof of the
Gordan Alternative of Theorem 2.4.3.

Exercise 2.4.3 Prove Lemma 2.4.2.



2.4 In Finite Dimensional Spaces 29

∗Exercise 2.4.4 (Ville’s Theorem) Let a1, . . . , aM ∈ IRN and define f : IRN →
IR by

f(x) := ln
( M∑

m=1

exp 〈am, x〉
)
.

Consider the optimization problem

inf{f(x) | x ≥ 0} (2.4.11)

and its relationship with the two systems

M∑
m=1

λmam = 0,

M∑
m=1

λm = 1, 0 ≤ λm, m = 1, . . . ,M, (2.4.12)

〈am, x〉 < 0 for m = 1, . . . , M, x ∈ IRN
+ . (2.4.13)

Imitate the proof of Gordan’s alternatives to prove the following are equiva-
lent:

(i) Problem (2.4.11) is bounded below.
(ii) System (2.4.12) is solvable.
(iii) System (2.4.13) is unsolvable.

Generalize by considering the problem inf{f(x) | xm ≥ 0,m ∈ K}, where K
is a subset of {1, . . . , M}.
∗Exercise 2.4.5 (Stiemke’s Theorem) Let a1, . . . , aM ∈ IRN and define
f : IRN → IR by

f(x) := ln
( M∑

m=1

exp 〈am, x〉
)
.

Consider the optimization problem

inf{f(x) | x ∈ IRN} (2.4.14)

and its relationship with the two systems

M∑
m=1

λmam = 0, 0 < λm, m = 1, . . . ,M, (2.4.15)

and

〈am, x〉 ≤ 0 for m = 1, . . . ,M, not all 0, x ∈ IRN . (2.4.16)

Prove the following are equivalent:

(i) Problem (2.4.14) has an optimal solution.
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(ii) System (2.4.15) is solvable.
(iii) System (2.4.16) is unsolvable.

Hint: To prove (iii) implies (i), show that if problem (2.4.14) has no optimal
solution then neither does the problem

inf
{ M∑

m=1

exp ym | y ∈ K
}

, (2.4.17)

where K is the subspace {(〈a1, x〉, . . . , 〈aM , x〉) | x ∈ IRN} ⊂ IRM . Hence,
by considering a minimizing sequence for (2.4.17), deduce system (2.4.16) is
solvable.

∗Exercise 2.4.6 Prove the following

Lemma 2.4.13 (Farkas Lemma) Let a1, . . . , aM and let b 6= 0 in IRN . Then
exactly one of the following systems has a solution:

M∑
m=1

λmam = b, 0 ≤ λm, m = 1, . . . ,M, (2.4.18)

〈am, x〉 ≤ 0 for m = 1, . . . , M, 〈b, x〉 > 0, x ∈ IRN (2.4.19)

Hint: Use the Gordan alternatives and induction.

Exercise 2.4.7 Verify Example 2.4.4.

Exercise 2.4.8 Let y ∈ IRN . Verify that l(y) is a convex set and, for any
P ∈ P (N), Py ∈ l(y).

Exercise 2.4.9 Give an alternative proof of Birkhoff’s theorem by going
through the following steps.

(i) Prove P (N) = {(amn) ∈ A(N) | amn = 0 or 1 for all m,n}.
(ii) Prove P (N) ⊂ ext(A(N)),where ext(S) signifies extreme points of set S.
(iii) Suppose (amn) ∈ A(N)\P (N). Prove there exist sequences of distinct

indices m1,m2, . . . , mk and n1, n2, . . . , nk such that

0 < amrnr , amr+1nr < 1(r = 1, . . . , k)

(where mk+1 = m1). For these sequences, show the matrix (a′mn) defined
by

a′mn − amn =





ε if (m,n) = (mr, nr) for some r,
−ε if (m,n) = (mr+1, nr) for some r,
0 otherwise,

is doubly stochastic for all small real ε. Deduce (amn) 6∈ ext(A(N)).
(iv) Deduce ext(A(N)) = P (N). Hence prove Birkhoff’s theorem.
(v) Use Carathéodory’s theorem [73] to bound the number of permutation

matrices needed to represent a doubly stochastic matrix in Birkhoff’s
theorem.
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Now we turn to a general form of the Borwein–Preiss smooth variational
principle and a variation thereof derived by Deville, Godefroy and Zizler with
a category proof.

2.5.1 The Borwein–Preiss Principle

Definition 2.5.1 Let (X, d) be a metric space. We say that a continuous
function ρ : X × X → [0,∞] is a gauge-type function on a complete metric
space (X, d) provided that

(i) ρ(x, x) = 0, for all x ∈ X,
(ii) for any ε > 0 there exists δ > 0 such that for all y, z ∈ X we have

ρ(y, z) ≤ δ implies that d(y, z) < ε.

Theorem 2.5.2 (Borwein–Preiss Variational Principle) Let (X, d) be a com-
plete metric space and let f : X → IR∪ {+∞} be a lsc function bounded from
below. Suppose that ρ is a gauge-type function and (δi)∞i=0 is a sequence of
positive numbers, and suppose that ε > 0 and z ∈ X satisfy

f(z) ≤ inf
X

f + ε.

Then there exist y and a sequence {xi} ⊂ X such that

(i) ρ(z, y) ≤ ε/δ0, ρ(xi, y) ≤ ε/(2iδ0),
(ii) f(y) +

∑∞
i=0 δiρ(y, xi) ≤ f(z), and

(iii) f(x) +
∑∞

i=0 δiρ(x, xi) > f(y) +
∑∞

i=0 δiρ(y, xi), for all x ∈ X\{y}.
Proof. Define sequences (xi) and (Si) inductively starting with x0 := z and

S0 := {x ∈ X | f(x) + δ0ρ(x, x0) ≤ f(x0)}. (2.5.1)

Since x0 ∈ S0, S0 is nonempty. Moreover it is closed because both f and
ρ(·, x0) are lsc functions. We also have that, for all x ∈ S0,

δ0ρ(x, x0) ≤ f(x0)− f(x) ≤ f(z)− inf
X

f ≤ ε. (2.5.2)

Take x1 ∈ S0 such that

f(x1) + δ0ρ(x1, x0) ≤ inf
x∈S0

[f(x) + δ0ρ(x, x0)] +
δ1ε

2δ0
. (2.5.3)

and define similarly

S1 :=
{

x ∈ S0

∣∣∣ f(x) +
1∑

k=0

δkρ(x, xk) ≤ f(x1) + δ0ρ(x1, x0)
}

. (2.5.4)
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In general, suppose that we have defined xj , Sj for j = 0, 1, . . . , i−1 satisfying

f(xj) +
j−1∑

k=0

δkρ(xj , xk) ≤ inf
x∈Sj−1

[
f(x) +

j−1∑

k=0

δkρ(x, xk)
]

+
εδj

2jδ0
(2.5.5)

and

Sj :=
{

x ∈ Sj−1

∣∣∣ f(x) +
j∑

k=0

δkρ(x, xk) ≤ f(xj) +
j−1∑

k=0

δkρ(xj , xk)
}

.(2.5.6)

We choose xi ∈ Si−1 such that

f(xi) +
i−1∑

k=0

δkρ(xi, xk) ≤ inf
x∈Si−1

[
f(x) +

i−1∑

k=0

δkρ(x, xk)
]

+
εδi

2iδ0
(2.5.7)

and we define

Si :=
{

x ∈ Si−1

∣∣∣ f(x) +
i∑

k=0

δkρ(x, xk) ≤ f(xi) +
i−1∑

k=0

δkρ(xi, xk)
}

.(2.5.8)

We can see that for every i = 1, 2, . . . , Si is a closed and nonempty set. It
follows from (2.5.7) and (2.5.8) that, for all x ∈ Si,

δiρ(x, xi) ≤
[
f(xi) +

i−1∑

k=0

δkρ(xi, xk)
]
−

[
f(x) +

i−1∑

k=0

δkρ(x, xk)
]

≤
[
f(xi) +

i−1∑

k=0

δkρ(xi, xk)
]
− inf

x∈Si−1

[
f(x) +

i−1∑

k=0

δkρ(x, xk)
]

≤ εδi

2iδ0
,

which implies that

ρ(x, xi) ≤ ε

2iδ0
, for all x ∈ Si. (2.5.9)

Since ρ is a gauge-type function, inequality (2.5.9) implies that d(x, xi) → 0
uniformly, and therefore diam(Si) → 0. Since X is complete, by Cantor’s
intersection theorem there exists a unique y ∈ ⋂∞

i=0 Si, which satisfies (i) by
(2.5.2) and (2.5.9). Obviously, we have xi → y. For any x 6= y, we have that
x 6∈ ⋂∞

i=0 Si, and therefore for some j,

f(x) +
∞∑

k=0

δkρ(x, xk) ≥ f(x) +
j∑

k=0

δkρ(x, xk)

> f(xj) +
j−1∑

k=0

δkρ(xj , xk). (2.5.10)
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On the other hand, it follows from (2.5.1), (2.5.8) and y ∈ ⋂∞
i=0 Si that, for

any q ≥ j,

f(x0) ≥ f(xj) +
j−1∑

k=0

δkρ(xj , xk)

≥ f(xq) +
q−1∑

k=0

δkρ(xq, xk)

≥ f(y) +
q∑

k=0

δkρ(y, xk). (2.5.11)

Taking limits in (2.5.11) as q →∞ we have

f(z) = f(x0) ≥ f(xj) +
j−1∑

k=0

δkρ(xj , xk)

≥ f(y) +
∞∑

k=0

δkρ(y, xk), (2.5.12)

which verifies (ii). Combining (2.5.10) and (2.5.12) yields (iii). •
We shall frequently use the following normed space form of the Borwein–

Preiss variational principle, especially in spaces with a Fréchet smooth renorm,
in which case we may deduce first-order (sub)differential information from the
conclusion.

Theorem 2.5.3 Let X be a Banach space with norm ‖ · ‖ and let f : X →
IR ∪ {+∞} be a lsc function bounded from below, let λ > 0 and let p ≥ 1.
Suppose that ε > 0 and z ∈ X satisfy

f(z) < inf
X

f + ε.

Then there exist y and a sequence (xi) in X with x1 = z and a function
ϕp : X → IR of the form

ϕp(x) :=
∞∑

i=1

µi‖x− xi‖p,

where µi > 0 for all i = 1, 2, . . . and
∑∞

i=1 µi = 1 such that

(i) ‖xi − y‖ ≤ λ, n = 1, 2, . . . ,
(ii) f(y) + (ε/λp)ϕp(y) ≤ f(z), and
(iii) f(x) + (ε/λp)ϕp(x) > f(y) + (ε/λp)ϕp(y), for all x ∈ X \ {y}.
Proof. Exercise 2.5.1. •

Note that when ‖ · ‖ is Fréchet smooth so is ϕp for p > 1.
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2.5.2 The Deville–Godefroy–Zizler Principle

An important counterpart of the Borwein–Preiss variational principle sub-
sequently found by Deville, Godefroy and Zizler [94] is given below. It is
interesting to see how the Baire category theorem is used in the proof. Recall
that the Baire category theorem states that in a complete metric space every
countable intersection of dense open sets is dense: a set containing such a
dense Gδ set is called generic or residual and the complement of such a set is
meager. We say a function f : X → IR ∪ {+∞} attains a strong minimum at
x ∈ X if f(x) = infX f and ‖xi−x‖ → 0 whenever xi ∈ X and f(xi) → f(x).
If f is bounded on X, we define ‖f‖∞ := sup{|f(x)| | x ∈ X}. We say that
φ : X → IR is a bump function if φ is bounded and has bounded nonempty
support supp(φ) := {x ∈ X | φ(x) 6= 0}.
Theorem 2.5.4 (The Deville–Godefroy–Zizler Variational Principle) Let X
be a Banach space and Y a Banach space of continuous bounded functions g
on X such that

(i) ‖g‖∞ ≤ ‖g‖Y for all g ∈ Y .
(ii) For each g ∈ Y and z ∈ X, the function x → gz(x) = g(x + z) is in Y

and ‖gz‖Y = ‖g‖Y .
(iii) For each g ∈ Y and a ∈ IR, the function x → g(ax) is in Y .
(iv) There exists a bump function in Y .

If f : X → IR ∪ {+∞} is a proper lsc function and bounded below, then the
set G of all g ∈ Y such that f + g attains a strong minimum on X is residual
(in fact a dense Gδ set).

Proof. Given g ∈ Y , define S(g; a) := {x ∈ X | g(x) ≤ infX g + a} and
Ui := {g ∈ Y | diam S(f + g; a) < 1/i, for some a > 0}. We show that each of
the sets Ui is dense and open in Y and that their intersection is the desired
set G.

To see that Ui is open, suppose that g ∈ Ui with a corresponding a > 0.
Then, for any h ∈ Y such that ‖g − h‖Y < a/3, we have ‖g − h‖∞ < a/3.
Now, for any x ∈ S(f + h; a/3),

(f + h)(x) ≤ inf
X

(f + h) +
a

3
.

It is an easy matter to estimate

(f + g)(x) ≤ (f + h)(x) + ‖g − h‖∞ ≤ inf
X

(f + h) +
a

3
+ ‖g − h‖∞

≤ inf
X

(f + g) +
a

3
+ 2‖g − h‖∞ ≤ inf

X
(f + g) + a.

This shows that S(f + h; a/3) ⊂ S(f + g; a). Thus, h ∈ Ui.
To see that each Ui is dense in Y , suppose that g ∈ Y and ε > 0; it suffices

to produce h ∈ Y such that ‖h‖Y < ε and for some a > 0 diam S(f + g +
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h; a) < 1/i. By hypothesis (iv), Y contains a bump function φ. Without loss
of generality we may assume that ‖φ‖Y < ε. By hypothesis (ii) we can assume
that φ(0) 6= 0, and therefore that φ(0) > 0. Moreover, by hypothesis (iii) we
can assume that supp(φ) ⊂ B(0, 1/2i). Let a = φ(0)/2 and choose x̄ ∈ X such
that

(f + g)(x̄) < inf
X

(f + g) + φ(0)/2.

Define h by h(x) := −φ(x−x̄); by hypothesis (ii), h ∈ Y and ‖h‖Y = ‖φ‖Y < ε
and h(x̄) = −φ(0). To show that diam S(f +g+h; a) < 1/i, it suffices to show
that this set is contained in the ball B(x̄, 1/2i); that is, if ‖x − x̄‖ > 1/2i,
then x 6∈ S(f + g + h; a), the latter being equivalent to

(f + g + h)(x) > inf
X

(f + g + h) + a.

