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1 Introduction

We recently concluded a very large mathematical calculation, uncovering objects that until
recently were widely considered to be forever inaccessible to computation. Our computations
stem from the “BBP” formula for π, which was discovered in 1997 using a computer program
implementing the “PSLQ” integer relation algorithm. This formula has the remarkable property
that it permits one to directly calculate binary digits of π, beginning at an arbitrary position d,
without needing to calculate any of the first d−1 digits. Since 1997, numerous other BBP-type
formulas have been discovered for various mathematical constants, including formulas for π2

(both in binary and ternary bases), and for Catalan’s constant.
In this article we describe the computation of base-64 digits of π2, base-729 digits of π2,

and base-4096 digits of Catalan’s constant, in each case beginning at the ten trillionth place,
computations that involved a total of approximately 1.549 × 1019 floating-point operations.
We also discuss connections between BBP-type formulas and the age-old unsolved questions of
whether and why constants such as π, π2, log 2 and Catalan’s constant have “random” digits.

2 Historical background

Since the dawn of civilization, mathematicians have been intrigued by the digits of π [6], more
so than any other mathematical constant. In the third century BCE, Archimedes employed a
brilliant scheme of inscribed and circumscribed 3 · 2n-gons to compute π to two decimal digit
accuracy. However, this and other numerical calculations of antiquity were severely hobbled by
their reliance on primitive arithmetic systems.
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Figure 1: Excerpt from de Geometria by Pope Sylvester II (reigned 999-1002 CE)

One of the most significant scientific developments of history was the discovery of full
positional decimal arithmetic with zero, by an unknown mathematician or mathematicians in
India at least by 500 CE, and probably earlier. Some of the earliest documentation includes
the Araybhatiya, the writings of the Indian mathematician Araybhata dated to 499 CE, the
Lokavibhaga, a cosmological work with astronomical observations that permit modern scholars
to conclude that it was written on 25 August 458 CE [9], and the Bakhshali manuscript, an
ancient mathematical treatise that many scholars believe is older still [7, 8]. The Bakhshali
manuscript includes, among other things, the following intriguing algorithm for computing the
square root of q, starting with an approximation x0:

an =
q − x2n

2xn

xn+1 = xn + an −
a2n

2 (xn + an)
. (1)

This scheme is quartically convergent, in that it approximately quadruples the number of correct
digits with each iteration (although it was never iterated more than once in the examples given
in the manuscript) [2].

Several hundred years later, in 999 CE, scientist-Pope Sylvester II attempted to introduce
decimal arithmetic in Europe, but little headway was made until the publication of Fibonacci’s
Liber Abaci in 1202. Several hundred more years would pass before the system finally gained
universal, if belated, adoption in the West. The time of Sylvester’s reign was a very turbulent
one, and he died in 1002, shortly after the death of his protector, Emperor Otto III. It is
interesting to speculate how history would have changed had he lived longer. A page from his
mathematical treatise De Geometria is shown in Figure 1.
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Figure 2: The ENIAC in the Smithsonian Museum

2.1 The age of Newton

Armed with decimal arithmetic, and spurred by the newly discovered methods of calculus,
mathematicians computed with aplomb. Again, the numerical value of π was a favorite target.
Isaac Newton devised an arcsine-like scheme to compute digits of π and recorded 15 digits,
although he sheepishly acknowledged, “I am ashamed to tell you to how many figures I carried
these computations, having no other business at the time.” Newton wrote these words during
the plague year 1666, when, ensconced in a country estate, he devised the fundamentals of
calculus and the laws of optics, motion and gravitation.

All large computations of π until 1980 relied on variations of Machin’s formula:

π

4
= 4 arctan

(
1

5

)
− arctan

(
1

239

)
. (2)

The culmination of these feats was a computation of π using (2) to 527 digits in 1853 by
William Shanks, later (erroneously) extended to 607 and then 707 digits. In the preface to the
publication of this computation, Shanks wrote that his work “would add little or nothing to his
fame as a Mathematician, though it might as a Computer” (until 1950 the word “computer”
was used for a person, and the word “calculator” was used for a machine).

