
Symbolic Computation of Fenchel Conjugates

In honour of Alfred Auslender

Jonathan Borwein, Chris Hamilton
{jborwein,chamilton}@cs.dal.ca

30 November 2005

Abstract

Convex optimization is a branch of mathematics dealing with non-
linear optimization problems with additional geometric structure. This
area has been the focus of considerable recent research due to the fact that
convex optimization problems are scalable and can be efficiently solved by
interior-point methods. Over the last ten years or so, convex optimization
has found new applications in many areas including control theory, signal
processing, communications and networks, circuit design, data analysis
and finance.

Of key importance in convex optimization is the notion of duality, and
in particular that of Fenchel duality. This work explores algorithms for
calculating symbolic Fenchel conjugates of a class of real-valued functions
defined on Rn.

1 Motivation

To make the development available to a wide variety of practitioners we include
the following discussion.

1.1 Definition and Basic Results

Suppose f is a function defined on Rn that takes on values in (−∞,∞] =
R ∪ {∞} = R̄. Recall that f is convex if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2),

for every x1, x2 ∈ Rn, and all λ ∈ [0, 1]. Recall also that the effective domain
of f , dom f , is the set of all points where f is finite-valued. Convex functions
lie at the heart of of convex, functional and real analysis, as well convex opti-
mization. Several excellent overviews of the subject are available, ranging from
Rockafeller’s [13] and Luenberger’s [12] classics, to more modern treatments by
Boyd and Vandenberghe [7], and by Borwein and Lewis [5].

1

Basic calculus teaches that a minimizer x̄ of a differentiable function f is
necessarily a critical point: ∇f(x̄) = 0. Since many interesting convex functions
are not everywhere differentiable, this technique is not available. Instead, one
defines a generalized differential, the subdifferential of f at x by

∂f(x) = {y ∈ Rn : 〈y, x′ − x〉 ≤ f(x′)− f(x), ∀x′ ∈ Rn}.
Members of this subdifferential are called subgradients, and have a clear geomet-
ric interpretation as being slopes of tangential hyperplanes that minorize f at
the point x. The importance of subgradients in convex optimization stems from
the calculus-like fact that x̄ is a global minimizer of f if and only if 0 ∈ ∂f(x̄).

Theorem 1.1 (Differentiability and the Subdifferential) Consider a con-
vex function f : Rn 7→ R. The subdifferential generalizes differentiability: f is
differentiable at x if and only if ∂f(x) is a singleton, in which case ∂f(x) =
{∇f(x)}.
Proof: Elementary. See any of [12], [13] or [8] for details. ¥

Theorem 1.2 (Subdifferential on R) If f is convex and defined on Rn, then
the left (f ′−) and right (f ′+) derivatives exist at every point in dom f . Moreover,
the subdifferential at every x ∈ dom f is a closed interval or singleton completely
described by the directional derivatives:

∂f(x) = [f ′−, f ′+].

Proof: Elementary. See any of [12], [13] or [8] for details. ¥

The Fenchel conjugate, or Fenchel-Legendre transform, of f , denoted f∗, is
defined by

f∗(y) = sup
x∈Rn

{[y, x]− f(x)} , ∀y ∈ Rn.

The fenchel conjugate is always a convex and lower semi-continuous function on
Rn. The role of the Fenchel conjugate in convex analysis is extremely important,
and draws many parallels with the role of the Fourier analysis in harmonic
analysis. Assuming lower semi-continuity and properness of f , the bi-conjugate
of f recovers the original function: f = f∗∗. In fact, the converse is also true,
leading to:

f is convex and lower semi-continuous ⇔ f = f∗∗.

An immediate consequence of the definition of the Fenchel conjugate is the
well-known Fenchel-Young Inequality :

f(x) + f∗(y) ≥ 〈x, y〉, ∀x, y ∈ Rn. (1)

Sufficient and necessary conditions for this to hold with equality may be formu-
lated in terms of subgradients:

f(x) + f∗(y) = 〈x, y〉 ⇔ y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y).

2

1.2 Optimization and Duality Results

1.2.1 Convex Optimization Duality

Convex optimization deals with primal problems of the type

p = inf
x∈Rn

{f(x) + g(Ax)} ,

where A ∈ Rm×n, f is convex and lsc on Rn, and g is convex and lsc on Rm.
Fenchel conjugation leads to a natrual dual representation of the problem as

d = sup
z∈Rm

{f∗(−A∗z) + g∗(z)} ,

where A∗ is simply the transpose of A. There are several fundamental results
relating these dual formulations, a few of which we will present here.