Now, supp(h) ⊂ B(x̄, 1/2i), so h(x) = 0 if ‖x− x̄‖ > 1/2i hence

(f + g + h)(x) = (f + g)(x) ≥ inf
X

(f + g) > (f + g)(x̄)− a

= (f + g + h)(x̄) + φ(0)− φ(0)/2 ≥ inf
X

(f + g + h) + a.

as was to be shown.
Finally we show

⋂∞
i=1 Ui = G. The easy part of G ⊂ ⋂∞

i=1 Ui is left as an
exercise. Let g ∈ ⋂∞

i=1 Ui. We will show that g ∈ G; that is, f + g attains a
strong minimum on X. First, for all i there exists ai > 0 such that diam S(f +
g; ai) < 1/i and hence there exists a unique point x̄ ∈ ⋂∞

i=1 S(f + g; ai).
Suppose that xk ∈ X and that (f + g)(xk) → infX(f + g). Given i > 0 there
exists i0 such that (f + g)(xk) ≤ infX(f + g) + ai for all i ≥ i0, therefore
xk ∈ S(f + g; ai) for all i ≥ i0 and hence ‖xk − x̄‖ ≤ diam S(f + g; ai) < 1/i
if k ≥ i0. Thus, xk → x̄, and therefore g ∈ G. •

2.5.3 Commentary and Exercises

The Borwein–Preiss smooth variational principle appeared in [46]. The proof
here is adapted from Li and Shi [176]. Their original proof leads to a clean gen-
eralization of both the Ekeland and Borwein–Preiss variational principle (see
Exercises 2.5.2 and 2.5.3). The Deville–Godefroy–Zizler variational principle
and its category proof is from [94]. Another very useful variational principle
due to Stegall, is given in Section 6.3.

Exercise 2.5.1 Deduce Theorem 2.5.3 from Theorem 2.5.2. Hint: Set ρ(x, y) =
‖x− y‖p.

Exercise 2.5.2 Check that, with δ0 := 1, δi := 0, i = 1, 2, . . . and ρ := εd,
the procedure in the proof of Theorem 2.5.2 reduces to a proof of the Ekeland
variational principle.
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If one works harder, the two variational principles can be unified.

∗Exercise 2.5.3 Adapt the proof of Theorem 2.5.2 for a nonnegative sequence
(δi)∞i=0, δ0 > 0 to derive the following generalization for both the Ekeland and
the Borwein–Preiss variational principles.

Theorem 2.5.5 Let (X, d) be a complete metric space and let f : X → IR ∪
{+∞} be a lsc function bounded from below. Suppose that ρ is a gauge-type
function and (δi)∞i=0 is a sequence of nonnegative numbers with δ0 > 0. Then,
for every ε > 0 and z ∈ X satisfying

f(z) ≤ inf
X

f + ε,

there exists a sequence {xi} ⊂ X converging to some y ∈ X such that

(i) ρ(z, y) ≤ ε/δ0,
(ii) f(y) +

∑∞
i=0 δiρ(y, xi) ≤ f(z), and

(iii) f(x) +
∑∞

i=0 δiρ(x, xi) > f(y) +
∑∞

i=0 δiρ(y, xi), for all x ∈ X \ {y}.
Moreover, if δk > 0 and δl = 0 for all l > k ≥ 0, then (iii) may be replaced by

(iii′) for all x ∈ X \ {y}, there exists j ≥ k such that

f(x) +
k−1∑

i=0

δiρ(x, xi) + δkρ(x, xj) > f(y) +
k−1∑

i=0

δiρ(y, xi) + δkρ(y, xj).

The Ekeland variational principle, the Borwein–Preiss variational princi-
ple and the Deville–Godefroy–Zizler variational principle are related in the
following exercises.

Exercise 2.5.4 Deduce the following version of Ekeland’s variational princi-
ple from Theorem 2.5.4.

Theorem 2.5.6 Let X be a Banach space and let f : X → IR ∪ {+∞} be a
proper lsc function and bounded below. Then for all ε > 0 there exists x̄ ∈ X
such that

f(x̄) ≤ inf
X

f + 2ε

and the perturbed function x → f(x) + ε‖x− x̄‖ attains a strong minimum at
x̄.

Hint: Let Y be the space of all bounded Lipschitz continuous functions g on
X with norm

‖g‖Y := ‖g‖∞ + sup
{ |g(x)− g(y)|

‖x− y‖
∣∣∣ x, y ∈ X, x 6= y

}
.

Exercise 2.5.5 Deduce the following version of the smooth variational prin-
ciple from Theorem 2.5.4.
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Theorem 2.5.7 Let X be a Banach space with a Lipschitz Fréchet smooth
bump function and let f : X → IR∪{+∞} be a proper lsc function and bounded
below. Then there exists a constant a > 0 (depending only on X) such that
for all ε ∈ (0, 1) and for any y ∈ X satisfying f(y) < infX f + aε2, there exist
a Lipschitz Fréchet differentiable function g and x ∈ X such that

(i) f + g has a strong minimum at x,
(ii) ‖g‖∞ < ε and ‖g′‖∞ < ε,
(iii) ‖x− y‖ < ε.

∗Exercise 2.5.6 (Range of Bump Functions)Let b : IRN → IR be a C1 bump
function.

(i) Show that 0 ∈ int range(b′) by applying the smooth variational principle.
(ii) Find an example where range(b′) is not simply connected.

Reference: [31].
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Variational Techniques in Subdifferential
Theory

For problems of smooth variation we can usually apply arguments based on
Fermat’s principle – that a differentiable function has a vanishing derivative
at its minima (maxima). However, nonsmooth functions and mappings arise
intrinsically in many applications. The following are several such examples of
intrinsic nonsmoothness.

Example 3.0.1 (Max Function) Let fn : X → IR ∪ {+∞} , n = 1, . . . , N be
lsc functions. Then so is

f = max(f1, . . . , fN ).

However, this maximum is often nonsmooth even if all fn, n = 1, . . . , N are
smooth functions. For example,

|x| = max(x,−x).

is nonsmooth at x = 0.

Example 3.0.2 (Optimal Value Functions) Consider the simple constrained
minimization problem of minimizing f(x) subject to g(x) = a, x ∈ IR. Here
a ∈ IR is a parameter allowing for perturbation of the constraint. In practice
it is often important to know how the model responds to the perturbation a.
For this we need to consider, for example, the optimal value

v(a) := inf{f(x) : g(x) = a}

as a function of a. Consider a concrete example, illustrated in Figure 3.1, of
the two smooth functions f(x) := 1 − cosx and g(x) := sin(6x) − 3x, and
a ∈ [−π/2, π/2] which corresponds to x ∈ [−π/6, π/6]. It is easy to show that
the optimal value function v is not smooth, in fact, not even continuous.
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Fig. 3.1. Smooth becomes nonsmooth: g (vertical) plotted against f .

Example 3.0.3 (Penalization Functions) Constrained optimization prob-
lems occur naturally in many applications. A simplified form of such a problem
is

P minimize f(x)

subject to x ∈ S,

where S is a closed subset of X often referred to as the feasible set. One often
wishes to convert such a problem to a simpler one without constraint. The
use of nonsmooth functions makes this conversion easier. For example, if f
is Lipschitz with a Lipschitz constant L then, for any µ > L, problem P is
equivalent to

minimize f + µdS .

This is often referred to as exact penalization. If f is lsc then P is equivalent
to

minimize f + ιS .

Example 3.0.4 (Spectral Functions) The maximum eigenvalue of a matrix
often plays an important role in problems related to a matrix. When the
matrix contains one or more parameters, the maximum eigenvalue then be-
comes a function of those parameters. This maximum eigenvalue function is
often intrinsically nonsmooth. For example, consider the 2 by 2 matrix with
a parameter x, [

1 x
x 1

]
.

Then the maximum eigenvalue is 1 + |x|, a nonsmooth function.
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This intrinsic nonsmoothness motivated the development of nonsmooth
analysis. Concepts generalizing that of the derivative for smooth functions
have been introduced which enable us to apply the variational technique to
nonsmooth functions. There are many competing concepts of subdifferentials;
we mainly focus on the Fréchet subdifferential which is a natural fit for the
variational technique.

3.1 The Fréchet Subdifferential and Normal Cones

3.1.1 The Fréchet Subdifferential

To generate the Fréchet subdifferential at a nondifferentiable point of a lsc
function, we use the collection of all the (Fréchet) derivatives of smooth “os-
culating” functions (functions lying below and touching at the point in ques-
tion), if they exist, to replace the missing derivative. More often than not,
this simple contrivance is sufficient. Moreover, in the language of analysis, we
are led to study a local minimum of the difference of two functions which
fits very well with techniques of variational analysis. The geometric concept
of the Fréchet normal cone to a closed set is then introduced through the
subdifferential of the indicator function of the set – an extended-valued lsc
function.

Let X be a Banach space. We say a function f on X is Fréchet differentiable
at x and f ′(x) ∈ X∗ is the Fréchet derivative of f at x provided that

lim
‖h‖→0

|f(x + h)− f(x)− 〈f ′(x), h〉|
‖h‖ = 0.

We say f is C1 at x if f ′ : X → X∗ is norm continuous at x. We say a
Banach space is Fréchet smooth provided that it has an equivalent norm that
is differentiable, indeed C1, for all x 6= 0.

Definition 3.1.1 (Fréchet Subdifferential) Let X be a real Banach space.
Let f : X → IR ∪ {+∞} be a proper lsc function. We say f is Fréchet-sub-
differentiable and x∗ is a Fréchet-subderivative of f at x if x ∈ domf and

lim inf
‖h‖→0

f(x + h)− f(x)− 〈x∗, h〉
‖h‖ ≥ 0. (3.1.1)

We denote the set of all Fréchet-subderivatives of f at x by ∂F f(x) and call
this object the Fréchet subdifferential of f at x. For convenience we define
∂F f(x) = ∅ if x 6∈ domf .

Definition 3.1.2 (Viscosity Fréchet Subdifferential) Let X be a real Banach
space. Let f : X → IR∪{+∞} be a proper lsc function. We say f is viscosity
Fréchet-subdifferentiable and x∗ is a viscosity Fréchet-subderivative of f at
x if x ∈ domf and there exists a C1 function g such that g′(x) = x∗ and
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f−g attains a local minimum at x. We denote the set of all viscosity Fréchet-
subderivatives of f at x by ∂V F f(x) and call this object the viscosity Fréchet
subdifferential of f at x. For convenience we define ∂V F f(x) = ∅ if x 6∈ domf .

Since shifting g by a constant does not influence its derivative we can
require that f − g attains a local minimum of 0 at x in the above definition.

The following relationship between the Fréchet subdifferential and the vis-
cosity Fréchet subdifferential is easy and useful.

Proposition 3.1.3 Let X be a Banach space and let f : X → IR ∪ {+∞} be
a lsc function. Then ∂V F f(x) ⊂ ∂F f(x).

Proof. Exercise 3.1.1. •
In fact, with some additional effort one can show that in a Fréchet-smooth

Banach space ∂V F f(x) = ∂F f(x) [95]. Since we work mostly in Fréchet smooth
Banach spaces in this book, we will use ∂F for both Fréchet and viscosity
Fréchet subdifferentials unless pointed out otherwise.

If f is Fréchet differentiable at x then it is not hard to show that
∂F f(x) = {f ′(x)}. The converse is not true (Exercises 3.1.3). In general,
∂F f(x) may be empty even if x ∈ domf . An easy example is ∂F (−‖·‖)(0) = ∅.
However, a variational argument leads to the following important result about
the existence of the Fréchet subdifferential.

Theorem 3.1.4 Let X be a Fréchet smooth Banach space and let f : X →
IR ∪ {+∞} be a lsc function. Then {x ∈ X | ∂F f(x) 6= ∅} is dense in domf .

Proof. Let x̄ ∈ domf and let ε be an arbitrary positive number. We show f
is Fréchet subdifferentiable at some point y ∈ Bε(x̄). Since f is lsc at x̄ there
exists δ > 0 such that f(x) > f(x̄)−1 for all x ∈ Bδ(x̄). Define f̃ := f +ιBδ(x̄).
Then, f̃ is lsc and

f̃(x̄) = f(x̄) < inf
Bδ(x̄)

f + 1 = inf
X

f̃ + 1.

Applying the Borwein–Preiss Variational Principle of Theorem 2.5.3, using
the asserted Fréchet smooth renorm with λ < min(δ, ε), we conclude that
there exists y ∈ Bλ(x̄) ⊂ int(Bδ(x̄) ∩ Bε(x̄)) and ϕ2(x) :=

∑∞
i=1 µi‖x − xi‖2

where (xi) is a sequence converging to y and (µi) is a sequence of positive
numbers satisfying

∑∞
i=1 µi = 1 such that f̃ +λ−2ϕ2 attains a minimum at y.

Since y is an interior point of Bδ(x̄), f + λ−2ϕ2 attains a local minimum
at y. After checking that ϕ2 is Fréchet differentiable, we see that f is Fréchet
subdifferentiable at y ∈ Bε(x̄). •

We put meat on the bones of the last result by recalling that Hilbert space
and Lp(1 < p < ∞) are Fréchet smooth in their original norms while every
reflexive space has a Fréchet smooth renorm [46, 95].
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Note that the subdifferential is usually a set. The following are subdiffer-
entials of several nonsmooth functions at typical nonsmooth points that can
easily be verified.

Example 3.1.5
∂F | · |(0) = [−1, 1],

∂F

√
| · |(0) = (−∞,∞),

∂F max(·, 0)(0) = [0, 1],

and
∂F ι[0,1](0) = (−∞, 0].

3.1.2 The Fréchet Normal Cone

The central geometric concept of the normal cone to a closed set can now be
defined through the indicator function of the set.

Definition 3.1.6 (Fréchet Normal Cone) Let S be a closed subset of X. We
define the Fréchet normal cone of S at x to be NF (S;x) := ∂F ιS(x).

Some easy facts directly follow from the definition. It is easy to ver-
ify that NF (S; x) is a cone that always contains {0} and when x ∈ intS,
NF (S;x) = {0} (Exercises 3.1.6, 3.1.8 and 3.1.9). Moreover, consider the con-
strained minimization problem

minimize f(x)

subject to x ∈ S ⊂ X.

(3.1.2)

We have an easy and useful necessary optimality condition in terms of the
normal cone of S.

Proposition 3.1.7 Let X be a Fréchet smooth Banach space, let f be a C1

function on X and let S be a closed subset of X. Suppose that x̄ is a solution
of the constained minimization problem (3.1.2). Then

0 ∈ f ′(x̄) + NF (S; x̄).