One motivation for such computations was to see whether the digits of π repeat, thus
disclosing the fact that π is a ratio of two integers. This was settled in 1766, when Lambert
proved that π is irrational, thus establishing that the digits of π do not repeat in any number
base. In 1882, Lindemann established that π is transcendental, thus establishing that the digits
of π2 or any integer polynomial of π cannot repeat, and also settling once and for all the ancient
Greek question of whether the circle could be squared — it cannot, because all numbers that
can be formed by finite straightedge-and-compass constructions are necessarily algebraic.

2.2 The computer age

At the dawn of the computer age, John von Neumann suggested computing digits of promi-
nent mathematical constants, including π and e, for statistical analysis. At his instigation,
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π was computed to 2037 digits in 1949 on the Electronic Numerical Integrator And Calcula-
tor (ENIAC) — see Figure 2. In 1965 mathematicians realized that the newly-discovered fast
Fourier transform could be used to dramatically accelerate high-precision multiplication, thus
facilitating not only large calculations of π and other mathematical constants, but research in
computational number theory as well.

In 1976, Eugene Salamin and Richard Brent independently discovered new algorithms for
computing the elementary exponential and trigonometric functions (and thus constants such
as π and e) much more rapidly than by using classical series expansions. Their schemes, based
on elliptic integrals and the Gauss arithmetic-geometric mean iteration, approximately double
the number of correct digits in the result with each iteration. Armed with such techniques, π
was computed to over one million digits in 1973, to over one billion digits in 1989, to over one
trillion digits in 2002, and to over five trillion digits at the present time— see Table 1.

Name Year Correct Digits

Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi Apr. 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000

Table 1: Modern computer-era π calculations

Similarly, the constants e, φ = 1+
√
5

2
,
√

2, log 2, log 10, ζ(3), Catalan’s constant
G =

∑∞
n=0(−1)n/(2n + 1)2, and Euler’s γ constant have now been computed computed to

impressive numbers of digits — see Table 2 [10]. For Euler’s constant the most efficient method
is due to Brent and McMillan (the Nobel physicist) and relies on approximating γ by the ratio
of Bessel function values [6], while the log constants are best computed as approximations of
elliptic integrals [6].

One of the most intriguing aspects of this historical chronicle is the repeated assurances,
often voiced by highly knowledgeable people, that future progress would be limited. As recently

4



h

Constant Decimal digits Researcher Date√
2 1,000,000,000,000 S. Kondo 2010
φ 1,000,000,000,000 A. Yee 2010
e 500,000,000,000 S. Kondo 2010

log 2 100,000,000,000 S. Kondo 2011
log 10 100,000,000,000 S. Kondo 2011
ζ(3) 100,000,001,000 A. Yee 2011
G 31,026,000,000 A. Yee and R. Chan 2009
γ 29,844,489, 545 A. Yee 2010

Table 2: Computations of other mathematical constants

as 1963, Daniel Shanks, who himself calculated π to over 100,000 digits, told Philip Davis that
computing one billion digits would be “forever impossible.” Yet this feat was achieved less
than 30 years later in 1989 by Yasumasa Kanada of Japan. Also, in 1989, famous British
physicist Roger Penrose, in the first edition of his best-selling book The Emperor’s New Mind,
declared that humankind likely will never know if a string of ten consecutive sevens occurs
in the decimal expansion of π. This string was found just eight years later, in 1997, also by
Kanada, beginning at position 22,869,046,249. After being advised of this fact by one of the
present authors, Penrose revised his second edition to specify twenty consecutive sevens.

Along this line, Brouwer and Heyting, exponents of the “intuitionist” school of mathematical
logic, proposed, as a premier example of a hypothesis that could never be formally settled, the
question of whether and when the string “0123456789” appears in the decimal expansion of π.
Kanada found this at the 17,387,594,880-th position after the decimal point. Even astronomer
Carl Sagan, whose lead character in his 1985 novel Contact (played by Jodi Foster in the movie
version) sought confirmation in base-11 digits of π, expressed surprise to learn, shortly after
the book’s publication, that π had already been computed to many millions of digits.