Theorem 1.3 (Fenchel’s Duality Theorem) Suppose x ∈ Rn, z ∈ Rm and
f , g and A are as above. Then the following hold:

1. Weak Duality: p ≥ d.

2. Strong Duality: If A(dom f)∩ int dom g 6= ∅, then p = d and the infimum
defining d is attained.

3. Primal Solutions: If z is a solution to the dual, then the solutions to the
primal are equal to the (possibly empty) set

A−1∂g∗(z) ∩ ∂f∗(−A∗z).

Proof: Refer to [5]. ¥

Fenchel’s Duality Theorem highlights the importance of subdifferentials and
Fenchel conjugates. Additionally, it is worth noting that Fenchel Duality is
general enough to encompass both Linear Programming Duality and the well
known Min-Max Theorem from game theory. For further details refer to [12].

1.2.2 Semi-Definite Optimization

In semi-definite optimization one minimizes a linear function subject to the
constraint that an affine combination of symmetric matrices remains positive
semi-definite. Such a constraint is inherently non-linear and non-smooth, but
convex. Semi-definite optimization is a generalization and a unification of sev-
eral standard problems (linear, quadratic and convex optimization) and as such
finds many applications. Although much more general than linear programming,
they may aren’t much harder to solve.

In semi-definite optimization the primal problem may be stated as

inf
x∈Rn

{cT x : B(x) ¹ 0},

3

where B(x) = B0 +
∑m

i=1 xiBi, c ∈ Rm and Bi ∈ Rn×n. General duality
results for semi-definite programs are weaker than for linear programs and no
straight-forward simplex methods exist for solving them. Generally, they are
solved using path-following interior point methods, which instead optimize a
convergent sequence of smooth approximations to the original problem. Under
this framework, a smoothing convex barrier function H is introduced leading
to the approximate primal problem

inf
x∈Rn

{cT x + r−1H(rB(x))}

which converges to the original as r →∞. The dual of the approximate problem
is given as

sup
Zº0

{tr(B0Z)− rH∗(Z) : −tr(BiZ) = ci}.

As can be seen, the Fenchel conjugate plays an important role in the dual
formulation. For much more detail, refer to [5, 2, 7].

2 Algorithmic Approach

2.1 One Dimension

Most of the ideas presented in this section closely follow work by Heinz Bauschke
and Martin von Mohrenschildt in [3, 4].

2.1.1 A Good Class of Functions

Computer algebra systems are naturally suited to working with functions defined
over the real numbers that are finite in representation. It is useful to characterize
what is meant by having a finite representation, and to formalize the space of
admissible functions.

Let F be the class of all functions f satisfying the following conditions:

(i) f is a function from R to R;
(ii) f is a closed convex function;
(iii) f is continuous on its effective domain; and,
(iv) there are finitely many points xi such that

x0 = −∞ < x1 < · · · < xn < xn+1 = ∞
and each f |i (f restricted to the open interval (xi, xi+1)) is one of the
following:

(a) identically equal to ∞; or,
(b) differentiable.

Since we restrict ourselves to functions on the real line, condition (iii) is
equivalent to the lower semi-continuity of f . Additionally, if f1, f2 ∈ F and
α1, α2 ≥ 0, then α1f1 + α2f2 and f∗ are in F . The class F is thus well-suited
to our purpose.

4

2.1.2 Subdifferentiation

A convex lower semi-continuous function function on the real line is very well
behaved; for instance, it is subdifferentiable on the interior of its domain. It is
a straight-forward application of Theorems 1.1 and 1.2 to calculate the subdif-
ferential. Over each open-interval the subdifferential is calculated as

∂f |i =
{ ∅, if f |i = ∞,

{f |i′}, otherwise.

For each point xi 6∈ dom f the subdifferential is empty, while for each point
xi ∈ int dom f it may be calculated as the (possibly singleton) closed interval

∂f(xi) =
[
lim
x↑xi

f |i−1
′(x), lim

x↓xi

f |i′(x)
]

.

We are left with calculating the subdifferential over the (zero, one or two) points
xi ∈ bd dom f as

∂f(xi) =

(−∞,∞), if f |i−1 = ∞ = f |i,(−∞, limx↓xi f |i′(x)
]
, if f |i−1 = ∞ 6= f |i, or[

limx↑xi f |i−1
′(x),∞)

, if f |i−1 6= ∞ = f |i.