Proof. Exercise 3.1.13. •
Recall that for a C1 function f , v = f ′(x) if and only if (v,−1) is a normal

vector for the graph of f at (x, f(x)). Our next theorem is a Fréchet subdif-
ferential version of this fact which characterizes the Fréchet subdifferential of
a function in terms of the normal cone to its epigraph.

Theorem 3.1.8 Let X be a Fréchet smooth Banach space and let f : X →
IR ∪ {+∞} be a lsc function. Then x∗ ∈ ∂F f(x) if and only if

(x∗,−1) ∈ NF (epif ; (x, f(x))).
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Proof. (a) The “only if” part. Let x∗ ∈ ∂F f(x). Then there exists a C1

function g such that g′(x) = x∗ and f − g attains a minimum at x. Define
h(y, r) := g(y)− r. We have hx, f(x)) = (x∗,−1) and

ιepif (y, r)− h(y, r) ≥ ιepif (x, f(x))− h(x, f(x)). (3.1.3)

Thus, (x∗,−1) ∈ NF (epif ; (x, f(x))).
(b) The “if” part. Let (x∗,−1) ∈ NF (epif ; (x, f(x))). Then there exists a

C1 function h such that h′(x, f(x)) = (x∗,−1) and h(y, r) ≤ h(x, f(x)) = 0 for
any (y, r) ∈ epif . By the implicit function theorem (see e.g. [264]) there exists
a C1 function g : X → IR such that in a neighborhood of x, h(y, g(y)) = 0,
g(x) = f(x) and g′(x) = x∗. Since h is C1 and the second component of
h′(x, f(x)) is negative there exists a > 0 such that h(y, r) < h(y, r′), for any
y ∈ Ba(x) and f(x) − a < r′ < r < f(x) + a. Take b ∈ (0, a) such that for
any y ∈ Bb(x), g(y) ∈ (f(x) − a, f(x) + a) and f(y) > f(x) − a. Then, for
any y ∈ Bb(x), we have f(y)− g(y) ≥ 0 = f(x)− g(x). In fact, the inequality
is obvious when f(y) ≥ f(x) + a. If f(y) < f(x) + a then it follows from
h(y, f(y)) ≤ 0 = h(y, g(y)). •

The normal cone to the epigraph of a function has the following special
properties.

Lemma 3.1.9 Let f be a lsc function. Then

(i) for any (x, r) ∈ epif , NF (epif ; (x, r)) ⊂ NF (epif ; (x, f(x))),
(ii) if (x∗,−λ) ∈ NF (epif ; (x, f(x))) and λ 6= 0 then λ > 0 and x∗ ∈

λ∂F f(x).

Proof. Exercise 3.1.10. •
Thus, Theorem 3.1.8 also characterizes (x∗, λ) ∈ NF (epif ; (x, f(x))) when

λ 6= 0 in terms of the subdifferentials of f . The characterization of (x∗, 0) ∈
NF (epif ; (x, f(x))) in terms of the subdifferentials of f is more delicate and
will be discussed later after we have developed the subdifferential calculus.

3.1.3 The Subdifferential Form of the Variational Principle

We conclude this section with a subdifferential version of the Borwein–Preiss
Variational Principle. This is the form most frequently used in applications
involving subdifferentials. The easy proof is left as an exercise.

Theorem 3.1.10 Let X be a Banach space with a Fréchet smooth norm ‖ · ‖
and let f : X → IR ∪ {+∞} be a lsc function bounded from below, λ > 0 and
p > 1. Then, for every ε > 0 and z ∈ X satisfying

f(z) < inf
X

f + ε,
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there exists a point y ∈ X such that ‖z − y‖ ≤ λ and a C1 function ϕ with
|ϕ(y)| < ε/λ and ‖ϕ′(y)‖ < pε/λ such that f + ϕ attains a minimum at y.
Consequently,

∂F f(y) ∩ pε

λ
BX∗ 6= ∅.

Proof. Exercise 3.1.12. •

3.1.4 Commentary and Exercises

Although the use of generalized (one-sided) derivatives dates back explic-
itly to Dini and before, especially in the context of integration theory, the
systematic study of such concepts for variational analysis, especially off the
real line, is quite recent. Consistent theory was developed first for certain
classes of functions, e.g., the convex subdifferential for convex functions (see
[229]) and the quasi-differential for quasi-differentiable functions (see [217]).
Clarke’s pioneering work [85] on the generalized gradient opened the door
to methodical study of general nonsmooth problems. Many competing con-
cepts of generalized derivatives were introduced in the ensuing past several
decades. Several frequently used concepts are Halkin’s screen [128], the limit-
ing subdifferential developed by Mordukhovich [189, 192, 194], Ioffe’s approx-
imate and G-subdifferential [137, 140, 141], Michel and Penot’s subdifferential
[187], Treiman’s linear subdifferential [243, 245], Warga’s derivative container
[259, 256] and Sussmann’s semidifferential [239, 240].

The last decade has witnessed a unification and reconciliation of much of
this work in two directions. One is along the ideas pioneered by Warga to
study abstract subdifferentials that satisfy a set of axioms so as to provide
basic properties of many different subdifferentials alluded to above with a
unified framework. The other, which is more relevant to this book, is to turn
our attention to the simpler smooth subdifferentials based on the fact that
many of the above subdifferentials can be represented by such smooth subdif-
ferentials in spaces with a reasonable geometric property [60, 88, 141, 179]. In
this book we primarily consider the Fréchet subdifferential in Fréchet smooth
Banach spaces. It was introduced by Bazaraa, Goode and Nashed in finite
dimensions [18] and developed in detail in infinite dimensions by Borwein and
Strojwas [49], Kruger [159, 160], Kruger and Mordukhovich [161] and others.
This allows us to illustrate variational techniques without too many technical
assumptions. Most of the results apply to more general bornological smooth
subdifferentials or s-Hölder subdifferentials [46, 215] with minor changes. Sys-
tematic accounts of nonsmooth analysis and its applications can be found in
[8, 87, 88, 83, 179, 145, 194, 202, 230, 259, 256].

Unlike derivatives, subdifferentials do not determine functions up to a con-
stant, even on well connected sets. Thus, we do not have an “integration” the-
ory corresponding to the subdifferentials (see guided Exercises 3.1.19, 3.1.20,
3.1.21 and 3.1.22 for details).
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Exercise 3.1.1 Prove Proposition 3.1.3.

Exercise 3.1.2 Verify the Fréchet subdifferentials in Example 3.1.5.

Exercise 3.1.3 Show that

(i) If f is Fréchet differentiable at x then ∂F f(x) = {f ′(x)}.
(ii) A function can have a unique Fréchet subdifferential without being dif-

ferentiable.
(iii) There exists a Lipschitz function having the properties described in (ii).

Hint: Consider f(x) := |x|(sin(log(|x|)) + 1), x 6= 0 and f(0) := 0.

Exercise 3.1.4 (Fréchet Superdifferential) Let f : X → IR ∪ {−∞} be an
upper semicontinuous function (i.e., −f is lsc). We define the Fréchet su-
perdifferential of f at x to be ∂F f(x) = −∂F (−f)(x). Prove that f is Fréchet
differentiable at x if and only if ∂F f(x) = ∂F (f)(x) = {f ′(x)}. Indeed it
suffices that ∂F f(x) ∩ ∂F f(x) 6= ∅.
Exercise 3.1.5 Show that for any λ > 0, ∂F (λf)(x) = λ∂F f(x). Care must
be taken with zero, when ∂F f(x) is empty.

Exercise 3.1.6 Verify that for any closed set S and x ∈ S, NF (S; x) is a
cone, i.e., for any x∗ ∈ NF (S; x) and any r ≥ 0, rx∗ ∈ NF (S; x).

Exercise 3.1.7 Construct a set S ⊂ IR2 such that NF (S; (0, 0)) is neither
open nor closed.

Exercise 3.1.8 Show that if s ∈ intS, then NF (S; s) = {0}.
Exercise 3.1.9 Let {ei} be the standard orthonormal basis of `2 and let
S := conv{±ei/i}∞i=1. Show that 0 6∈ intS yet NF (S, 0) = {0}.
Exercise 3.1.10 Prove Lemma 3.1.9.

Exercise 3.1.11 Show that in Definition 3.1.2 we can require that f − g
attains a local minimum of 0 at x.

Exercise 3.1.12 Suppose that f is a lsc function and that g is a C1 function.
Show that ∂F (f + g)(x) = ∂F f(x) + g′(x).

Exercise 3.1.13 Prove Proposition 3.1.13.

Exercise 3.1.14 Prove that if f is a Lipschitz function with rank L then, for
any x, x∗ ∈ ∂F f(x) implies that ‖x∗‖ ≤ L.

∗Exercise 3.1.15 Let X be a Fréchet smooth Banach space and let f : X →
IR ∪ {+∞} be a lsc function. Prove that f is Lipschitz with rank L if and
only if, for any x, x∗ ∈ ∂F f(x) implies that ‖x∗‖ ≤ L.

∗Exercise 3.1.16 Let X be a Fréchet smooth Banach space and let f : X →
IR ∪ {+∞} be a lsc function. Prove that ∂V F f(x) = ∂F f(x). Reference: [95].
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Fig. 3.2. Every Fréchet subdifferential is a “viscosity” subdifferential.

∗Exercise 3.1.17 Let X be a Banach space with a Fréchet smooth equivalent
norm and let f : X → IR ∪ {+∞} be a lsc function. Prove that x∗ ∈ ∂F f(x)
if and only if there exists a concave C1 function g such that g′(x) = x∗ and
f − g attains a local minimum at x, as drawn in Figure 3.2. Reference: [69,
Remark 1.4].

Exercise 3.1.18 Prove Theorem 3.1.10.

Exercise 3.1.19 Construct two lsc functions on IR with the identical Fréchet
subdifferential yet their difference is not a constant. Hint: Consider f =
1 − χ[0,1] and 2f where χS is the characteristic function of set S defined
by χS(x) = 1 for x ∈ S and χS(x) = 0 for x 6∈ S.

Exercise 3.1.20 Construct two continuous functions on IR with the identical
Fréchet subdifferential yet their difference is not a constant. Hint: Consider
the Cantor function f and 2f (see [69] and also Exercise 3.5.5).

Exercise 3.1.21 Prove that if two Lipschitz functions on IR have the identi-
cal Fréchet subdifferential then they differ only by a constant.

∗Exercise 3.1.22 The conclusion in Exercise 3.1.21 fails if the Fréchet sub-
differential is replaced by the proximal subdifferential. Recall the proximal
subdifferential is defined as follows.

Definition 3.1.11 (Proximal Subdifferential) Let X be a real Hilbert space.
Let f : X → IR ∪ {+∞} be a proper lsc function. We say f is a proximal
subdifferentiable and x∗ is a proximal subderivative of f at x if x ∈ domf
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and there exists a constant c ≥ 0 such that f(y)− 〈x∗, y〉 − c‖y − x‖2 attains
a local minimum at x. We denote the set of all proximal-subderivatives of f
at x by ∂P f(x) and call this object the proximal subdifferential of f at x. For
convenience we define ∂P f(x) = ∅ if x 6∈ domf .

Precisely prove the following theorem.

Theorem 3.1.12 There exists uncountably many different Lipschitz function
f : IR → IR with f(0) = 0 such that ∂P f(x) = (−1, 1) when x is a dyadic
rational, and ∂P f(x) = ∅ when x is not a dyadic rational.

One can start with the construction in the following proposition for a
function on [0, 1] and then extend it periodically to IR.

Proposition 3.1.13 Let (ai) be a sequence satisfying 0 < a1 < a2 < · · · < 1,
ai → 1 and 2i(1−ai) →∞. Then there exists a Lipschitz function f : [0, 1] →
IR with Lipschitz constant 1 satisfying f(0) = f(1) = 0 and f(1/2) = a1/2
such that ∂P f(x) = (−1, 1) when x ∈ (0, 1) is a dyadic rational, and ∂P f(x) =
∅ when x ∈ (0, 1) is not a dyadic rational.

Hint: Define f = limi fi where fi are affine on the intervals [n/2i, (n + 1)/2i]
for n = 0, 1, . . . , 2i − 1. Denote the slope of fi on this interval by sn,i and
define fi(0) = 0 and

s2n,i := ai, s2n+1,i := 2sn,i−1 − ai, if sn,i−1 ≥ 0,

s2n,i := 2sn,i−1 + ai, s2n+1,i := −ai, if sn,i−1 ≤ 0.

Then show that

(i) For all i = 1, 2, . . . , fi is defined and Lipschitz on [0, 1] and fi(2n/2i) =
fi−1(n/2i−1) for n = 0, . . . , 2i−1 and i = 2, 3, . . . .

(ii) sn,i ∈ [−ai, ai] for all n = 0, . . . , 2i−1 and i = 1, 2, . . . .
(iii) The sequence (fi) uniformly converges to a Lipschitz function f with a

Lipschitz constant 1.
(iv) ∂P f(x) = (−1, 1) when x ∈ (0, 1) is a dyadic rational.
(v) ∂P f(x) = ∅ when x ∈ (0, 1) is not a dyadic rational.
(vi) Verify that f(0) = f(1) = 0 and f(1/2) = a1/2.
(vii) Extend f periodically to IR and check ∂P f(x) = (−1, 1) when x is an

integer.

Reference: see [38] for details and check [19, 51, 84] for related earlier examples.
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Variational Techniques in Convex Analysis

Convex analysis is now a rich branch of modern analysis. The purpose of this
chapter is merely to point out the applications of variational techniques in
convex analysis. In most of the cases direct proofs in the convex case lead to
sharper results.

4.1 Convex Functions and Sets

4.1.1 Definitions and Basic Properties

Let X be a Banach space. We say that a subset C of X is convex if, for any
x, y ∈ C and any λ ∈ [0, 1], λx + (1 − λ)y ∈ C. We say an extended-valued
function f : X → IR ∪ {+∞} is convex if its domain is convex and for any
x, y ∈ dom f and any λ ∈ [0, 1], one has

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

We call a function f : X → [−∞, +∞) concave if −f is convex. In some sense
convex functions are the simplest functions next to linear functions. Convex
functions and convex sets are intrinsically related. For example, if C is a convex
set then ιC and dC are convex functions. On the other hand if f is a convex
function then epi f and f−1((−∞, a]), a ∈ IR are convex sets (Exercises 4.1.1,
4.1.2 and 4.1.3). Two other important functions related to a convex set C are
the gauge function defined by

γC(x) := inf{r > 0 | x ∈ rC},
and the support function defined on the dual space X∗ by

σC(x∗) = σ(C;x∗) := sup{〈x, x∗〉 | x ∈ C}.
Several useful properties of the gauge function and the support function are
discussed in Exercises 4.1.6 and 4.1.10.
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4.1.2 Local Lipschitz Property of Convex Functions

Lower semicontinuous convex functions are actually locally Lipschitz in the
interior of their domains. This is, in fact, a combination of two facts: (a)
a convex function f locally bounded above is locally Lipschitz in int dom f
and (b) a lsc convex function f is locally bounded above in int dom f . Fact (a)
is quite useful itself and we describe it in two propositions.