3 The BBP formula for pi

A 1997 paper [3], [5, Ch. 3] by one of the present authors (Bailey), Peter Borwein and Simon
Plouffe presented the following previously unknown formula for π, now known as the “BBP”
formula for π:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (3)

This formula has the remarkable property that it permits one to directly calculate binary or
hexadecimal digits of π beginning at an arbitrary starting position, without needing to calculate
any of the preceding digits. The resulting simple algorithm requires only minimal memory, does
not require multiple-precision arithmetic, and is very well suited to highly parallel computation.
The cost of this scheme increases only slightly faster than the index of the starting position.
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The proof of this formula is surprisingly elementary. First note that for any k < 8,∫ 1/
√
2

0

xk−1

1− x8
dx =

∫ 1/
√
2

0

∞∑
i=0

xk−1+8i dx =
1

2k/2

∞∑
i=0

1

16i(8i+ k)
. (4)

Thus one can write

∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
=

∫ 1/
√
2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx, (5)

which on substituting y :=
√

2x becomes∫ 1

0

16 y − 16

y4 − 2 y3 + 4 y − 4
dy =

∫ 1

0

4y

y2 − 2
dy −

∫ 1

0

4y − 8

y2 − 2y + 2
dy = π, (6)

reflecting a partial fraction decomposition of the integral on the left-hand side. In 1997 neither
Maple nor Mathematica could evaluate (3) symbolically to produce the result π. Today both
systems can do this easily.

3.1 Binary digits of log 2

It is worth noting that the BBP formula (3) was not discovered by a conventional analytic
derivation. Instead, it was discovered via a computer-based search using the PSLQ integer
relation detection algorithm (see Section 3.2) of mathematician-sculptor Helaman Ferguson [4],
in a process that some have described as an exercise in “reverse mathematical engineering.”
The motivation for this search was the earlier observation by the authors of [3] that log 2 also
has this arbitrary position digit calculating property. This can be seen by analyzing the classical
formula

log 2 =
∞∑
k=1

1

k2k
, (7)

which has been known at least since the time of Euler, and which is closely related to the
functional equation for the dilogarithm.

Let r mod 1 denote the fractional part of a nonnegative real number r, and let d be a
nonnegative integer. Then the binary fraction of log 2 after the “decimal” point has been
shifted to the right d places can be written as

(2d log 2) mod 1 =

(
d∑

k=1

2d−k

k
mod 1 +

∞∑
k=d+1

2d−k

k
mod 1

)
mod 1

=

(
d∑

k=1

2d−k mod k

k
mod 1 +

∞∑
k=d+1

2d−k

k
mod 1

)
mod 1, (8)

where “mod k” has been inserted in the numerator of first term since we are only interested in
the fractional part of the result after division.
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The operation 2d−k mod k can be performed very rapidly by means of the binary algorithm
for exponentiation. This scheme is the simple observation that an exponentiation operation
such as 317 can be performed in only five multiplications, instead of 16, by writing it as
317 = ((((32)2)2)2) · 3. Additional savings can be realized by reducing all of the intermedi-
ate multiplication results modulo k at each step. This algorithm, together with the division
and summation operations indicated in the first term, can be performed in ordinary double-
precision floating-point arithmetic, or, for very large calculations by using quad- or oct-precision
arithmetic.

Expressing the final fractional value in binary notation yields a string of digits corresponding
to the binary digits of log 2 beginning immediately after the first d digits of log 2. Computed
results can be easily checked by performing this operation for two slightly different positions,
say d− 1 and d, then checking to see that resulting digit strings properly overlap.