2.1.3 Fenchel Conjugation

Given the subdifferential of f the conjugate of a point y may be calculated in
two steps: firstly, solve y ∈ ∂f(x) for x – the key step – and let x̄ be such a
solution (if none can be found then y 6∈ dom f∗, and f∗(y) = ∞. Secondly, use
the Fenchel-Young equality (Equation 1) to obtain f∗(y) = 〈x̄, y〉 − f(x̄).

To calculate the conjugate over the whole real line, we simply invert each
f |i′ and insert it into the Fenchel-Young inequality, which in turn defines the
conjugate for all y ∈ (limx↓xi f |i′(x), limx↑xi+1 f |i′(x)). Similarly, each point xi

with a non-singleton differential ∂f(xi) = (a, b) yields f∗(y) = xiy − f(xi) for
y ∈ (a, b). Continuity then determines the value of the Fenchel conjugate at
boundary points, with the function taking the value ∞ outside of its domain.

2.1.4 Inversion

Inverting the component derivatives is the biggest challenge to symbolically
computing the Fenchel conjugate. We rely on the Maple function solve, which
by its nature has to deal with branch cuts and hence does not always return a
unique closed form inverse.

A typical example of this behaviour is in conjugating f = x4/4. In order to
proceed we need to invert y = f ′(x) = x3. Since Maple implicitly works in the
complex plane an inverse calculation yields the three cubic roots of y. But none
of these expressions is the real root for all real values of y.

Definition 2.1 (Branch point) For our purposes, a branch point is a point
at which a branch cut of an analytic multi-valued function intersects the real
line. ¤

5

If Maple had internal representations of elementary functions (and their
inverses) as functions from R to R, this problem would largely disappear. How-
ever, we are left with having to explicitly find the branch points and determine
which branch of the inverse is applicable over which sub-interval. Conveniently,
classical complex analysis tells us exactly where these branch points may be
located when the function we are inverting is analytic.

Theorem 2.2 ([1], Chapter 3, Theorem 11) Suppose that f(z) is analytic
at z0, f(z0) = w0, and that f(z) − w0 has a zero of order n at z0. If ε > 0
is sufficiently small, there exists a corresponding δ > 0 such that for all a with
|a− w0| < δ the equation f(z) = a has exactly n roots in the disk |z − z0| < ε.

Corollary 2.3 (Location of branch points) Suppose that f is as in Theo-
rem 2.2. Suppose furthermore that f(z) is analytic on the entire neighborhood
|z − z0| < ε, and let g1(a), . . . , gn(a) represent the n roots of f(z) = a on the
neighborhood |a− w0| < δ. Then g1(w0) = · · · = gn(w0) = z0.

Proof: Due to the nth order zero of f(z) at z0, it follows that f(z) may be
expressed as f(z)−w0 = (z−z0)ng(z), where g(z) 6= 0, for all z with |z−z0| < ε.
Due to the analyticity of f(z) and the existence of exactly n roots by Theorem
2.2, for any a with |a − w0| < δ we can write f(z) − a = (z − g1(a)) · · · (z −
gn(a))h(z), for some h(z) 6= 0. Since lima→z0 f(z)− a = f(z) − w0, it follows
that lima→z0 (z − g1(a)) · · · (z − gn(a))h(z) = (z − z0)ng(z), and therefore (z −
g1(w0)) · · · (z − gn(w0))h(z) = (z − z0)ng(z). Suppose gi(w0) 6= z0 for some i.
Then, since h(z0) 6= 0, it follows that the left hand side of the equation has at
most n− 1 roots at w0, a contradiction. Thus, it must be that g1(w0) = · · · =
gn(w0) = z0. ¥

As an immediate result of Corollary 2.3 we can infer that branch points of
a function f may only occur at zeroes of the first derivative of f . Assuming we
are able to find these zeroes, and there are finitely many of them within our
interval of interest, we may then test each of the candidate inverses over each
implied sub-interval and determine which is the correct branch. Finding these
zeroes is left to Maple’s routine solve, which may not always succeed.

The original algorithms presented in [3, 4] have no facilities to deal with
branch selection. The above extension to these original algorithms greatly en-
larges the space of functions over which the algorithm may calculate conjugates.

2.2 Many Dimensions

For functions defined over Rn the Fenchel conjugate may be rewritten as:

f∗(y) = sup
x
{〈x,y〉 − f(x)}

= sup
x1,...,xn

{
n∑

i=1

xiyi − f(x)

}

= sup
x1

{
x1y1 + sup

x2

{
x2y2 + · · ·+ sup

xn

{xnyn − f(x)} · · ·
}}

.