Proposition 4.1.1 Let X be a Banach space and let f : X → IR ∪ {+∞}
be a convex function. Suppose that f is locally bounded above at x̄ ∈ D :=
int(dom f). Then f is locally bounded at x̄.

Proof. Suppose f is bounded above by M , say, in Br(x) ⊂ int(dom f) for
some r > 0, then it is bounded below in Br(x). Indeed, if y ∈ Br(x) then so
is 2x− y and

f(x) ≤ 1
2
[f(y) + f(2x− y)] ≤ 1

2
[f(y) + M ]

so f(y) ≥ 2f(x)−M for all y ∈ Br(x). •

Proposition 4.1.2 Let X be a Banach space and let f : X → IR ∪ {+∞} be
a convex function. Suppose that f is locally bounded at x̄ ∈ D := int(dom f).
Then f is locally Lipschitz at x̄.

Proof. Suppose that |f | is bounded by M over B2r(x̄) ⊂ D. Consider distinct
points x, y ∈ Br(x̄). Let a = ‖y − x‖ and let z = y + (r/a)(y − x). Then
z ∈ B2r(x̄). Since

y =
a

a + r
z +

r

a + r
x

is a convex combination lying in B2r(x̄), we have

f(y) ≤ a

a + r
f(z) +

r

a + r
f(x).

Thus,

f(y)− f(x) ≤ a

a + r
(f(z)− f(x)) ≤ 2Ma

r
=

2M

r
‖y − x‖.

Interchange x and y gives

|f(y)− f(x)| ≤ 2M

r
‖y − x‖.

•

Theorem 4.1.3 (Lipschitz Property of Convex Functions) Let X be a Ba-
nach space and let f : X → IR ∪ {+∞} be a lsc convex function. Then f is
locally Lipschitz on int(dom f).
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Proof. By Propositions 4.1.1 and 4.1.2 we need only show f is locally
bounded above. For each natural number i, define Di := {x ∈ X : f(x) ≤ i}.
The sets Di are closed and D ⊂ ⋃∞

i=1 Di. Since D is an open set, by Baire’s
category theorem, we must have for some i, intDi is nonempty. Suppose that
Bs(x) ⊂ int Di. Then f is bounded above by i over Bs(x). Also since D is open,
if y ∈ D and y 6= x, then there exist µ > 1 such that z := x+µ(y−x) ∈ D. Let
λ = 1/µ ∈ (0, 1). The set U = {λz + (1− λ)b : b ∈ Bs(x)} is a neighborhood
of y in D. For any point u = λz + (1− λ)b ∈ U (where b ∈ Bs(x)) we have

f(u) ≤ λf(z) + (1− λ)i,

so f is bounded above in U and therefore locally Lipschitz at y. •

4.1.3 Convex Series Closed Sets

The condition in Theorem 4.1.3 can be weakened. To understand this deeper
result we need the following concepts.

Definition 4.1.4 (Convex Series Closed and Compact) Let X be a Banach
space and let C be a subset of X. We say that C is convex series closed (cs-
closed) if x̄ =

∑∞
i=1 λixi with λi ≥ 0,

∑∞
i=1 λi = 1 and xi ∈ C implies x̄ ∈ C.

We say that C is convex series compact (cs-compact) if for any sequence
xi ∈ C, i = 1, 2, . . . , and any sequence λi ≥ 0, i = 1, 2, . . . , with

∑∞
i=1 λi = 1

we have
∑∞

i=1 λixi converges to a point of C.

Some simple yet useful facts related to the cs-closed and cs-compact sets
are given below.

Lemma 4.1.5 Closed convex sets, open convex sets and Gδ convex sets in a
Banach space are cs-closed.

Proof. We prove the lemma for open convex sets and the proofs for the other
two cases are left as exercises. Let C be a convex open set in a Banach space
and let x̄ =

∑∞
i=1 λixi with λi ≥ 0,

∑∞
i=1 λi = 1 and xi ∈ C. We show that

x̄ ∈ C. Suppose on the contrary that x̄ 6∈ C. Then according to the Hahn–
Banach separation theorem there exists a nonzero linear functional x∗ ∈ X∗

such that 〈x∗, c〉 > 〈x∗, x̄〉 for all c ∈ C. In particular, 0 > 〈x∗, x̄ − xi〉 for
i = 1, 2, . . . , and therefore for any λi > 0, 0 > 〈x∗, λi(x̄ − xi)〉. This leads to
0 > 〈x∗, x̄−∑∞

i=1 λixi〉 = 0, a contradiction. •

Lemma 4.1.6 Let X and Y be two Banach spaces and let A : X → Y be a
continuous linear mapping. Suppose that C is a cs-compact subset of X. Then
A(C) is cs-closed.
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Proof. Exercise 4.1.13. •
An important fact about cs-closed sets is that they share their interior

points with their closure.

Theorem 4.1.7 (Open Mapping Theorem: cs-Closed Sets) Let S be a cs-
closed subset of a Banach space X. Then

int S = int S.

Proof. We consider the nontrivial case when int S 6= ∅. Let x ∈ int S.
Shifting S and multiplying it by a constant if necessary we may assume (see
Exercise 4.1.16) that

0 = x ∈ BX ⊂ S ⊂ S +
1
2
BX . (4.1.1)

For i = 1, 2, . . . multiplying (4.1.1) by 1/2i we have

1
2i

BX ⊂ 1
2i

S +
1

2i+1
BX . (4.1.2)

It follows from (4.1.2) that for any i = 1, 2, . . . ,

1
2
BX ⊂ 1

2
S +

1
4
S + · · ·+ 1

2i
S +

1
2i+1

BX . (4.1.3)

That is to say, for any u ∈ BX/2 there exist s1, . . . , si ∈ S such that

u ∈ 1
2
s1 +

1
4
s2 + · · ·+ 1

2i
si +

1
2i+1

BX . (4.1.4)

Taking limits as i → ∞ in (4.1.4) we have u =
∑∞

i=1 si/2i ∈ S because
S is cs-closed. Thus, 0 ∈ 2−1BX ⊂ S, and therefore intS ⊂ intS. Hence
int S = int S. •

We now turn to the promised sharper results on the local Lipschitz prop-
erty for a convex function. Let S be a subset of a Banach space X. We say
s is in the core of S, denote s ∈ core(S), provided that

⋃
λ>0 λ(S − s) = X.

Clearly, int(S) ⊂ core(S) and the inclusion could be proper (Exercises 4.1.17
and 4.1.18). Our next result says that if S is the domain of a lsc convex func-
tion then the interior and the core of S coincide. The importance of this result
is due to the fact that it is much easier to verify that a point belongs to the
core than to the interior.

Theorem 4.1.8 Let X be a Banach space and let f : X → IR ∪ {+∞} be a
lsc convex function. Then

core(dom f) = int(dom f).
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Proof. We need only show that

core(dom f) ⊂ int(dom f).

Suppose that x̄ ∈ core(dom f). For each natural number i, define Di := {x ∈
X : f(x) ≤ i}. The sets Di are closed and

X =
∞⋃

j=1

j(dom f − x̄) =
∞⋃

j,i=1

j(Di − x̄). (4.1.5)

By Baire’s category theorem, int(Di − x̄) (and therefore int Di) is nonempty
for some i. Suppose that Br(x) ⊂ int Di. Then f is bounded above by i over
Br(x). Moreover, by (4.1.5) there exist integers j, k > 0 such that x̄ − x ∈
j(Dk−x̄). Letting µ = (1+1/j), we have z := x+µ(x̄−x) ∈ Dk. Note that Dk

and Di are contained in the convex set Dmax(i,k). Let λ = 1/µ ∈ (0, 1). The set
U = {λz + (1− λ)b : b ∈ Br(x)} is a neighborhood of x̄ in Dmax(i,k) ⊂ dom f .•

4.1.4 Commentary and Exercises

Although there is a long history of using the convexity of both functions and
sets in analysis, the systematical study of convex functions and sets starts in
the 1950’s associated with the names of Fenchel, Moreau, and Rockafellar.
A classical reference for convex analysis is Rockafellar [229]. For a nice short
introduction that provides details missed in this chapter we recommend Phelps
[215]. More discussion on convex series closed and compact sets can be found
in Jameson [147].

Exercise 4.1.1 Let C be a convex subset of a Banach space. Show that dC

and ιC are convex functions.

Exercise 4.1.2 Let f be a convex function on a Banach space. Show that
for any a ∈ IR, f−1((−∞, a]) is a convex set.

Exercise 4.1.3 Let X be a Banach space and let f : X → IR ∪ {+∞} be
an extended-valued function. Show that f is convex if and only if epi f is a
convex subset of X × IR.

Exercise 4.1.4 Show that the intersection of a family of arbitary convex sets
is convex. Conclude that f(x) := sup{fα(x) : α ∈ A} is convex (and lsc) when
{fα}α∈A is a collection of convex (and lsc) functions.

Exercise 4.1.5 Calculate the gauge function for C := epi 1/x ∩ IR2
+ and

conclude that a gauge function is not necessarily lsc.

Exercise 4.1.6 Let C be a convex subset of a Banach space X and let γC

be the gauge function of C.
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Exercise 4.1.19 Show that in the proof of Theorem 4.1.8 the set U can be
expressed explicitly as U = Br(1−λ)(x̄).



5

Variational Techniques and Multifunctions

Multifunctions arise naturally in many situations. Some frequently encoun-
tered examples are: the level sets and sublevel sets of a function, various sub-
differentials of nonsmooth functions, the solution sets of an optimization prob-
lem depending on some parameters and the vector field of a control system.
Here we give a concise discussion on how to apply the technique of variational
analysis to problems involving multifunctions. We also discuss subdifferentials
as multifunctions.

5.1 Multifunctions

5.1.1 Multifunctions and Related Functions

Let X and Y be two sets. A multifunction from X to Y is a mapping F : X →
2Y , where 2Y represents the collection of all subsets of Y . We define the
domain, range and graph of F by dom F := {x ∈ X | F (x) 6= ∅}, range F :=
{y ∈ Y | y ∈ F (x) for some x ∈ X} and graph F := {(x, y) ∈ X × Y |
y ∈ F (x)}, respectively. The inverse of a multifunction F : X → 2Y is a
multifunction F−1 : Y → 2X defined by F−1(y) := {x ∈ X | y ∈ F (x)}.
Clearly the domain of F is the range of F−1 and the range of F is the domain
of F−1. A multifunction is completely characterized by its graph. Moreover, we
have the following symmetric relationship between F , F−1 and the graph of F :
F (x) = {y ∈ Y | (x, y) ∈ graph F} and F−1(y) = {x ∈ X | (x, y) ∈ graphF}.
The following are some examples of multifunctions.

Example 5.1.1 Let X be a Fréchet smooth Banach space and let f : X →
IR ∪ {+∞} be a lsc function. Then ∂F f is a multifunction from X to X∗.

Example 5.1.2 Let X and Y be metric spaces and let f : X × Y →
IR ∪ {+∞} be a lsc function. Then the solution set to the parametric mini-
mization problem of minimizing x → f(x, y),
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argmin(y) :=
{
x ∈ X | f(x, y) = inf{f(x′, y) | x′ ∈ X}},

is a multifunction from Y to X.

Example 5.1.3 Let X be a metric space and let f : X → IR ∪ {+∞} be a
lsc function. Then the sublevel set

f−1((−∞, r]) = {x ∈ X | f(x) ≤ r}

and the level set
f−1(r) = {x ∈ X | f(x) = r}

are multifunctions from IR → X.

Example 5.1.4 Let X be a metric space and let f : X → IR be a lsc function.
Then the epigraphical profile mapping

Ef (x) = {r ∈ IR | f(x) ≤ r}

is a multifunction from X → IR. We can see that graph Ef = epi f (Exercise
5.1.3).

One can often study a multifunction F : X → 2Y through related func-
tions. Clearly, ιgraph F completely characterizes F . When both X and Y are
topological spaces, ιgraph F is a lsc function on X ×Y if and only if graph F is
a closed subset of X × Y . This is an important condition when we analyze a
multifunction with variational techniques. Thus, we define a multifunction to
be closed if its graph is closed. We say that multifunction F is closed (open,
compact, convex) valued if, for every x ∈ dom F , the set F (x) is closed (open,
compact, convex). Note that a closed multifunction is always closed valued
yet the converse is not true (Exercise 5.1.2). When Y has additional struc-
ture other functions can be used to study a multifunction F : X → 2Y . For
example when Y is a metric space we can use (x, y) → d(F (x); y) and when
Y is a Banach space we can use (x, x∗) → σ(F (x); x∗). These functions are in
general nonsmooth. We will emphasize the use of variational tools in studying
multifunctions by their related nonsmooth functions.

5.1.2 An Example: The Convex Subdifferential

Subdifferentials are multifunctions from X to X∗. In Section 3.4 we have seen
the interplay of properties of a function and its (Fréchet) subdifferential. Here
we further discuss the subdifferential of a convex function to illustrate various
nice properties of the subdifferential as a multifunction inherited from the
convexity of the underlying function.

We say a multifunction F : X → 2X∗
is monotone provided that for any

x, y ∈ X, x∗ ∈ F (x) and y∗ ∈ F (y),
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〈y∗ − x∗, y − x〉 ≥ 0.

The convex subdifferential of a convex lsc function is a typical example of a
monotone multifunction.

Theorem 5.1.5 Let X be a Banach space and let f : X → IR ∪ {+∞} be a
lsc convex function. Then ∂f is a monotone multifunction.

Proof. Let x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y). It follows from the definition of the
convex subdifferential that

f(y)− f(x) ≥ 〈x∗, y − x〉 (5.1.1)

and

f(x)− f(y) ≥ 〈y∗, x− y〉 (5.1.2)

Adding (5.1.1) and (5.1.2) we have

〈y∗ − x∗, y − x〉 ≥ 0.

•
In fact the monotonicity of the subdifferential characterizes the convexity

of the underlying function.

Theorem 5.1.6 (Convexity) Let X be a Fréchet smooth Banach space and
let f : X → IR∪{+∞} be a lsc function. Suppose that ∂F f is monotone. Then
f is convex.