3.2 Hunt for a pi formula

In the wake of finding the above scheme for the binary digits of log 2, the authors of [3] im-
mediately wondered if there was a similar formula for π (none was known at the time). Their
approach was to collect a list of mathematical constants (αi) for which formulas similar in struc-
ture to the formula for log 2 were known in the literature, and then to determine, by means of
the PSLQ integer relation algorithm, if a nontrivial linear relation exists of the form

a0π + a1α1 + a2α2 + · · ·+ anαn = 0, (9)

where ai are integers (because such a relation could then be solved for π to yield the desired
formula). After several months of false starts, the following relation was discovered:

π = 4 · 2F1

(
1, 1

4
5
4

∣∣∣∣−1

4

)
+ 2 arctan

(
1

2

)
− log 5, (10)

where the first term is a Gauss hypergeometric function evaluation. After writing this formula
explicitly in terms of summations, the BBP formula for π was uncovered:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (11)

One question that immediately arose in the wake of the discovery of the BBP formula for
π was whether there are formulas of this type for π in other number bases — in other words,
formulas where the 16 in the BBP formula is replaced by some other integer, such as 3 or 10.
These computer searches were largely laid to rest in 2004, when one of the present authors
(Jonathan Borwein), together with Will Galway and David Borwein showed that there are no
degree-1 BBP-type formulas of Machin-type for π, except those whose base is a power of two
[5, pg. 131–133].

3.3 The BBP formula in action

Variants of the BBP formula have been used in numerous computations of high-index digits
of π. In 1998 Colin Percival, then a 17-year-old undergraduate at Simon Fraser University in
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Figure 3: (L) Shigeru Kondo and his π-computer. (R) Alex Yee and his elephant

Canada, computed binary digits beginning at position one quadrillion (1015). At the time, this
was one of the largest, if not the largest, distributed computations ever done. More recently, in
July 2010, Tsz-Wo Sze of Yahoo! Cloud Computing, in roughly 500 CPU-years of computing
on Apache Hadoop clusters, found that the base-16 digits of π beginning at position 5 × 1014

(corresponding to binary position two quadrillion) are:
0 E6C1294A ED40403F 56D2D764 026265BC A98511D0 FCFFAA10 F4D28B1B B5392B8.
The BBP formulas have also been used to confirm other computations of π. For example,

in August 2010, Shigeru Kondo (a hardware engineer) and Alexander Yee (an undergraduate
software engineer) computed five trillion decimal digits of π on a home-built $18,000 machine.
They found that the last 30 digits leading up to position five trillion are

7497120374 4023826421 9484283852.
Kondo and Yee (see photos in Figure 3) used the following Chudnovsky-Ramanujan series:

1

π
= 12

∞∑
k=0

(−1)k (6k)!(13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
, (12)

They did not merely evaluate this formula as written, but instead employed a clever quasi-
symbolic scheme that mostly avoids the need for full-precision arithmetic.

Kondo and Yee first computed their result in hexadecimal (base-16) digits. Then, in a
crucial verification step, they checked hex digits near the end against the same string of digits
computed using the BBP formula for π. When this test passed, they converted their entire
result to decimal. The entire computation took 90 days, including 64 hours for the BBP
confirmation and 8 days for base conversion to decimal. Note that the much lower time for the
BBP confirmation, relative to the other two parts, greatly reduced the overall computational
cost. A description of their work is available at [11].

4 BBP-type formulas for other constants

In the years since 1997, computer searches using the PSLQ algorithm, as well as conventional
analytic investigations, have uncovered BBP-type formulas for numerous other mathematical
constants, including π2, log2 2, π log 2, ζ(3), π3, log3 2, π2 log 2, π4, ζ(5) and Catalan’s constant.
BBP formulas are also known for many arctangents, and for log k, 2 ≤ k ≤ 22, although none
is known for log 23. These formulas and many others, together with references, are given in an
online compendium [1].
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One particularly intriguing fact is that whereas only binary formulas exist for π, there are
both binary and ternary (base-3) formulas for π2:

π2 =
9

8

∞∑
k=0

1

64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1

(6k + 5)2

)
.

(13)

π2 =
2

27

∞∑
k=0

1

729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72

(12k + 6)2
− 9

(12k + 7)2
− 9

(12k + 8)2
− 5

(12k + 10)2
+

1

(12k + 11)2

)
. (14)

Formula (13) appeared in [3], while formula (14) is due to Broadhurst. There are known
binary BBP formulas for both ζ(3) and π3, but no one has found a ternary formula for either.