6

We introduce the concept of a partial conjugate. Consider an n-dimensional
function that has had a one-dimensional conjugate calculated with respect to
the variable xi. The notation fxi then represents this partial conjugate of f
with respect to xi. The above may be rewritten as

f∗ = (−(· · · − (fxn · · ·)x2)x1 .

This implies that an n-dimensional conjugate can be seen as an iterated sequence
of n one-dimensional conjugation and n− 1 negation operations.

2.2.1 A Good Class of Functions

The natural space to work in is the recursive extension to F . An n-dimensional
function f is in Fn if:

(i) f(x1, . . . , xn) is a function from Rn to R;
(ii) f(x1, . . . , xn) is a closed convex function;
(iii) f(x1, . . . , xn) is continuous on its effective domain; and,
(iv) there are finitely many points ai such that a0 = −∞ < a1 < · · · < am−1 <

am = ∞ and f restricted to each open interval (ai, ai+1) is in Fn−1 (where
F1 = F) with respect to the variables x2, . . . , xn.

2.2.2 Fenchel Conjugation

Functions in Fn have an implicit variable order due to their structure. A func-
tion defined over the variable order x1, . . . , xn may only be partially conjugated
along the last variable. In order to calculate a partial conjugate with respect
to another variable xj , the function must be rewritten such that xj is the last
variable in its representation. We illustrate with an example in F2.

Example 2.4 (Product of roots) Consider the two-dimensional function

f(x1, x2) =

{ ∞, ∀x2 , x1 < 0

∞, x2 < 0
0, x2 = 0
0, 0 < x2

, x1 = 0

∞, x2 < 0
0, x2 = 0
−√x1x2, 0 < x2

, 0 < x1

.

Calculating the partial conjugate with respect to the x2 axis involves calculating
two one-dimensional partial conjugates; one along the line x1 = 0 and the other
over the half-plane 0 < x1. Calculating these conjugates (and negating the

7

results) yields:

fx2(x1, y2) =

{ ∞, ∀y2 , x1 < 0

0, y2 < 0
0, y2 = 0
∞, 0 < y2

, x1 = 0

x1
4y2

, y2 < 0
∞, y2 = 0
∞, 0 < y2

, 0 < x1

We now wish to calculate the partial conjugate along the x1 variable in order
to complete the two-dimensional conjugation. However, in order to do this, we
must first reorder the variables to (y2, x1). In this example this is easily done
through inspection, resulting in:

fx2(y2, x1) =

∞, x1 < 0
0, x1 = 0
x1
4y2

, 0 < x1

, y2 < 0

{ ∞, ∀x1 , y2 = 0{ ∞, ∀x1 , 0 < y2

We may now proceed to calculate the complete conjugate by partially conjugat-
ing along the x1 axis. There are two distinct one-dimensional conjugates to be
calculated along the line y2 = 0 and the half-plane y2 < 0. This yields:

f∗(y2, y1) =

0, y1 < 1
4y2

0, y1 = 1
4y2

∞, 1
4y2

< y1

, y2 < 0

{ ∞, ∀y1 , y2 = 0{ ∞, ∀y1 , 0 < y2

It is desirable to have the conjugated function in the same variable order as the
original function. This involves yet another variable reordering to (y1, y2). The
result of this operation is the final conjugate:

f∗(y1, y2) =

0, y2 < 1
4y1

0, y2 = 1
4y1

∞, 1
4y1

< y2

, y1 < 0

{ ∞, ∀y2 , y1 = 0{ ∞, ∀y2 , 0 < y1

¤

2.2.3 Variable Reordering

A function f ∈ Fn can be thought of as a union of functions fi defined over
disjoint sets Si ⊂ Rn. Given the variable order x1, . . . , xn, each Si is naturally

8

represented as Si = {x : x1 ∈ X1, x2 ∈ X2(x1), . . . , xn ∈ Xn(x1, . . . , xn−1)}.
The operation of changing variable orders to (for example) xn, x1, . . . , xn−1 is
equivalent to finding X̄i such that Si = {x : xn ∈ X̄n, x1 ∈ X̄1(xn), . . . , xn−1 ∈
X̄n−1(xn, x1, . . . , xn−2)}. This is completely equivalent to the problem of chang-
ing the order of variables in a multiple-integral (assuming the integrand is suf-
ficiently well behaved). Consider the integral

∫

Si

f(x)dx =
∫

X1

· · ·
∫

Xn

f(x)dxn · · · dx1.