Proof. If ∂F f is monotone then for each x∗ ∈ X∗ the operator x →
∂F f(x) + x∗ = ∂F (f + x∗)(x) is monotone, hence quasi-monotone. By Theo-
rem 3.4.12, for each x∗ ∈ X∗, the function f +x∗ is quasi-convex. This implies
the convexity of f (Exercise 5.1.4). •

Recall that a monotone multifunction F : X → 2X∗
is said to be maximal

monotone if graph F is not properly contained in the graph of any monotone
multifunction. It is not hard to check that a maximal monotone multifunction
is convex valued and closed (Exercise 5.1.5). We can further prove the maximal
monotonicity of a monotone Fréchet subdifferential of a lsc function (which
must be convex by Theorem 5.1.6).

Theorem 5.1.7 (Maximal Monotonicity) Let X be a Fréchet smooth Banach
space and let f : X → IR ∪ {+∞} be a proper lsc function. Suppose that
dom f 6= ∅ and ∂F f is monotone. Then ∂F f is maximal monotone.

Proof. Let b ∈ X and b∗ ∈ X∗ be such that b∗ 6∈ ∂F f(b). We need to
show that there exists x ∈ X and x∗ ∈ ∂F f(x) such that 〈x∗ − b∗, x − b〉 <
0. Observing that 0 6∈ ∂F (f − b∗)(b), and therefore b is not a minimum of
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(i) Show that γC is convex and when 0 ∈ C it is subadditive.
(ii) Show that if x ∈ core C then dom γC−x = X.
(iii) Suppose 0 ∈ core C. Prove that cl C ⊂ {x ∈ X | γC(x) ≤ 1}.
Exercise 4.1.7 Let X be a Banach space and let C be a cs-closed subset
of X. Prove that intC = core C.

Exercise 4.1.8 Let X be a Banach space and let C be a convex subset of X.
Suppose that C is cs-closed and 0 ∈ core C.

(i) Show that int C = {x ∈ X | γC(x) < 1}.
(ii) Deduce that γC is definied on X and is continuous.

∗Exercise 4.1.9 Construct an example showing that the conclusion in Exer-
cise 4.1.8 fails when C is not cs-closed. Hint: Use the existence of a Hamel
basis in a vector space to show that in every infinite dimensional Banach space
there is a finite linear functional, φ which is (everywhere) discontinuous. De-
duce that C := φ−1[−1, 1] is a symmetric convex set with a nonempty core
that contains 0 but an empty interior. Yet γC(0) = 0 < 1.

Exercise 4.1.10 Let C1 and C2 be closed convex subsets of a Banach
space X. Then C1 ⊂ C2 if and only if, for any x∗ ∈ X∗, σ(C1; x∗) ≤ σ(C2; x∗).
Thus, a closed convex set is characterized by its support function.

Exercise 4.1.11 Prove that if f is a convex lsc function then ∂f(x) =
∂F f(x).

Exercise 4.1.12 Prove Lemma 4.1.5 for the cases of closed convex sets and
convex Gδ sets.

Exercise 4.1.13 Prove Lemma 4.1.6.

Exercise 4.1.14 Let X be a Banach space and let C be a subset of X. Show
that C is cs-compact if and only if C is cs-closed and bounded. In particular,
both the open and closed unit balls in a Banach space are cs-compact.

Exercise 4.1.15 Let X be a Banach space and let A and B be subsets of X.
Suppose that A is cs-compact and B is cs-closed. Then A+B and conv(A∪B)
are cs-closed.

Exercise 4.1.16 Suppose that S is cs-closed and x̄ ∈ S. Show that for any
δ > 0 (S − x̄)/δ is also cs-closed.

Exercise 4.1.17 Let S be a subset of a Banach space. Show that int(S) ⊂
core(S).

Exercise 4.1.18 (Core Versus Interior) Consider the set in IR2

S = {(x, y) | y = 0 or |y| ≥ x2}.
Prove 0 ∈ core(S) \ int(S).
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f − b∗, there exists a ∈ X such that (f − b∗)(a) < (f − b∗)(b). Then it
follows from Theorem 3.4.6 that there exists a sequence (xi) converging to
c ∈ [a, b) and x∗i ∈ ∂F f(xi) such that y∗i := x∗i −b∗ ∈ ∂F (f −b∗)(xi) satisfying
lim infi→∞〈y∗i , c− xi〉 ≥ 0 and lim infi→∞〈y∗i , b− a〉 > 0. It follows that

lim inf
i→∞

〈x∗i − b∗, b− xi〉 ≥ lim inf
i→∞

〈y∗i , b− c〉+ lim inf
i→∞

〈y∗i , c− xi〉

≥ ‖b− c‖
‖b− a‖ lim inf

i→∞
〈y∗i , b− a〉+ lim inf

i→∞
〈y∗i , c− xi〉 > 0

It remains to set x := xi and x∗ := x∗i for i sufficiently large. •
We have seen in Proposition 4.1.2 and Theorem 4.1.8 that a lsc convex

function is locally Lipschitz in the core of its domain. Consequently the sub-
differential of a lsc convex function is locally bounded in the core of its domain.
We will show this holds true in general for a maximal monotone multifunction.
The proof actually reduces this more general situation to the continuity of a
convex function in the core of its domain.

Theorem 5.1.8 (Boundedness of Monotone Multifunctions) Let F : X →
2X∗

be a monotone multifunction. Suppose that x ∈ core (dom F ). Then F is
locally bounded at x.

Proof. By choosing any x∗ ∈ F (x) and replacing F by the monotone mul-
tifunction y → F (y + x) − x∗, we lose no generality in assuming that x = 0
and that 0 ∈ F (0). Define, for x ∈ X,

f(x) := sup{〈y∗, x− y〉 : y ∈ dom F, ‖y‖ ≤ 1 and y∗ ∈ F (y)}.
As the supreme of affine continuous functions, f is convex and lower semicon-
tinuous. We show that dom f is an absorbing set. First, since 0 ∈ F (0), we
must have f ≥ 0. Second, whenever y ∈ dom F and y∗ ∈ F (y), monotonic-
ity implies that 0 ≤ 〈y∗ − 0, y − 0〉, so f(0) ≤ 0. Thus, f(0) = 0. Suppose
x ∈ X. By hypothesis, dom F is absorbing so there exists t > 0 such that
F (tx) 6= ∅. Choose any element u∗ ∈ F (tx). If y ∈ dom F and y∗ ∈ F (y),
then by monotonicity

〈y∗, tx− y〉 ≤ 〈u∗, tx− y〉.
Consequently,

f(tx) ≤ sup{〈u∗, tx− y〉 : y ∈ dom F, ‖y‖ ≤ 1} < 〈u∗, tx〉+ ‖u∗‖ < +∞.

By virtue of Proposition 4.1.2 and Theorem 4.1.8, f is continuous at 0 and
hence there exists η > 0 such that f(x) < 1 for all x ∈ 2ηBX . Equivalently,
if x ∈ 2ηBX , then 〈y∗, x〉 ≤ 〈y∗, y〉 + 1 whenever y ∈ dom F , ‖y‖ ≤ 1 and
y∗ ∈ F (y). Thus, if y ∈ ηBX ∩ dom F and y∗ ∈ F (y), then

2η‖y∗‖ = sup{〈y∗, x〉 : x ∈ 2ηBX} ≤ ‖y∗‖ × ‖y‖+ 1 ≤ η‖y∗‖+ 1,
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so ‖y∗‖ ≤ 1/η. •
Note that Theorem 5.1.8 does not require that the domain of F be convex.

5.1.3 Limits of Sequences of Sets

Having defined multifunctions we turn to their limits and continuity. We will
take a sequential approach, and therefore need to study the limits of sequences
of sets.

Definition 5.1.9 Let Y be a Hausdorff topological space and let (Fi) be a
sequence of subsets of Y . The sequential lower and upper limits of Fi are
defined by

lim inf
i→∞

Fi = { lim
i→∞

yi | yi ∈ Fi for all i = 1, 2, . . . }

and
lim sup

i→∞
Fi = { lim

k→∞
yik

| yik
∈ Fik

for some ik →∞}.

Clearly lim infi→∞ Fi ⊂ lim supi→∞ Fi. When they are equal we define the
common set to be the Painlevé–Kuratowski limit of the sequence (Fi) and
denote it by limi→∞ Fi. In a metric space both the sequential lower and upper
limits are closed. However, this is not true in general (Exercise 5.1.8).

When Y is a metric space the lower and upper limits can be represented
alternatively as

lim inf
i→∞

Fi =
∞⋂

k=1

∞⋃

j=1

∞⋂

i=j

B 1
k
(Fi) (5.1.3)

and

lim sup
i→∞

Fi =
∞⋂

k=1

∞⋂

j=1

∞⋃

i=j

B 1
k
(Fi). (5.1.4)

We leave the proofs of these alternative representations as Exercise 5.1.6.
These lower and upper limits can also be described by using the distance

between a set and a point.

Lemma 5.1.10 Let Y be a metric space and let (Fi) be a sequence of subsets
in Y . Then

lim inf
i→∞

Fi = {y ∈ Y | lim sup
i→∞

d(Fi; y) = 0}

and
lim sup

i→∞
Fi = {y ∈ Y | lim inf

i→∞
d(Fi; y) = 0}.
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Proof. Exercise 5.1.7. •
Lemma 5.1.10 is a special case of the following more general characteriza-

tion of the upper and lower limits of a sequence of sets.

Lemma 5.1.11 Let Y be a metric space, let F be a closed subset of X and
let (Fi) be a sequence of subsets in Y . Then

F ⊂ lim inf
i→∞

Fi (5.1.5)

if and only if for any y ∈ Y ,

lim sup
i→∞

d(Fi; y) ≤ d(F ; y); (5.1.6)

and

lim sup
i→∞

Fi ⊂ F (5.1.7)

if and only if for any y ∈ Y ,

lim inf
i→∞

d(Fi; y) ≥ d(F ; y). (5.1.8)

Consequently,
lim

i→∞
Fi = F

if and only if for any y ∈ Y ,

lim
i→∞

d(Fi; y) = d(F ; y).

Proof. We prove the equivalence of (5.1.5) and (5.1.6). It follows from Lemma
5.1.10 that (5.1.6) implies (5.1.5). Now suppose (5.1.5) holds and let y ∈ Y
be an arbitrary element. For any ε > 0 choose x ∈ F such that d(F ; y) + ε ≥
d(x, y) and let (xi) be a sequence converges to x with xi ∈ Fi. Then

d(Fi; y) ≤ d(xi, y).

Taking lim sup as i →∞ we have

lim sup
i→∞

d(Fi; y) ≤ d(x, y) ≤ d(F ; y) + ε.

Since ε is arbitrary we obtain (5.1.6).
The proof of the equivalence of (5.1.7) and (5.1.8) is similar and left as

Exercise 5.1.9. •
Applying the Painlevé–Kuratowski limit to the epigraph of a sequence of

functions leads to the concept of epi-convergence. This is particularly useful
in analyzing approximations of functions when minimizing the function is a
primary concern.
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Definition 5.1.12 (Epi-convergence) Let X be a metric space and let
fi : X → IR be a sequence of lsc functions. The lower epi-limit e-lim infi→∞ fi

is the function with

epi(e-lim inf
i→∞

fi) = lim sup
i→∞

epi fi,

and the upper epi-limit e-lim supi→∞ fi is the function with

epi(e-lim sup
i→∞

fi) = lim inf
i→∞

epi fi.

When these two functions coincide we say that fi epi-converges to its epi-limit

e-lim
i→∞

fi = e-lim inf
i→∞

fi = e-lim sup
i→∞

fi.

Note that both lower and upper epi-limits are lsc functions, and so is the
epi-limit when it exists (Exercise 5.1.11). Epi-limits have the following easy
yet useful characterization, whose proof is left as an exercise.

Lemma 5.1.13 Let X be a metric space and let fi : X → IR be a sequence of
lsc functions. Then f = e-limi→∞ fi if and only if at each point x ∈ X one
has

lim inf
i→∞

fi(xi) ≥ f(x) for every sequence xi → x (5.1.9)

and

lim sup
i→∞

fi(xi) ≤ f(x) for some sequence xi → x (5.1.10)

Proof. Exercise 5.1.12. •
We end this subsection with a result that illuminates the usefulness of

epi-convergence in minimization problems.

Theorem 5.1.14 Let X be a metric space and let fi : X → IR be a sequence
of lsc functions. Suppose that f = e-limi→∞ fi and that dom f, dom fi ⊂ E,
i = 1, 2, . . . for some compact subset E of X. Then

lim
i→∞

inf fi = inf f, (5.1.11)

and

lim sup
i→∞

argmin fi ⊂ argmin f. (5.1.12)
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Proof. Let x̄ ∈ argmin f . Then

(x̄, f(x̄)) ∈ epi f ⊂ lim inf
i→∞

epi fi,

so that there exists (xi, ri) ∈ epi fi satisfying limi→∞(xi, ri) = (x̄, f(x̄)). It
follows that

inf f = f(x̄) = lim
i→∞

ri ≥ lim sup
i→∞

fi(xi) ≥ lim sup
i→∞

inf fi. (5.1.13)

On the other hand, let xi ∈ argmin fi ⊂ E. Since E is compact there exists
a subsequence (ik) of the natural numbers such that for some x ∈ E, x =
limk→∞ xik

and
lim

k→∞
fik

(xik
) = lim inf

i→∞
inf fi.

Thus,
(x, lim inf

i→∞
inf fi) ∈ lim sup

i→∞
epi fi ⊂ epi f,

so that

lim inf
i→∞

inf fi ≥ f(x) ≥ inf f. (5.1.14)

Combining inequalities (5.1.13) and (5.1.14) we have

lim
i→∞

inf fi = inf f.

Finally, let x̄ ∈ lim sup argmin fi so that there exists a subsequence (ik) of
the natural numbers and xik

∈ argmin fik
such that x̄ = limk→∞ xik

. Since

lim sup
i→∞

epi fi ⊂ epi f

we have (x̄, lim supk→∞ fik
(xik

)) ∈ epi f so that

lim sup
k→∞

fik
(xik

) ≥ f(x̄).

Now consider any x ∈ dom f . Then

(x, f(x)) ∈ epi f ⊂ lim inf
i→∞

epi fi

so that there exists a sequence (yi, ri) ∈ epi fi converging to (x, f(x)). It
follows that

f(x) = lim
i→∞

ri ≥ lim sup
i→∞

fi(yi)

≥ lim sup
k→∞

fik
(xik

)) ≥ f(x̄).

Since x ∈ dom f is arbitrary, x̄ ∈ argmin f . •
By carefully examining the proof we can see that the condition that dom f

and dom fi are contained in a compact subset E of X is not needed in es-
tablishing inclusion (5.1.12). However, without this condition, (5.1.11) is false
(Exercise 5.1.13).
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5.1.4 Continuity of Multifunctions

The basic definition is given below.