4.1 Catalan’s constant

One other mathematical constant of central interest is Eugéne Charles Catalan’s (1814-1894)
constant

G =
∞∑
n=0

(−1)n

(2n+ 1)2
= 0.91596559417722 . . . , (15)

which is arguably the most basic constant whose irrationality and transcendence (though
strongly suspected) remain unproven. Note the close connection to this formula for π2:

π2

8
=
∞∑
n=0

1

(2n+ 1)2
= 1.2337005501362 . . . . (16)

Formulas (15) and (16) can be viewed as the simplest Dirichlet L-series values at 2. Such
considerations were behind our decision to focus the computation described in this paper on
these two constants.

Catalan’s constant has already been the subject of large computations. As mentioned
above, in 2009 Alexander Yee and Raymond Chan calculated G to 31.026 billion digits [10].
This computation employed two formulas, including this formula due to Ramanujan:

G =
3

8

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

+
π

8
log(2 +

√
3), (17)

which can be derived from the fact that G = −T (π/4) = −3/2 · T (π/12), where T (θ) :=∫ θ
0

log tanσ dσ.
The BBP compendium lists two BBP-type formulas for G. The first was discovered nu-

merically by Bailey, but both it and the second formula were subsequently proven by Kunle
Adegoke, based in part on some results of Broadhurst.

For the present study, we sought a formula for G with as few terms as possible, because the
run time for computing with a BBP-type formula increases roughly linearly with the number of
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nonzero coefficients. The two formulas in the compendium have 22 and 18 nonzero coefficients,
respectively. So we explored, by means of a computation involving the PSLQ algorithm, the
linear space of formulas for G spanned by these two sets of coefficients, together with two known
“zero relations” (BBP-type formulas whose sum is zero). These analyses and computations led
to the following formula, which has only 16 nonzero coefficients, and which we believe to be
the most economical BBP-type formula for computing Catalan’s constant:

G =
1

4096

∞∑
k=0

1

4096k

(
36864

(24k + 2)2
− 30720

(24k + 3)2
− 30720

(24k + 4)2
− 6144

(24k + 6)2
− 1536

(24k + 7)2

+
2304

(24k + 9)2
+

2304

(24k + 10)2
+

768

(24k + 14)2
+

480

(24k + 15)2
+

384

(24k + 11)2
+

1536

(24k + 12)2

+
24

(24k + 19)2
− 120

(24k + 20)2
− 36

(24k + 21)2
+

48

(24k + 22)2
− 6

(24k + 23)2

)
. (18)

5 BBP formulas and normality

One prime motivation in computing and analyzing digits of π and other well-known mathe-
matical constants through the ages is to explore the age-old question of whether and why these
digits appear “random.” Numerous computer-based statistical checks of the digits of π — un-
like those of e — so far have failed to disclose any deviation from reasonable statistical norms.
See, for instance, Table 3, which presents the counts of individual hexadecimal digits among
the first trillion hex digits, as obtained by Yasumasa Kanada.

Given some positive integer b, a real number α is said to be b-normal if every m-long string of
base-b digits appears in the base-b expansion of α with precisely the expected limiting frequency
1/bm. It follows from basic probability theory that almost all real numbers are b-normal for
any specific base b and even for all bases simultaneously. But proving normality for specific
constants of interest in mathematics has proven remarkably difficult.