To change the order of the variables to xn, x1, . . . , xn−1 we wish to find X̄i such
that: ∫

Si

f(x)dx =
∫

X̄n

∫

X̄1

· · ·
∫

X̄n−1

f(x)dxn−1 · · · dx1dxn.

In the general case (where none of the dimensions describing Si are separable)
this problem is extremely hard. However, in the non-separable two-dimensional
case the problem may be fully broken down to a set of 23 distinct sub-problems
(which may be further reduced to 12 due to symmetry), each of which may
be solved assuming appropriate zeroes and inverses may be found ([8]). This
allows us the associated symbolic Fenchel conjugation algorithm to deal quite
robustly with non-separable two-dimensional objects, and higher dimensional
ones in certain cases.

3 Examples

3.1 The Maple Package SCAT

Earlier work by Bauschke and Mohrenschildt [3, 4] focussed on symbolically
calculating exact subdifferentials and conjugates for one-dimensional real-valued
functions on R, and separable multi-dimensional function on Rn. Their work
led to the development of the Maple package fenchel. The Maple package
SCAT is the result of refining that work and extending it to the non-separable
many-dimensional case. It also serves to unite the complementary approach of
numerically computing subdifferentials and conjugates, using approaches such
as those developed in [10, 11] when symbolic approaches break down.

The Maple package SCAT (Symbolic Convex Analysis Toolkit) introduces
several new constructs and commands to Maple: the objects PWF and SD for
representing convex functions and subdifferentials; the function SCAT[Plot]
for exploring them graphically; the function SCAT[Eval] for evaluating them
at points, or taking lower dimensional slices; the functions SCAT[SubDiff] and
SCAT[Int] for calculating subdifferentials from convex functions and vice-versa;
and the functions SCAT[Conj] and SCAT[InfConv] for calculating Fenchel con-
jugates and infimal convolutions. Additionally, the toolkit is well integrated with
Maple, tying in with Maple’s conversion (convert), evaluation (eval, evalf,
etc), pretty printing (print) and simplification (simplify) functionality.

9

The latest version of this software, along with extensive documentation and
usage guides, are available at:

http://ddrive.cs.dal.ca/projects/scat/

3.2 Classic Examples

We explore the functionality and capabilities of SCAT using several classic ex-
amples from the literature.

Example 3.1 (Absolute value) One of the simplest examples of a convex
function that is not everywhere differentiable is the absolute value function f :
x 7→ |x|. Its derivative at the origin fails to exist since f ′−(0) = −1 < 1 = f ′+(0).
The notion of the subgradient is able to capture this behaviour and accordingly
it is seen that ∂f(0) = [−1, 1]. In order to explore this function we first repre-
sent it in a form that SCAT understands; the PWF (piecewise function) format:
> f1 := convert(abs(x),PWF);

f1 :=

−x, x < 0
0, x = 0
x, x > 0

We may easily calculate the subdifferential of f1:
> sdf1 := SubDiff(f1);

sdf1 :=

{−1}, x < 0
[−1, 1], x = 0
{1}, x > 0

We may also calculate the conjugate, yielding:
> g1 := Conj(f1,y);

g1 :=

∞, y < −1
0, y = −1
0, (−1 < y) and (y < 1)
0, y = 1
∞, 1 < y

¤

-2
-1.5

-1
-0.5

0
0.5

1

-4 -3 -2 -1 0 1 2
x

Figure 1: Plot of f5 from Example 3.2

10

-3

-2
-1
0
1
2
3
4
5

-2 -1 0 1
x

Figure 2: Plot of sdf5 from Example 3.2

Example 3.2 (An example from Rockafeller) The following function can
be found on page 229 of Rockafeller’s text [13]. The function is easily con-
structed using piecewise and converted to the PWF format:
> piecewise(-3<=x and x<=1,abs(x)-2*sqrt(1-x),infinity):

f5 := convert(%,PWF);

f5 :=

∞, x < −3
1, x = −3

−2
√

1− x− x, (−3 < x) and (x < 0)
−2, x = 0

−2
√

1− x + x, (0 < x) and (x < 1)
1, x = 1
∞, 1 < x

We now use the command Plot(f5,x=-4..2,scaling=constrained,axes=framed)
to plot the function, yielding Figure 1. Next, to calculate and plot the subdif-
ferential we use the commands sdf5 := SubDiff(f5), and