Definition 5.1.15 (Continuity of Multifunction) Let X and Y be two Haus-
dorff topological spaces and let F : X → 2Y be a multifunction. We say that
F is upper (lower) semicontinuous at x̄ ∈ X provided that for any open set U
in Y with F (x̄) ⊂ U , (F (x̄) ∩ U 6= ∅),

{x ∈ X | F (x) ⊂ U} ({x ∈ X | F (x) ∩ U 6= ∅})

is an open set in X. We say that F is continuous at x̄ if it is both upper
and lower semicontinuous at x̄. We say that F is upper (lower) continuous
on S ⊂ X if it is upper (lower) continuous at every x ∈ S. We omit S when
it coincides with the domain of F .

We will also need a sequential approach to limits and continuity of multi-
functions. This is mainly for applications in the subdifferential theory because
the corresponding topological approach often yields objects that are too big.

Definition 5.1.16 (Sequential Lower and Upper Limits) Let X and Y be
two Hausdorff topological spaces and let F : X → 2Y be a multifunction. We
define the sequential lower and upper limit of F at x̄ ∈ X by

s-lim inf
x→x̄

F (x) :=
⋂
{lim inf

i→∞
F (xi) | xi → x̄}

and
s-lim sup

x→x̄
F (x) :=

⋃
{lim sup

i→∞
F (xi) | xi → x̄}.

When
s-lim inf

x→x̄
F (x) = s-lim sup

x→x̄
F (x)

we call the common set the sequential limit of F at x̄ and denote it by
s-limx→x̄ F (x).

Definition 5.1.17 (Semicontinuity and Continuity) Let X and Y be two
Hausdorff topological spaces and let F : X → 2Y be a multifunction. We say
that F is sequentially lower (upper) semicontinuous at x̄ ∈ X provided that

F (x̄) ⊂ s-lim inf
x→x̄

F (x) (s-lim sup
x→x̄

F (x) ⊂ F (x̄)).

When F is both upper and lower semicontinuous at x̄ we say it is continuous
at x̄. In the notation introduced above,

F (x̄) = s-lim
x→x̄

F (x).
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Clearly, when Y is a metric space the sequential and the topological (semi)
continuity coincide.

The following example illustrates how the semicontinuity and continuity
of multifunctions relate to that of functions.

Example 5.1.18 (Profile Mappings) Let X be a Banach space and let
f : X → IR ∪ {+∞} be a function. Then the epigraphic profile of f , Ef is
upper (lower) semicontinuous at x̄ if and only if f is lower (upper) semicon-
tinuous at x̄. Consequently, Ef is continuous at x̄ if and only if f is continuous.

Example 5.1.19 (Sublevel Set Mappings) Let X be a Banach space and
let f : X → IR ∪ {+∞} be a lsc function. Then the sublevel set mapping
S(a) = f−1((−∞, a]) is upper semicontinuous.

When X and Y are metric spaces we have the following characterizations
of the sequential lower and upper limit.

Theorem 5.1.20 (Continuity and Distance Functions) Let X and Y be two
metric spaces and let F : X → 2Y be a multifunction. Then F is sequentially
lower (upper) semicontinuous at x̄ ∈ X if and only if for every y ∈ Y , the
distance function x → d(F (x); y) is upper (lower) semicontinuous. Conse-
quently, F is continuous at x̄ if and only if for every y ∈ Y , the distance
function x → d(F (x); y) is continuous.

Proof. This follows from Lemma 5.1.11. Details are left as Exercise 5.1.15.•

5.1.5 Uscos and Cuscos

The acronym usco (cusco) stands for a (convex) upper semicontinuous non-
empty valued compact multifunction. Such multifunctions are interesting be-
cause they describe common features of the maximal monotone operators, of
the convex subdifferential and of the Clarke generalized gradient.

Definition 5.1.21 Let X be a Banach space and let Y be a Hausdorff topo-
logical vector space. We say F : X → 2Y is an usco ( cusco) provided that F is
a nonempty (convex) compact valued upper semicontinuous multifunction. An
usco (cusco) is minimal if it does not properly contain any other usco (cusco).

A particularly useful case is when Y = X∗ with its weak-star topology. In this
case we use the terminology weak∗-usco (-cusco).

Closed multifunctions and uscos have an intimate relationship.

Proposition 5.1.22 Let X and Y be two Hausdorff topological spaces and
let F : X → 2Y be a multifunction. Suppose that F is an usco. Then it is
closed. If in addition, range F is compact, then F is an usco if and only if F
is closed.
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Proof. It is easy to check that if F : X → 2Y is an usco, then its graph
is closed (Exercise 5.1.16). Now suppose F is closed and range F is compact.
Then clearly F is compact valued. We show it is upper semicontinuous. Sup-
pose on the contrary that F is not upper semicontinuous at x̄ ∈ X. Then
there exists an open set U ⊂ Y containing F (x̄) and a net xα → x̄ and
yα ∈ F (xα)\U for each α. Since range F is compact, we can take subnet
(xβ , yβ) of (xα, yα) such that xβ → x̄ and yβ → ȳ 6∈ U . On the other hand it
follows from F is closed that ȳ ∈ F (x̄) ⊂ U , a contradiction. •

An important feature of an usco (cusco) is that it always contains a mini-
mal one.

Proposition 5.1.23 (Existence of Minimal usco) Let X and Y be two Haus-
dorff topological spaces and let F : X → 2Y be an usco (cusco). Then there
exists a minimal usco (cusco) contained in F .

Proof. By virtue of of Zorn’s lemma we need only show that any decreasing
chain (Fα) of usco (cusco) maps contained in F in terms of set inclusion
has a minimal element. For x ∈ X define F0(x) =

⋂
Fα(x). Since Fα(x) are

compact, F0(x) is nonempty, (convex) and compact. It remains to show that
F0 is upper semicontinuous. Suppose that x ∈ X, U is open in Y and F0(x) ⊂
U . Then Fα(x) ⊂ U for some α. Indeed, if each Fα(x)\U were nonempty then
the intersection of these compact nested sets would be a nonempty subset of
F0(x)\U , a contradiction. By upper semicontinuity of Fα, there exists an open
set V containing x such that F0(V ) ⊂ Fα(V ) ⊂ U . •

When Y = IR the proposition below provides a procedure of constructing
a minimal usco contained in a given usco.

Proposition 5.1.24 Let X be a Hausdorff topological space and F : X → 2IR

an usco. For each x ∈ X, put f(x) := min{r | r ∈ F (x)}. Let G : X → 2IR be
the closure of f (i.e., the set-valued mapping whose graph is the closure of the
graph of f). Now put g(x) := max{r | r ∈ G(x)} for each x ∈ X. Finally let
H : X → 2IR be the closure of g. Then H is a minimal usco contained in F .

Proof. Since the graph of F is closed, G is contained in F , and G is an usco
as G is closed and F is an usco. For the same reason H is an usco contained
in G.

To show that H is minimal, consider open sets U ⊂ X and W ⊂ IR, such
that there is some w ∈ H(U) ∩ W . It is sufficient to find a nonempty open
subset of U , whose image under H is entirely contained in W .

Fix some ε < d(IR \ W ;w). Since w ∈ H(U), there is some x ∈ U such
that g(x) ∈ (w−ε;w+ε). This means that G(x) ⊂ (−∞; w+ε) and by upper
semi-continuity of G there is an open V ⊂ U , V 3 x, such that G(V ) ⊂ (−∞ ;
w + ε).
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As g(x) ∈ (w− ε, w + ε), there is some x′ ∈ V with f(x′) ∈ (w− ε, w + ε).
This means that F (x′) ⊂ (w − ε, +∞) and by upper semi-continuity of F
there is an open V ′ ⊂ V , V ′ 3 x′, such that F (V ′) ⊂ (w − ε, +∞).

Now H(V ′) ⊂ F (V ′) ∩G(V ) ⊂ (w − ε, w + ε) ⊂ W . Thus H is a minimal
usco. •

Maximal monotone operators, in particular, subdifferentials of convex
functions provide interesting examples of w∗-cuscos. We leave the verification
of the following example as a guided exercise (Exercise 5.1.17).

Example 5.1.25 Let X be a Banach space, let F : X → 2X∗
be a maximal

monotone multifunction and let S be an open subset of dom F . Then the
restriction of F to S is a w∗-cusco.

To further explore the relationship of maximal monotone multifunctions
and cuscos we need to extend the notion of maximal monotone multifunctions
to arbitrary set.

Definition 5.1.26 (Maximal Monotone on a Set) Let X be a Banach space,
let F : X → 2X∗

be a monotone multifunction and let S be a subset of X. We
say that F is maximal monotone in S provided the monotone set

graph F ∩ (S ×X∗) := {(x, x∗) ∈ S ×X∗ | x ∈ S and x∗ ∈ F (x)}

is maximal under the set inclusion in the family of all monotone sets contained
in S ×X∗.

It turns out that a monotone cusco on an open set is maximal.

Lemma 5.1.27 Let X be a Banach space, let F : X → 2X∗
be a monotone

multifunction and let S be an open subset of X. Suppose that S ⊂ domF and
F is a w∗-cusco on S. Then F is maximal monotone in S.

Proof. We need only show that if (y, y∗) ∈ S ×X∗ satisfies

〈y∗ − x∗, y − x〉 ≥ 0 for all x ∈ S, x∗ ∈ F (x), (5.1.15)

then y∗ ∈ F (y). If not, by the separation theorem there exists z ∈ X\{0} such
that F (y) ⊂ {z∗ ∈ X∗ | 〈z∗, z〉 < 〈y∗, z〉} = W . Since W is weak∗ open and F
is w∗-upper semicontinuous on S, there exists an h > 0 with Bh(y) ⊂ S such
that F (Bh(y)) ⊂ W . Now, for t ∈ (0, h/‖z‖), we have y + tz ∈ Bh(y), and
therefore F (y + tz) ⊂ W . Applying (5.1.15) to any u∗ ∈ F (y + tz) we get

0 ≤ 〈y∗ − u∗, y − (y + tz)〉 = −t〈y∗ − u∗, z〉,

which implies 〈u∗, z〉 ≥ 〈y∗, z〉, that is u∗ 6∈ W , a contradiction. •
As a corollary we have
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Corollary 5.1.28 Let X be a Banach space, let F : X → 2X∗
be a maximal

monotone multifunction and let S be an open subset of X. Suppose that S ⊂
domF . Then F is maximal monotone in S.

Proof. By Example 5.1.25 the maximal monotonicity of F implies that F is
a w∗-cusco on S, so the result follows from Lemma 5.1.27. •

Now we can prove the interesting relation that a maximal monotone mul-
tifunction on an open set is a minimal cusco.

Theorem 5.1.29 (Maximal Monotonicity and Minimal cusco) Let X be a
Banach space, let S be an open subset of X and let F be a maximal monotone
multifunction in S. Then F is a minimal w∗-cusco.

Proof. We know by Example 5.1.25 that F is a w∗-cusco. Suppose that
G : S → 2X∗

is a w∗-cusco and graph G ⊂ graphF . By Lemma 5.1.27, G is
maximal monotone, and therefore G = F . •

Note that a maximal monotone multifunction need not be a minimal usco.
The following example clarifies the difference whose easy proof is left as Ex-
ercise 5.1.18.

Example 5.1.30 Define monotone multifunctions F0, F1 and F2 from IR →
2IR by

F0(x) = F1(x) = F2(x) = sgn x if x 6= 0,

while
F0(0) = {−1}, F1(0) = {−1, 1} and F2(0) = [−1, 1].

Then graph F0 ⊂ graph F1 ⊂ graph F2, and they are all distinct. The multi-
function F2 is maximal monotone and minimal cusco, F1 is minimal usco and
F0 does not have a closed graph.

5.1.6 Monotone Operators and the Fitzpatrick Function

Throughout this subsection, (X, ‖ · ‖) is a reflexive Banach space with dual
X∗ and T : X → 2X∗

is maximal monotone. The Fitzpatrick function FT ,
associated with T , is the proper closed convex function defined on X×X∗ by

FT (x, x∗) := sup
y∗∈Ty

[〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉]

= 〈x∗, x〉+ sup
y∗∈Ty

〈x∗ − y∗, y − x〉.

Since T is maximal monotone

sup
y∗∈Ty

〈x∗ − y∗, y − x〉 ≥ 0
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and the equality holds if and only if x∗ ∈ Tx, it follows that

FT (x, x∗) ≥ 〈x∗, x〉 (5.1.16)

with equality holding if and only if x∗ ∈ Tx. Thus, we capture much of a
maximal monotone multifunction via an associated convex function.

Using only the Fitzpatrick function and the decoupling lemma we can
prove the following fundamental result remarkably easily.

Theorem 5.1.31 (Rockafellar) Let X be a reflexive Banach space and let
T : X → 2X∗

be a maximal monotone operator. Then range(T + J) = X∗.
Here J is the duality map defined by J(x) := ∂‖x‖2/2.

Proof. The Cauchy inequality and (5.1.16) implies that for all x, x∗,

FT (x, x∗) +
‖x‖2 + ‖x∗‖2

2
≥ 0. (5.1.17)

Applying the decoupling result of Lemma 4.3.1 to (5.1.17) we conclude that
there exists a point (w∗, w) ∈ X∗ ×X such that

0 ≤ FT (x, x∗)− 〈w∗, x〉 − 〈x∗, w〉

+
‖y‖2 + ‖y∗‖2

2
+ 〈w∗, y〉+ 〈y∗, w〉 (5.1.18)

Choosing y ∈ −Jw∗ and y∗ ∈ −Jw in inequality (5.1.18) we have

FT (x, x∗)− 〈w∗, x〉 − 〈x∗, w〉 ≥ ‖w‖2 + ‖w∗‖2
2

. (5.1.19)

For any x∗ ∈ Tx, adding 〈w∗, w〉 to both sides of the above inequality and
noticing FT (x, x∗) = 〈x∗, x〉 we obtain

〈x∗ − w∗, x− w〉 ≥ ‖w‖2 + ‖w∗‖2
2

+ 〈w∗, w〉 ≥ 0. (5.1.20)

Since (5.1.20) holds for all x∗ ∈ Tx and T is maximal we must have w∗ ∈ Tw.
Now setting x∗ = w∗ and x = w in (5.1.20) yields

‖w‖2 + ‖w∗‖2
2

+ 〈w∗, w〉 = 0,

which implies −w∗ ∈ Jw. Thus, 0 ∈ (T + J)w. Since the argument applies
equally well to all translations of T , we have range(T + J) = X∗ as required.•

There is a tight relationship between nonexpansive mappings and monotone
operators in Hilbert spaces, as stated in the next lemma.
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Lemma 5.1.32 Let H be a Hilbert space. Suppose that P and T are two
multifunctions from subsets of H to 2H whose graphs are related by the con-
dition (x, y) ∈ graph P if and only if (v, w) ∈ graph T where x = w + v and
y = w − v. Then

(i) P is nonexpansive (and single-valued) if and only if T is monotone.
(ii) domP = range(T + I).