Interest in BBP-type formulas was heightened by the 2001 observation, by one of the present
authors (Bailey) and Richard Crandall, that the normality of BBP-type constants such as
π, π2, log 2 and G can be reduced to a certain hypothesis regarding the behavior of a class of
chaotic iterations [5, pg. 141–173]. No proof is known for this genesis hypothesis, but even
specific instances of this result would be quite interesting. For example, if it could be established
that the iteration given by w0 = 0, and

wn =

(
2wn−1 +

1

n

)
mod 1 (19)

is equidistributed in [0, 1) (i.e., is a “good” pseudorandom number generator), then, according
to the Bailey-Crandall result, it would follow that log 2 is 2-normal. In a similar vein, if it could
be established that the iteration given by x0 = 0 and

xn =

(
16xn−1 +

120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

)
mod 1 (20)

is equidistributed in [0, 1), then it would follow that π is 2-normal.
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Hex Digit Occurrences

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Table 3: Digit counts in the first trillion hexadecimal (base-16) digits of π. Note that deviations
from the average value 62,500,000,000 occur only after the first six digits, as expected.

Giving further hope to these studies is the recent extension of these methods to a rigorous
proof of normality for an uncountably infinite class of real numbers. Given a real number r in
[0, 1), let rk denote the k-th binary digit of r. Then the real number

α2,3(r) =
∞∑
k=0

1

3k23k+rk
(21)

is 2-normal. For example, the constant α2,3(0) =
∑

k≥0 1/(3k23k) = 1.043478260869565217 . . .
is provably 2-normal. A similar result applies if 2 and 3 in this formula are replaced by any
pair of co-prime integers (b, c) greater than one [5, pg. 141–173].

5.1 A curious hexadecimal conjecture

It is tantalizing that if, using (20), one calculates the hexadecimal digit sequence

yn = b16xnc (22)

(where b·c denotes greatest integer), then the sequence (yn) appears to perfectly (not just ap-
proximately) produce the hexadecimal expansion of π. In explicit computations, we checked
that the first 10,000,000 hexadecimal digits generated by this sequence are identical with
the first 10,000,000 hexadecimal digits of π − 3. This is a fairly difficult computation, as
it requires roughly n2 bit-operations, and is not easily performed on a parallel computer sys-
tem. In our implementation, computing 2, 000, 000 hex digits with (22), using Maple, required
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17.3 hours on a laptop. Computing 4,100,000 using Mathematica, with a more refined imple-
mentation, required 46.5 hours. The full confirmation, using a C++ program, took 433,192
seconds (120.3 hours) on a IBM Power 780 (model: 9179-MHB, clock speed: 3.864 GHz).
All these outputs were confirmed against stored hex digits of π in the software section of
http://www.experimentalmath.info.

Conjecture 1 The sequence b16xnc, where (xn) is the sequence of iterates defined in equation
(20), generates precisely the hexadecimal expansion of π − 3.

We can learn more. Let ||x−y|| = min(|x−y|, |1− (x−y)|) denote the “wrapped” distance
between reals x and y in [0, 1). The base-16 expansion of π, which we denote πn, satisfies

||πn − xn|| ≤
∞∑

k=n+1

120k2 − 89k + 16

16k−n(512k4 − 1024k3 + 712k2 − 206k + 21)
≈ 1

64(n+ 1)2
, (23)

so that, upon summing from some N to infinity, we obtain the finite value

∞∑
n=N

||πn − xn|| ≤
1

64(N + 1)
. (24)

Heuristically, let us assume that the πn are independent, uniformly distributed random
variables in (0, 1), and let δn = ||αn−xn||. Note that an error (i.e., an instance where xn lies in
a different subinterval of the unit interval than πn, so that the corresponding hex digits don’t
match) can only occur when πn is within δn of one of the points (0, 1/16, 2/16, · · · , 15/16).
Since xn < πn for all n (where < is interpreted in the wrapped sense when xn is slightly less
than one), this event has probability 16δn. Then the fact that the sum (24) has a finite value
implies, by the first Borel-Cantelli lemma, that there can only be finitely many errors. Further,
the small value of the sum (24), even when N = 1, suggests that it is unlikely that any errors
will be observed. If we set N = 10, 000, 001 in (24), since we know there are no errors in the
first 10,000,000 elements, then we obtain an upper bound of 1.563× 10−9 which suggests it is
truly unlikely that errors will ever occur.