Plot(sdf5,-3..1,view=[-3..1,-3..5],axes=none),

yielding

sdf5 :=

{}, x < −3
[−∞,− 1

2], x = −3
{ (−1+

√
1−x)

√
1−x

x−1 }, (−3 < x) and (x < 0)
[0, 2], x = 0

{− (1+
√

1−x)
√

1−x
x−1 }, (0 < x) and (x < 1)
{}, x = 1
{}, 1 < x

and the plot in Figure 2. Finally, we find the conjugate, the biconjugate and
manually verify the convexity of f5 with the following commands:
> g5 := Conj(f5,y);

11

g5 :=

−3y + 1, y < − 1
2

5
2 , y = −1

2
y2+2y+2

1+y , (−1
2 < y) and (y < 0)

2, y = 0
2, (0 < y) and (y < 2)
2, y = 2

y2−2y+2
−1+y , 2 < y

> F5 := Conj(g5,x):
Equal(f5,F5);

true
¤

Example 3.3 (Young’s Inequality) Suppose 1 < p < ∞ and let q be such
that 1

p + 1
q = 1. The equality

1
p
ap +

1
q
bq ≥ ab, ∀a, b ≥ 0,

is known as Young’s Inequality. As we are about to see, since (1
p | · |p)∗ = 1

q | · |q
this is actually a special case of the stronger Fenchel-Young inequality from
Equation 1. In this example we show and confirm the above conjugate pair.

This example elaborates on a similar example provided in [4]. The algo-
rithms developed in this work are able to handle p as a free parameter while
those in [4] were restricted to fixed values of p. The general pair of conjugate
functions is easily derived using the following commands:
> f7 := convert(abs(x)^p/p,PWF,x,{p>1});

g7 := Conj(f7,y):
g7 := Subs(p=1/(1-1/q),g7);

f7 :=

(−x)p

p , x < 0
0, x = 0
xp

p , 0 < x

g7 :=

(− 1
y)(−q)

q , y < 0
0, y = 0
yq

q , 0 < y

In creating f7, notice that we passed additional parameters consisting of a set of
assumptions. In this example, if we do not provide the information that p > 1
then the process will fail, producing the following output:
> f := convert(abs(x)^p/p, PWF, x);
Error, (in EvalRel) unable to evaluate relation: 1/p*limit(x^p,x =
0,right) = 1/p*limit((-x)^p,x = 0,left)
¤

3.3 Barrier Functions

We turn now to the problem of calculating conjugates of some common barrier
functions in semi-definite optimization. Many such functions may be generated

12

from appropriate one-dimensional convex functions.

Theorem 3.4 (Barrier Function Construction) Let θ : R → R̄ be an lsc,
proper convex and non-decreasing function with dom θ = (−∞, b), b ∈ [0,∞),
limx→−∞ θ(x) = 0 and limx→b θ(x) = ∞. Let λ(D) be the vector of eigenvalues
of the symmetric matrix D ∈ Sn in non-decreasing order. Then

H(D) =
n∑

i=1

θ(λi(D))

is a smooth barrier function such that limr→∞ r−1H(rD) = δS−n (D), for all
D ∈ Sn.

Proof: Refer to Propositions 2.6.1, 2.8.1 and Theorem 2.7.2 from [2]. ¥
A few interesting choices for θ include the following functions taken from

page 74 of [2]:

θ1 = exp(u), dom θ1 = R;
θ2 = − log(1− u), dom θ2 = (−∞, 1);
θ3 = u

1−u , dom θ3 = (−∞, 1);
θ4 = − log(−u), dom θ4 = (−∞, 0); and
θ5 = −u−1, dom θ5 = (−∞, 0).

These lead directly to the following barrier functions:

H1(D) = tr(exp(D));
H2(D) = − log(det(I −D)), for D ≺ I, ∞ otherwise ;
H3(D) = tr((I −D)−1D), for D ≺ I, ∞ otherwise ;
H4(D) = − log(det(−D)), for D ≺ 0, ∞ otherwise ; and
H5(D) = tr(−D−1), for D ≺ 0, ∞ otherwise .

In all cases, we are able to symbolically calculate the conjugates of the under-
lying functions θi, yielding:

θ∗1 = v(log(v)− 1), dom θ∗1 = (0,∞);
θ∗2 = v − log(v)− 1, dom θ∗2 = (0,∞);
θ∗3 = (

√
v − 1)2, dom θ∗3 = [0,∞);

θ∗4 = − log(v)− 1, dom θ∗4 = (0,∞); and
θ∗5 = −2

√
v, dom θ∗5 = [0,∞).