Proof. Exercise 5.1.29. •
This very easily leads to the Kirszbraun–Valentine theorem [156, 248] on

the existence of nonexpansive extensions to all of Hilbert space of nonex-
pansive mappings on subsets of Hilbert space. The proof is left as a guided
exercise.

Theorem 5.1.33 (Kirszbraun–Valentine) Let H be a Hilbert space and let
D be a non-empty subset of H. Suppose that P : D → H is a nonexpansive
mapping. Then there exists a nonexpansive mapping P̂ : H → H defined on
all of H such that P̂ |D = P .

Proof. Exercise 5.1.30. •
Alternatively [220], one may directly associate a convex Fitzpatrick func-

tion FP with a non-expansive mapping P , and thereby derive the Kirszbraun–
Valentine theorem, see Exercise 5.1.31.

5.1.7 Commentary and Exercises

Multifunctions or set-valued functions have wide applications and have been
the subject of intensive research in the past several decades. Our purpose
in this short section is merely to provide minimal preliminaries and some
interesting examples. Aubin and Frankowska’s monograph [8] and Klein and
Thompson’s book [157] are excellent references for readers who are interested
in this subject.

The subdifferential for convex functions is the first generalized differential
concept that leads to a multifunction. It has many nice properties later gen-
eralized to the classes of usco and cusco multifunctions. The usco and cusco
also relate to other concepts of generalized derivative such as the Clarke gen-
eralized gradient. Our discussion on usco and cusco here largely follows those
in [62, 68, 215].

Maximal monotone operators are generalizations of the convex subdifferential—
though they first flourished in partial differential equation theory. Rockafel-
lar’s result in Theorem 5.1.31 is in [223]. The original proofs were very ex-
tended and quite sophisticated—they used tools such as Brouwer’s fixed point
theorem and Banach space renorming theory. As with the proof of the local
boundedness of Theorem 5.1.8, ultimately the result is reduced to much more
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accessible geometric convex analysis. These proofs well illustrate the tech-
niques of variational analysis: using a properly constructed auxiliary function,
the variational principle with decoupling in the form of a sandwich theorem
and followed by an appropriate decoding of the information. Simon Fitzpatrick
played a crucial role in this process by constructing the auxillary functions.
The proof of Theorem 5.1.8 follows [33]. The short proof of Theorem 5.1.31
is a reworking of that of [234] given in [52] using the Fitzpatrick function
discovered in [116].

Exercise 5.1.1 Let F be a multifunction from X to Y .

(i) Show that dom F = range F−1 and range F = dom F−1.
(ii) Show that F (x) = {y ∈ Y | (x, y) ∈ graphF} and F−1(y) = {x ∈ X |

(x, y) ∈ graphF}.
Exercise 5.1.2 Let X and Y be Hausdorff topological spaces and let F : X →
2Y be a multifunction.

(i) Show that if F is closed then it is closed valued.
(ii) Construct a closed valued multifunction whose graph is not closed.

Exercise 5.1.3 Let X be a metric space and let f : X → IR ∪ {+∞} be a lsc
function. Show that graph Ef = epi f .

Exercise 5.1.4 Let X be a Banach space and let f : X → IR ∪ {+∞} be a
function. Suppose that, for any x∗ ∈ X∗, x → f(x) + 〈x∗, x〉 is quasi-convex.
Show that f is a convex function. Hint: Choose x∗ such that f(x) + 〈x∗, x〉 =
f(y) + 〈x∗, y〉.
Exercise 5.1.5 Let X be a Banach space and let F : X → 2X∗

be a maximal
monotone multifunction. Show that F is convex valued and closed.

Exercise 5.1.6 Prove the representations of the lower and upper limits of
sequence of subsets in (5.1.3) and (5.1.4).

Exercise 5.1.7 Prove Lemma 5.1.10.

Exercise 5.1.8 Prove that in a metric space the sequential lower and upper
limits of a sequence of subsets are always closed sets. Give an example showing
that this is not the case in a general Hausdorff topological space.

Exercise 5.1.9 Prove the equivalence of (5.1.7) and (5.1.8) in Lemma 5.1.11.

Exercise 5.1.10 (Limits of Monotone and Sandwiched Sequences) Let (Fi)
be a sequence in a metric space Y .

(i) Suppose that (Fi) is monotone increasing, i.e, Fi ⊂ Fi+1 for i = 1, 2, . . . .
Then limi→∞ Fi = cl

⋃∞
i=1 Fi.

(ii) Suppose that (Fi) is monotone decreasing, i.e., Fi+1 ⊂ Fi for i = 1, 2, . . . .
Then limi→∞ Fi =

⋂∞
i=1 clFi.
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(iii) Suppose that Fi ⊂ Gi ⊂ Hi and limi→∞ Fi = limi→∞Hi = G. Then
limi→∞Gi = G.

Exercise 5.1.11 (Lower Semicontinuity of Epi-limits) Let X be a met-
ric space and let fi : X → IR be a sequence of lsc functions. Then both
e-lim infi→∞ fi and e-lim supi→∞ fi are lsc functions. Therefore, e-limi→∞ fi

is a lsc function when exists.

Exercise 5.1.12 (Characterization of Epi-limits) Prove Lemma 5.1.13.

Exercise 5.1.13 Construct an example on X = IR showing that without
the condition that dom f and dom fi belong to a compact subset of X, the
conclusion (5.1.11) in Theorem 5.1.14 is false.

Exercise 5.1.14 Prove the claim in Example 5.1.18.

Exercise 5.1.15 Prove Theorem 5.1.20.

Exercise 5.1.16 Let F : X → 2Y be an usco. Show that graph F is a closed
subset of X × Y .

Exercise 5.1.17 Verify Example 5.1.25. Hint: By Exercise 5.1.5 F is convex
valued and closed. The upper semicontinuity of F follows from Theorem 5.1.8
and Proposition 5.1.22.

Exercise 5.1.18 Verify the claims in Example 5.1.30.

Exercise 5.1.19 Construct a multifunction F from IR to IR2 whose projec-
tions into IR are both minimal usco mappings yet F itself is not. Hint: Let
F (x) = {(sgn(x); sgn(x))} for z 6= 0, while

F (0) = {(−1;−1), (−1; 1), (1;−1), (1; 1)}.

Exercise 5.1.20 Construct a minimal usco contained in a given usco
F : Z → IRN .

Exercise 5.1.21 Deduce that every maximal monotone mapping on a reflex-
ive space which is coercive (in the sense that infx∗∈Tx〈x∗, x〉/‖x‖ → ∞ with
‖x‖ → ∞) is surjective, by considering the sequence (T + 1

i J). Hint: It helps
to know that maximal monotone operators (and so their inverses) are sequen-
tially demi-closed, that is xi →∗ x, yi → y, yi ∈ Txi implies y ∈ Tx. This is
neatly proved via the Fitzpatrick function.

In a non-reflexive space this fails badly. Indeed the existence of surjective,
coercive subgradient mappings forces the space to be reflexive, [117].

Exercise 5.1.22 Show in finite dimensions that a single-valued surjective
monotone mapping is weakly coercive, meaning that ‖Tx‖ → ∞ when
‖x‖ → ∞.
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Exercise 5.1.23 Compute the Fitzpatrick function of T when T is a linear
maximal monotone mapping.

Exercise 5.1.24 Compute the Fitzpatrick function of T +S when T is max-
imal monotone and S is a skew bounded linear mapping.

∗Exercise 5.1.25 Suppose T is maximal monotone and skew – that is, both T
and −T are monotone on X. Suppose, on translating if need be that 0 ∈ T (0)
and dom(T ) is a dense absorbing set.

Show that in any Banach space, a maximal monotone skew mapping whose
domain has non-empty interior extends to a bounded skew affine mapping on
the whole space. Hint: Show that T (x) ⊂ K(x) := {x∗ | FT (x, x∗) ≤ 0}, so
that K is a convex multifunction. Now check that K(0) = {0}. Deduce that
K is single valued, and therefore T (x) = K(x) on dom(T ).

Exercise 5.1.26 Supposing T is maximal monotone and skew, show that
dom(T ) is affine.

∗Exercise 5.1.27 Show that every C1 monotone mapping, T , whose domain
is open, can be written as T = f ′ + S where f is a twice differentiable convex
function and S is a skew and bounded linear mapping. Hint: (i) the gradient
of T is a linear monotone mapping, and so can be written as P (x) + S(x)
where P is positive semi-definite and (ii) the skew monotone part is linear by
Exercise 5.1.25.

∗Exercise 5.1.28 Monotone mappings such that T +J is surjective are called
hypermonotone.Show that a hypermonotone mapping on a reflexive space is
maximal monotone as soon as J and J−1 are both injective, but not necessarily
more generally. In Hilbert space this result is due to Minty [188]. Deduce that
T is hypermonotone as soon as T + α J is surjective for some α > 0.

Exercise 5.1.29 Prove Lemma 5.1.32.

Exercise 5.1.30 Prove Theorem 5.1.33 as follows:

(i) Associate P to a monotone function T as in Lemma 5.1.32.
(ii) Extend T to a maximal monotone multifunction T̂ .
(iii) Define P̂ from T̂ using Lemma 5.1.32 and use Rockafellar’s theorem to

assert dom(P̂ ) = range(T̂ + I) = H.
(iv) Check that P̂ is indeed an extension of P .

∗Exercise 5.1.31 Use Lemma 5.1.32 to explicitly define a convex Fitzpatrick
function associated with a nonexpansive mapping, and determine its proper-
ties.

Exercise 5.1.32 Let H be a Hilbert space and let T : H → 2H be a monotone
multifunction. Show that Q := (I + T−1)−1 is nonexpansive. Moreover, if T
is maximal monotone then dom Q = H. Hint: dom Q = range(I + T−1).
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Exercise 5.1.33 (Resolvents) Let H be a Hilbert space with T : H → 2H

a maximal monotone multifunction. For λ > 0, show that the resolvent
Rλ := (I + λ T )−1 is everywhere defined, with range in the domain of T
and non-expansive. Deduce that the Yosida approximate Tλ(x) := TRλ is an
everywhere defined, (1/λ)-Lipschitz and maximal monotone mapping.

Show for x in the domain of T that Tλ(x) converges to the minimal norm
member of Tx. What happens when Tx is empty?

Non-expansivity is very definitely a Hilbert space property, but the Yosida
approximate remains useful more generally (as in the next exercise) [92].
Hint: Supposing x∗ ∈ Tx and x∗i ∈ Tλ(xi) we have 〈x∗i − x∗, xi〉 ≤ 0. Thus
lim supi→∞ ‖xi‖ = inf ||Tx‖. Now use demi-closure.

∗Exercise 5.1.34 Show that the domain and range of a maximal monotone
operator on a reflexive space are semi-convex – that is, have a convex closure.
It is unknown whether this holds in arbitrary Banach space [235]. Hint: Since
X is reflexive it suffices to show the domain is semi-closed.

Fix y ∈ dom(T ), y∗ ∈ T (y), x ∈ X, and use Rockafellar’s theorem to solve

0 ∈ J(x− xi) +
1
i

T (xi)

for integer i > 0. Then for some x∗i ∈ T (xi) and j∗i ∈ J(x− xi), we have

‖xi − x‖2 = − 1
i
〈x∗i , xi − x〉 ≤ −1

i
〈y∗, xi − y〉 − 1

i
〈x∗i , x− y〉

=
1
i
〈y∗, xi − y〉+ 〈j∗i , x− y〉.

Deduce that ‖j∗i ‖ = ‖xi − x‖ stays bounded and so (j∗i ) has a weak cluster
point j∗. In particular, as xi is in D = dom(T ), one has

dD(x) ≤ inf
y∈D

〈j∗, x− y〉 ≤ ‖j∗‖ dco(D)(x),

for all x in X. Hence, cl dom(T ) is convex as required.

∗Exercise 5.1.35 (Maximality of the Sum) Let T and U be maximal monotone
operators on a Hilbert space, H, and let λ > 0 be given.

(i) Show that range(Tλ + U + µ I) = H, for µ > 1/λ.
(ii) Deduce that Tλ + U is maximal monotone.
(iii) Show that T + U is maximal monotone when dom(U) ∩ int(domT ) 6= ∅.
Hint: (i) For any y ∈ H, the mapping

x 7→ (S + µ I)−1[y − Tλ(x)]

is a Banach contraction. (iii) We may suppose 0 ∈ T (0) ∩ U(0) and that 0
is interior to the domain of T . Let λi ↓ 0. Note that 0 ∈ Tλi(0). Show that
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the solutions ti ∈ Tλi(xi), ui ∈ U(xi) with y = ti + ui + xi yield a Cauchy
sequence (xi) as follows:

〈xi − xj , xi − xj〉 ≤ −〈ti − tj , λi ti − λj tj〉 ≤ 2 (λi + λj) sup ‖tk‖2.

Use monotonicity and the fact that the domains intersect to show ‖xi‖ ≤ ‖y‖.
Now use the interiority hypothesis and the consequent local boundedness at
0 of the monotone operator T to show (ti) remains bounded and also has a
weakly convergent subsequence. Conclude that (xi) converges in norm.

Finish by taking limits and using demi-closedness.
Note that everything has been reduced to Rockafellar’s theorem and so

to the Hahn–Banach theorem. An extension of this proof will work in arbi-
trary reflexive space, but step (i) must be replaced by a finite dimensional
approximation argument.

Exercise 5.1.36 Show that for a closed convex set C in a Banach space and
λ > 0 one has

(∂ιC)2λ = ∂ιC 2λ ‖ · ‖2 = λ d2
C(x).

∗Exercise 5.1.37 (Monotone Variational Inequalities) Let T be a maximal
monotone operator on a Banach space and let C be a closed convex subset
of X.

(i) Show that the solution of the monotone variational inequality:

VI (T, C)

{
there exist x ∈ C and t∗ ∈ T (x)
such that 〈t∗, c− x〉 ≥ 0 for all c ∈ C

is equivalent to the monotone inclusion

0 ∈ (T + ∂ιC)(x).

(ii) In particular, if T is coercive on C and the sum T + ∂ιC is maximal
monotone for which Exercise 5.1.35 gives conditions, then the variational
inequality has a solution.

(iii) Specialize this to the cases when T is coercive and (a) C = i BX , as
i → ∞, or (b) C is a closed convex cone – a so-called complementarity
problem.