A similar correspondence can be seen between iterates of (19) and the binary digits of log 2.
In particular, let zn = b2wnc, where wn is given in (19). Then since the sum of the error terms
for log 2, corresponding to (24), is infinite, it follows by the second Borel-Cantelli lemma that
discrepancies between (zn) and the binary digits of log 2 can be expected to appear indefinitely,
but with decreasing frequency. Indeed, in computations that we have done, we have found that
the sequence (zn) disagrees with 10 of the first 20 binary digits of log 2, but in only one position
over the range 5000 to 8000.

6 Computing digits of π2 and Catalan’s constant

In illustration of this theory, we now present the results of computations of high-index binary
digits of π2, ternary digits of π2, and binary digits of Catalan’s constant, based on formulas
(13), (14) and (18), respectively. These calculations were performed on a 4-rack BlueGene/P
system at IBM’s Benchmarking Centre in Rochester, Minnesota, USA. This is a shared facility,
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Figure 4: Andrew Mattingly, Blue Gene/P, and Glenn Wightwick

so calculations were conducted over a several month period, where, at any given time, none,
some or all of the system was available. It was programmed remotely from Australia, which
permitted the system to be used off-hours. Sometimes it helps to be in a different time zone!

1. Base-64 digits of π2 beginning at position 10 trillion. The first run, which produced
base-64 digits starting from position 1012− 1, required an average of 253,529 seconds per
thread, and was subdivided into seven partitions of 2048 threads each, so the total cost
was 7 · 2048 · 253529 = 3.6 × 109 CPU-seconds. Each rack of the IBM system features
4096 cores, so the total cost is 10.3 “rack-days.” The second run, which produced base-64
digits starting from position 1012, completed in nearly the same run time (within a few
minutes). The two resulting base-8 digit strings are

75|60114505303236475724500005743262754530363052416350634|573227604

|60114505303236475724500005743262754530363052416350634|220210566

(each pair of base-8 digits corresponds to a base-64 digit). Here the digits in agreement are
delimited by |. Note that 53 consecutive base-8 digits (or, equivalently, 159 consecutive
binary digits) are in perfect agreement.

2. Base-729 digits of π2 beginning at position 10 trillion. In this case, the two runs each
required an average of 795,773 seconds per thread, similarly subdivided as above, so that
the total cost was 6.5× 109 CPU-seconds, or 18.4 “rack-days.” The two resulting base-9
digit strings are

001|12264485064548583177111135210162856048323453468|10565567635862

|12264485064548583177111135210162856048323453468|04744867134524

(each triplet of base-9 digits corresponds to one base-729 digit). Note here that 47 con-
secutive base-9 digits (94 consecutive base-3 digits) are in perfect agreement.

3. Base-4096 digits of Catalan’s constant beginning at position 10 trillion. These two runs
each required 707,857 seconds per thread, but in this case were subdivided into eight
partitions of 2048 threads each, so that the total cost was 1.2 × 1010 CPU-seconds, or
32.8 “rack-days.” The two resulting base-8 digit strings are
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#iters time/iter time with total o’head flops
constant n′ d (×1015) (microsec) (yr) verify (yr) (%) (×1018)
π2 base-26 5 1013 2.16 1.424 97.43 194.87 230.35 18.2 2.58
π2 base-36 9 1013 3.89 1.424 175.38 350.76 413.16 17.8 4.65
G base-46 16 1013 6.91 1.424 311.79 623.58 735.02 17.9 8.26

Table 4: The scale of our computations. We estimate 4.5 quad-double operations per iteration
and that each costs 266 single-precision operations. The total cost in single-precision operations
is given in the last column. This total includes overhead which is largely due to a rounding
operation that we implemented using bit-masking.

Digit 0 1 2 3 4 5 6 7
base-2 (141) 0.454 0.546 - - - - - -
base-4 (70) 0.171 0.329 0.229 0.271 - - - -
base-8 (47) 0.085 0.128 0.213 0.128 0.064 0.128 0.043 0.213

Table 5: Base-4096 digits of G beginning at position 10 trillion: digit proportions

0176|34705053774777051122613371620125257327217324522|6000177545727

|34705053774777051122613371620125257327217324522|5703510516602

(each quadruplet of base-8 digits corresponds to one base-4096 digit). Note that 47
consecutive base-8 digits (141 consecutive binary digits) are in perfect agreement.