Example 3.5 (Barrier Function H1) Considering the two-dimensional case

and letting D =
[

d1 d2

d2 d3

]
we find that H1 reduces to the separable two-

dimensional function
H1 = exp d1 + exp d3,

for all d1, d3 ∈ R. The conjugate of this is calculated to be

H∗
1 (Z) = z1(log(z1)− 1) + z3(log(z3)− 1),

for Z =
[

z1 z2

z2 z3

]
º 0. ¤

13

Although not powerful enough to calculate conjugates of all the barrier func-
tions Hi for arbitrary dimensions, they do let us explore them in certain lower
dimensional cases. We consider a restricted two-dimensional space of symmetric
matrices (a slice across the three-dimensional space of matrices S2)

S =
{[

s1 s2

s2 s1

]
: s1, s2 ∈ R

}
.

Example 3.6 (Barrier Function H2) The function H2 is defined for D ≺ I.
Further restricting ourselves to S this leads to the domain being the set of
matrices D = {D : d1 < 1, d1 − 1 ≤ d2 ≤ 1− d1}. Thus, we may define H2 as

H2 = − log(1− 2d1 + d2
1 − d2

2), for D ∈ D.

The conjugate is calculated by SCAT as

H∗2 :=

8
>>>>>>>>>>><
>>>>>>>>>>>:

{∞, all(z2), z1 < 0
{∞, all(z2), z1 = 08

>>>>>>><
>>>>>>>:

∞, z2 < −z1
∞, z2 = −z1

z1 − log(z1 − z2) − log(z1 + z2) + 2 log(2) − 2, (−z1 < z2) and (z2 < 0)
z1 − 2 log(z1) + 2 log(2) − 2, z2 = 0

z1 − log(z1 − z2) − log(z1 + z2) + 2 log(2) − 2, (0 < z2) and (z2 < z1)
∞, z2 = z1
∞, z1 < z2

, 0 < z1

With a little massaging we can simplify this to

H∗
2 (Z) = z1 − log(z1 − z2)− log(z1 + z2) + 2 log(2)− 2,

for Z ∈ S and Z º 0. ¤

3.4 NMR Imaging

The method of maximum entropy reconstruction has been applied in nuclear
magnetic resonance spectroscopy (NMR) to the problem of estimating complex
spectra. It has proven to be a useful approach as it has the ability to estimate
high-resolution spectra from short data records, to deconvolve spectra without
enhancing noise and to estimate spectra from non-uniformly sampled time series
[6, 9]. By maximizing entropy a spectral estimate is found with the least amount
of ‘false information’, thus, such an optimized spectra is the ‘most informative’
of all possible estimates.

The choice of the most appropriate information entropy to use has been
considered [9]. The Hoch and Stern information measure for complex spectra has
been shown to be consistent with the underlying statistical mechanical entropy
governing the physical system. In addition to this, it was shown by Borwein
et al in [6] that this entropy has a very natural dual representation, and the
corresponding dual optimization problem is more efficient to solve with greater
numerical accuracy.

Let D = [−∆/2, ∆/2] be the support of the unknown spectrum, modelled
by a function φ(s) ∈ L2

C(D), and let ψ(t) ∈ L2
C(D) represent the time signal.

The problem is that of recovering φ from a noisy discrete measurement of ψ,

14

Y = ψ(Jδt) ∈ Cm, where J = {0, . . . , m − 1} and δt represents the sampling
interval. The Hoch and Stern entropy is defined by H(X) =

∑n
j=1 h(Xj), where

h is the convex function on C given by

h(z) = f

(|z|
b

)
and f(u) = u log

(
u +

√
1 + u2

)
−

√
1 + u2,

with f(|z|) plotted in Figure 3. With these definitions one version of the primal
problem may be stated as

(PNMR) inf {H(X) : X ∈ Cn, ‖Y −AX‖ ≤ ε} ,

with the matrix A representing the discrete Fourier transform operator. In [6]
the dual of this problem is derived as

(DNMR) sup {Re[〈Y, Λ〉]− ε‖Λ‖ −H∗(A∗Λ) : Λ ∈ Cm} .