(iv) Consider two monotone operators T and U on X and Y respectively.
Show that M(x, y) := (Tx, Uy) is monotone on X × Y and is maximal
if and only if both T and U are. Denote the diagonal convex set by
∆ := {(x, y) ∈ X × Y | x = y}. Check that 0 ∈ range(T + U) if and only
if VI (M, ∆) has solution.

∗Exercise 5.1.38 (Transversality I) Let T be maximal monotone operator on
a Hilbert space, H, and let C be a non-empty closed convex subset of H.



5.1 Multifunctions 191

(i) Show that when T is coercive on C the condition

0 ∈ core [dom(T )− C] (5.1.21)

implies VI (T, C) has a solution.
(ii) This remains true in a reflexive Banach space.

Hint: By Exercise 5.1.35, VI (T1/i, C) has a solution:

xi ∈ C, ti ∈ T (xi − 1
i

ti), inf
c∈C

〈ti, c− x〉 ≥ 0.

Condition (5.1.21) and the Baire category theorem imply that for some N > 0
one has 0 ∈ cl[T−1(NBH) − C ∩ NBH ]. This and coercivity of T suffice to
show, much as in Exercise 5.1.35, that (xi) and (ti) remain bounded as i goes
to infinity. Thence, (xi) is norm convergent and one may to move to the limit.

∗Exercise 5.1.39 (Transversality II) Let T and U be maximal monotone op-
erators on a Hilbert space.

(i) Use Exercises 5.1.37 and 5.1.38 to show that

0 ∈ core[dom(T )− dom(U)]

implies T + U is maximal monotone.
(ii) This remains true in a reflexive Banach space.
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Variational Techniques In the Presence of
Symmetry

Symmetry is exploited in many physical and geometrical applications. The
focus of this chapter is what happens when we apply variational methods
to functions with additional symmetry. The mathematical characterization
of symmetry is invariance under certain group actions. Typical examples are
the spectral functions associated with a linear transformation, such as the
maximum eigenvalue for a matrix. They are in general invariant with respect
to the similarity transform. Another example is the distance function on a
Riemannian manifold, which is invariant with respect to an isometric trans-
form. It turns out that nonsmooth functions on smooth manifolds provide a
convenient mathematical framework for such problems.

7.1 Nonsmooth Functions on Smooth Manifolds

7.1.1 Smooth Manifolds and Submanifolds

We start with a brief review of the smooth manifolds and related notation. In
what follows k is either a nonnegative integer or ∞. Let Y be an N -dimen-
sional Ck complex manifold with a Ck atlas {(Ua, ψa)}a∈A. For each a, the N
components (x1

a, . . . , xN
a ) of ψa form a local coordinate system on (Ua, ψa). A

function g : Y → IR is Ck at y ∈ Y if y ∈ Ua and g ◦ ψ−1
a is a Ck function in

a neighborhood of ψa(y). As usual C0 represents the collection of continuous
functions. It is well known that this definition is independent of the coordinate
systems. If g is Ck at all y ∈ Y , we say g is Ck on Y . The collection of all
Ck functions on Y is denoted by Ck(Y ). A map v : C1(Y ) → IR is called a
tangent vector of Y at y provided that for any f, g ∈ C1(Y ),

(i) v(af + bg) = av(f) + bv(g) for all a, b ∈ IR and
(ii) v(f · g) = v(f)g(y) + f(y)v(g).

The collection of all the tangent vectors of Y at y forms an (N-dimensional)
vector space, called the tangent space of Y at y and denoted by Ty(Y ) or
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charaterization, 177
lower, 177
upper, 177

epigraph of function, 3
epigraphical profile, 172
exact penalization, 40
extremal

point, 108
principle, 108
system, 108

fixed sets, 112
extremal principle, 108, 111, 258, 267

and convex separation, 212
approximate, 108, 111
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geometry, 110
limiting, 202

extreme points, 30

Farkas lemma, 30
feasible allocation, 268
Fejér Monotone sequence, 149
Fenchel

biconjugate, 143, 144
conjugate, 140, 158, 330

examples, 143
of exponential, 144, 145
transformations, 143

duality, 141, 164
linear constraints, 145
symmetric, 145

problem, 141
Fenchel–Rockafellar Theorem, 126
Fenchel–Young inequality, 140, 142
Fitzpatrick function, 183
fixed point, 16
fixed point theorem

Banach, 16
Caristi–Kirk, 18

and Banach, 19
Clarke’s refinement, 17
error estimate, 19
iteration method, 19

flower petal, 12
theorem, 13

Fréchet
coderivative, 225
derivative, 41
differentiable, 41, 247
normal cone, 43
smooth space, 41
subderivative, 41
subdifferentiable, 41
subdifferential, 41, 249
superderivative, 102
superdifferential, 46, 52, 102

Fritz John condition, 67
function

bump, 34
Cantor, 47
characteristic, 47
convex

Lipschitz property, 116
regularity, 196

distance, 3, 40, 155, 218, 235
eigenvalue, 40, 326
entropy, 165
epigraph of, 3
Fitzpatrick, 183
gauge, 115
gauge-type, 31
graph of, 3
indicator, 3

conjugate of, 144
subdifferential of, 122

Lipschitz, 40, 82
lower semicontinuous (lsc), 2, 3
Lyapunov, 92, 93
max, 39

subdifferential of, 138
nonexpansive, 221
number of elements, 24
optimal value, 39, 55
order statistic, 318
penalization, 40
set of continuity, 125
sign, 79
spectral, 40
support, 115, 169

Gâteaux differentiable, 126
game, 113
gauge-type function, 31
general metric regularity qualification

condition, 228
generic, 34
generic Gâteaux differentiability, 293
Gordan alternative, 21
graph of function, 3
Graves–Lyusternik thoerem, 107

Hadamard’s inequality, 81
Hahn–Banach extension, 137
Hamilton–Jacobi equation, 52, 56
Hessian

and convexity, 129
hypermonotone, 188

implicit function theorem, 238
implicit multifunction, 238
indicator function, 3
induced map, 298
inf-convolution, 3, 155
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interior, 3

Kirszbraun–Valentine theorem, 185
kronecker delta, 323
Ky Fan minimax theorem, 309

Lagrange multiplier rule, 216, 304
Lambert W-function, 155
level sets, 3

normal cone
representation, 63

of majorization, 22
of preference, 111
singular normal cone

representation, 64
lexicographic order, 325
Lidskii theorem, 323
Lie

bracket, 305
group, 299

action, 299
limiting

chain rule, 202
coderivative, 225
extremal principle, 202
multiplier rule, 201
normal cone, 200
subdifferential, 199, 300
sum rule, 201

failure, 203
linearity space, 123
Lipschitz

and cone monotonicity, 90
criterion, 85
property, 82

local coordinate system, 297
local sum rule, 257

approximate, 57, 60, 65, 91, 106, 111,
256

log, 145
lower semicompact, 231
lower semicontinuous (lsc), 3
lsc closure, 54
Lyapunov

function, 93
stability, 93

majorization, 22
and doubly stochastic matrix, 27

level sets of, 22, 28
representation, 23

Mangasarian–Fromovitz condition, 70
manifold, 297

full rank matrices, 305
invertible matrices, 305
orthogonal matrices, 305
Stiefel, 307

mapping
attracting, 149
nonexpansive, 148

marginal price rule, 210
mathematical economics, 210
mathematical program with equilibrium

constraint, 80
matrix, 305

doubly stochastic, 24, 166
permutation, 23
skew symmetric, 305
symmetric, 305

max formula, 125
maximal monotone, 173, 183

on a set, 182
maximum eigenvalue, 308
meager, 34
mean value inequality, 106
mean value theorem

approximate, 84
Cauchy, 88
Lagrange, 82
Rolle, 82

metric regularity, 239, 241, 244
tangential conditions, 245

metric space, 2
minimal cusco, 183, 205, 219
minimal usco, 181

existence, 181
minimax theorem, 103, 144
minimizer

subdifferential zeroes, 122
monotone

maximal, 173
multifunction, 172
quasi, 86

monotonicity, 83
cone, 86
of gradients, 130

mountain pass theorem, 280, 284
approximate, 280
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multidirectional mean value inequality,
99, 236, 257

approximate, 99
convex, 135
refined, 106
two sets, 159

multifunction, 3, 171, 238
argmin, 172
close valued, 172
closed, 172
compact valued, 172
composition, 227
continuity, 179
convex valued, 172
domain of, 4, 171
epigraphical profile, 172
graph of, 3, 171
inverse of, 4, 171
maximal monotone, 173, 182
monotone, 172

boundedness, 174
open valued, 172
profile mapping, 180
range of, 171
semicontiuity, 179
sequential lower limit, 179
sequential upper limit, 179
subdifferential, 171
sublevel set mapping, 180
sublevel sets, 172

multiobjective optimization, 110
multiplier set, 68
multipliers

nonexistence, 79

nearest point, 146, 156
existance and uniqueness, 146
in polyhedron, 145
normal cone characterization, 146

necessary optimality condition, 71, 201
approximate multiplier rule, 65, 67
Clarke subdifferential, 194
comparison, 216
Fréchet normal cone condition, 43
Frizt John condition, 67
Guignard, 246
Karush–Kuhn–Tucker, 70, 71, 73, 80
Lagrange multiplier rule, 216, 304
multi-objective optimization, 111

Pshenichnii–Rockafellar, 136, 147
nonconvex separation theorem, 264

and extremal principle, 267
for multifunctions, 264
for sets, 266

nonexpansive
mapping, 185

extension, 185
nonexpansive function, 221
nonlocal approximate sum rule, 50, 53,

58, 99, 109, 133, 257, 265
nonsmooth analysis, 2
nonsymmetrical minimax theorem, 103,

107
norm

subgradients of, 128
normal cone

and subgradients, 135
Clarke, 194
convex, 122
epigraph, 44
Fréchet, 43
level sets, 63
limiting, 200
nonclosed, 204
of a submanifold, 301
on manifolds, 300
sublevel sets, 61
to intersection, 135

normal upper semicontinuity, 270

one-perturbation variational principle,
287

open covering with a linear rate, 239
open mapping theorem, 118
optimal principle, 55
optimal value

dual, 141
function, 56, 68
primal, 141

optimality condition, 193
optimization

constrained, 65, 194
multiobjetive, 110

necessary optimality conditions, 111
subdifferential in, 122

orbit, 299, 312
order statistic function, 318
order-reversing, 140
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Pacman set, 214
Painlevé–Kuratowski limit, 175
paired Banach spaces, 324
Palais–Smale condition, 284
Pareto optimal allocation, 269
pass, 280
permutation

invariant, 308
matrix, 23, 308

Pitt’s theorem, 278
polar, 194
polar cone, 142
polyhedron, 138

nearest point in, 145
positive operator, 323
positively homogeneous, 123
preference, 110
preferred neighborhood, 298
preimage, 3
projection, 147

algorithm, 148
approximate, 237
attractive property, 149
potential function of, 147
properties, 147

projection algorithm, 148
asymptotically regular, 151
convergence, 151
strong convergence, 153
weak convergence, 153

proximal
normal cone, 222
normal formula, 222
normal vector, 222
subderivative, 48
subdifferential, 48

pseudo-Lipschitzian, 239
pseudoconvex set, 215
pseudotangent cone, 213
Pshenichnii–Rockafellar conditions, 136

quasi
convexity, 86, 173
monotone, 86

Radon–Nikodym property, 272, 277
real normed sequence space, 323
rearrangement, 325

equivalent, 325

invariant, 325
regularity

function, 196
set, 215

residual, 34
resolvent, 189

sandwich theorem, 132, 133
Lewis–Ralph, 159

sandwiched functions, 157
Schatten p-spaces, 333
segment, 16
self-adjoint operator, 323
sensitivity, 68
separable, 145
separable points, 264
separable reduction, 249, 251, 253
separation theorem, 137, 212
sequence of sets

lower limit, 175
Painlevé–Kuratowski limit, 175
upper limit, 175

sequential uniform lower semicontinuity,
76

set-valued function, 3
shadow price, 269, 270
sign function, 79
singular

subdifferential, 199, 300
singular subdifferential

Clarke, 194
singular value

largest, 81
slice, 272, 273

weak-star, 272
smooth chain rule, 302
solvability, 101, 234
spectral

decomposition, 312
function, 40, 305, 308
radius, 308
sequence, 324
sequence space, 324

stability, 94
stabilizer, 299
stable set, 93
star of a set, 216
Stegall variational principel, 243, 273
Stiemke’s theorem, 29
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strictly convex, 129
and Hessian, 129

strong minimum, 34, 272
strongly exposed, 277
strongly exposing functional, 277
subadditive, 123
subderivative, 41

proximal, 48
superderivative representation, 105

subdifferentiable, 41
subdifferential, 41

of max function, 98
at optimality, 122
Clarke, 192
convex, 122
density, 303
Fréchet, 300
Gâteaux, 337
limiting, 199, 300
limiting and Clarke, 200
monotonicity, 173
nonempty, 126
of convex functions, 122
of infimum, 235
on manifolds, 300
proximal, 48
singular, 199, 300
spectral function, 313, 317

subgradient
and normal cone, 135
construction of, 125
existence of, 125
of maximum eigenvalue, 128
of norm, 128
unique, 126

sublevel sets, 3, 172
normal cone

representation, 61
singular normal cone

representation, 64
sublinear, 123, 125, 137
submanifold, 298
sum rule

convex subdifferential, 134, 137
limiting, 193, 201
local, 57, 60
nonlocal, 50

sun, 223
superderivative

subderivative representation, 104
superdifferential, 300
supergradient, 300
support, 34

tangent
bundle, 298
cone, 213

Clarke, 194
space, 298

bases of, 298
vectors, 297

trace, 308
trace class operators, 323
transversality, 190, 245

ubiquitous set, 195
unit ball, 2
unitary

equivalent, 325
invariant, 308, 325
mapping, 308
operator, 325

upper semicontinuous, 46
usco, 180

minimal, 180

value function, 132
variational principle, 2, 36

Borwein–Preiss, 31, 42, 44, 50
Borwein-Preiss, 53
Deville–Godefroy–Zizler, 34
Ekeland, 7, 8, 12–14, 17, 18, 62, 136,

198, 259, 282
in finite dimensional spaces, 20
one-perturbation, 287
smooth, 20
Stegall, 243, 273
subdifferential form, 44

variational techniques, 1
vector field, 298
Ville’s theorem, 29
viscosity

Fréchet subderivative, 41
Fréchet subdifferential, 41
solution, 52

uniqueness, 53
subsolution, 52
supersolution, 52
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von Neumann–Theobald inequality,
312, 314

welfare economy, 268

Yosida approximate, 189
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