These long strings of consecutively agreeing digits, beginning with the target digit, provide
a compelling level of statistical confidence in the results. In the first case, for instance, note
that the probability that 32 pairs of randomly chosen base-8 digits are in perfect agreement
is roughly 1.2 × 10−29. Even if one discards, say, the final six base-8 digits as a 1-in-262,144
statistical safeguard against numerical round-off error, one would still have 24 consecutive base-
8 digits in perfect agreement, with a corresponding probability of 2.1 × 10−22. Now strictly
speaking, one cannot define a valid probability measure on digits of π2, but nonetheless, from
a practical point of view, such analysis provides a very high level of statistical confidence that
the results have been correctly computed.

For this reason, computations of π and the like are a favorite tool for the integrity testing for
computer system hardware and software. If either run of a paired computation of π succumbs
to even a single fault in the course of the computation, then typically the final results will
disagree almost completely. For example, in 1986, a similar pair of computations of π disclosed
some subtle but substantial hardware errors in an early model of the Cray-2 supercomputer.
Indeed, the calculations we have done arguably constitute the most strenuous integrity test ever
performed on the BlueGene/P system. Table 4 gives some sense of the scale of the three record
computations, which used more than 135 “rack-days,” 1378 serial CPU-years and more than
1.549× 1019 floating point operations. This is comparable to the cost of the most sophisticated
animated movies as of the present time (2011).

For the sake of completeness, in Table 5 we also record the one, two and three-bit frequency
counts from our Catalan computation.
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Figure 5: A random walk on a million digits of Catalan’s constant

7 Future directions

It is ironic that in an age when even pillars such as Fermat’s Last Theorem and the Poincairé
conjecture have succumbed to the brilliance of modern mathematics, that one of the most
elementary mathematical hypotheses, namely whether (and why) the digits of π or other con-
stants, such as log 2, π2 or G (see Figure 5), are “random,” remains unanswered. In particular,
proving that π (or log 2, π2 or G) is b-normal in some integer base b remains frustratingly elusive.
Even much weaker results, for instance the simple assertion that a one appears in the binary
expansion of π (or log 2, π2 or G) with limiting frequency 1/2 (which assertion has been amply
affirmed in numerous computations over the years), remain unproven and largely inaccessible
at the present time.

Almost as much ignorance extends to simple algebraic irrationals such as
√

2. In this case
it is now known that the number of ones in the first n binary digits of

√
2 must be at least of

the order of
√
n, with similar results for other algebraic irrationals [5, pg. 141–173]. But this

is a very weak result, given that this limiting ratio is almost certainly 1/2, not only for
√

2 but
more generally for all algebraic irrationals.

Nor can we prove much about continued fractions for various constants, except for a few
well-known results for special cases such as quadratic irrationals, ratios of Bessel functions, and
certain expressions involving exponential functions.

For these reasons, there is continuing interest in the theory of BBP-type constants, since, as
mentioned, there is an intriguing connection between BBP-type formulas and certain chaotic
iterations that are akin to pseudorandom number generators. If these connections can be
strengthened, then perhaps normality proofs could be obtained for a wide range of polyloga-
rithmic constants, possibly including π, log 2, π2 and G.

As settings change, so do questions. Until the question of efficient single-digit extraction
was asked, our ignorance about such issues was not exposed. The case of the exponential series

ex =
∞∑
n=0

xn

n!
(25)

is illustrative. For present purposes, the convergence rate in (25) is too good.
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Conjecture 2 There is no BBP formula for e. Moreover, there is no way to extract individual
digits of e significantly more rapidly than by computing the first n digits.

The same could be conjectured about other numbers including Euler’s constant γ =
0.57721566490153 . . .. In short, until vastly stronger mathematical results are obtained in this
area, there will doubtless be continuing interest in computing digits of these constants. In the
present vacuum, that is perhaps all that we can do.
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