The motivation to pursue the dual problem came from the casual observation
that f∗(u∗) = cosh u∗ (plotted in Figure 4), which was calculated by Borwein
using SCAT’s direct ancestor, fenchel. This leads immediately to H∗(X∗) =∑n

j=1 cosh(b|X∗
j |). Given a solution Λ̄ to the dual problem, a solution to the

primal is found as

X̄ = b exp
[
i arg A∗Λ̄

]
sinh(b|A∗Λ̄|),

and a solution to the original spectra as

φ̄(s) = b exp
[
i arg

(
[A∗Λ̄](s)

)]
sinh(b|[A∗Λ̄](s)|).

As can be seen the dual problem is an even hence smooth unconstrained maxi-
mization. Furthermore, the characterization of the dual of the Hoch and Stern
entropy showed that it is directly related to the dual of the classical Shannon en-
tropy, being the even part. These insights have led to the development of more
efficient and numerically stable algorithms for reconstructing NMR images, and
were partially facilitated by the ease and low-cost of thought experiments using
tools like SCAT.

Figure 3: Plot of f(|z|) from §3.4

15

Figure 4: Plot of f∗(|z∗|) from §3.4

4 Limitations and Future Work

In one dimension, the biggest challenge to symbolically computing Fenchel con-
jugates is in inverting the subdifferential. Although improved compared to ear-
lier versions of the algorithm, we rely on the Maple function solve to identify
branch points and applicable inverses for each branch. This often prevents us
from computing a closed form even when such a solution exists. As Maple (or
Mathematica, in which one could certainly also implement these ideas) makes
improvements in the underlying machinery, the space of functions on which SCAT
can successfully compute conjugates will only grow.

In two-dimensions the same difficulty in computing inverses often prevents
us from changing the variable order of the partial conjugate, preventing the
completion of the conjugate operation. In higher dimensions this problem is
even harder, and we currently have no mechanism to even approach it.

Finally, we are limited by the internal representation of functions. Functions
must be input in rectangular coordinates, making it very awkward to manipulate
some otherwise very simple and natural functions (for example, the indicator
function of the unit ball in Rn).

5 Concluding Remarks

In the Maple package SCAT we have implemented algorithms for conjugation,
subdifferentiation and infimal convolution of convex functions defined on R.
We have extended previous algorithms to allow conjugation of non-separable
functions defined on R2, and in certain cases for higher dimensions. We have
provided examples and applications and commented on the limitations of the
algorithms. One especially useful application is that practitioners can produce
automated code for symbolic components of larger computational projects. It
is our hope that SCAT will be useful to researchers, instructors and students of
convex analysis and optimization.

16

References

[1] L. Ahlfors. Complex Analysis. McGraw-Hill, New York, 1966.

[2] A. Auslender and M. Teboulle. Asymptotic Cones and Functions in Opti-
mization and Variational Inequalities. Springer-Verlag, 2003.

[3] H.H. Bauschke and M. v. Mohrenschildt. Fenchel conjugates and subd-
ifferentiation in Maple. Technical Report CORR 97-23, Department of
Combinatorics and Optimization, University of Waterloo, 1997.

[4] H.H. Bauschke and M. v. Mohrenschildt. Symbolic computation of Fenchel
conjugates. To appear in ACM SIGSAM bulletin, 2005.

[5] J.M. Borwein and A.S. Lewis. Convex Analysis and Nonlinear Optimiza-
tion. CMS Books in Mathematics. Springer-Verlag, New York, 2000.

[6] J.M. Borwein, P. Maréchal, and D. Naugler. A convex dual approach to
the computation of NMR complex spectra, 1998.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, UK, 2004.

[8] C.H. Hamilton. Symbolic convex analysis. Master’s thesis, Department of
Mathematics and Statistics, Simon Fraser University, April 2005.

[9] J.C. Hoch, A.S. Stern, D.L. Donoho, and I.M Johnstone. Maximum entropy
reconstruction of complex (phase-sensitive) spectra. Journal of Magnetic
Resonance, 86:236–246, 1990.

[10] Y. Lucet. A fast computational algorithm for the Legendre-Fenchel trans-
form. Computational Optimization and Applications, 6(1):27–57, 1996.

[11] Y. Lucet. Faster than the fast Legendre transform, the linear-time Legendre
transform. Numerical Algorithms, 16:171–185, 1997.

[12] D. Luenberger. Optimization by Vector Space Methods. Series in Decision
and Control. Wiley, New York, 1969.

[13] R.T. Rockafeller. Convex Analysis. Princeton University Press, Princeton,
NJ, 1970.

17

