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1. Motivation

The tails of the Taylor series for many standard functions such as arctan and
log can be expressed as continued fractions in a variety of ways. A surprising side
effect is that some of these continued fractions provide a dramatic acceleration for
the underlying power series. These investigations were motivated by a surprising
observation about Gregory’s series. Gregory’s series for π, truncated at 500, 000
terms gives to forty places

4
500,000∑

k=1

(−1)k−1

2k − 1
= 3.141590653589793240462643383269502884197 · · · .(1)

To one’s initial surprise only the underlined digits are wrong — differ from those
of π. This is explained, ex post facto, by setting N equal to one million in the
result below:

Theorem 1. For integer N divisible by 4 the following asymptotic expansion holds:

π

2
− 2

N/2∑
k=1

(−1)k−1

2k − 1
∼

∞∑
m=0

E2m

N2m+1
(2)

=
1
N
− 1

N3
+

5
N5

− 61
N7

+ · · · ,

where the numerators 1, −1, 5, −61, 1385, −50521, · · · are the Euler numbers E0,
E2, E4, E6, E8, E10, · · · .

The observation (1) arrived in the mail from Roy North in 1987. After verifying
its truth numerically (which is much quicker today), it was an easy matter to
generate a large number of the “errors” to high precision. The authors of [1]
then recognized the sequence of errors in (1) as the Euler numbers — with the
help of Sloane’s ‘Handbook of Integer Sequences’. The presumption that (1) is a
form of Euler-Maclaurin summation is now formally verifiable for any fixed N in
Maple. This allowed them to determine that (1) is equivalent to a set of identities
between Bernoulli and Euler numbers that could with considerable effort have been
established. Secure in the knowledge that (1) holds it is easier, however, to use the
Boole Summation formula which applies directly to alternating series and Euler
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numbers (see [1]). Because N was a power of ten, the asymptotic expansion was
obvious on the computer screen.

This is a good example of a phenomenon which really does not become appar-
ent without working to reasonably high precision (who recognizes 2, −2, 10 ?),
and which highlights the role of pattern recognition and hypothesis validation in
experimental mathematics.

It was an amusing additional exercise to compute Pi to 5, 000 digits from (1).
Indeed, with N = 200, 000 and correcting using the first thousand even Euler
numbers, Borwein and Limber [2] obtained 5, 263 digits of Pi (plus 12 guard digits).
Thus, while the alternating Gregory series is very slowly convergent, the errors are
highly predictable.

2. Three Continued Fraction Classes

We will discuss three classes of continued fractions: Euler, Gauss and Perron in
this section.

2.1. Euler’s Continued Fraction. Using the following notation for continued
fraction:

a1

b1 ±

a2

b2 ±

a3

b3 ±
· · · =

a1

b1 ±
a2

b2 ±
a3

b3 ±
. . .

,

identities such as

a0 + a1 + a1a2 + a1a2a3 + a1a2a3a4 = a0 +
a1

1 −

a2

1 + a2 −

a3

1 + a3 −

a4

1 + a4

are easily verified symbolically. The general form

(3) a0 + a1 + a1a2 + a1a2a3 + · · ·+ a1a2a3 · · · aN

= a0 +
a1

1 −

a2

1 + a2 −

a3

1 + a3 −
· · ·

−

aN

1 + aN

can then be obtained by substituting aN + aN aN+1 for aN and checking that the
shape of the right hand side is preserved. This allows many series to be re-expressed
as continued fractions. For example, with a0 = 0, a1 = z, a2 = −z2/3, a3 =
−3z2/5, · · · ,

arctan(z) = z − z3

3
+

z5

5
− z7

7
+

z9

9
− · · ·

we obtain, in the limit, the continued fraction for arctan due to Euler:

arctan(z) =
z

1 +

z2

3− z2 +

9z2

5− 3z2 +

25z2

7− 5z2 +
· · · .

When z = 1, this becomes the first infinite continued fraction, given by Lord
Brouncker (1620-1684):

4
π

= 1 +
1
2 +

9
2 +

25
2 +

49
2 +

· · · .(4)
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If we let a0 =
∑N

1 bk be the initial segment of a similar series we may use (3) to
replace the remaining terms by a continued fraction. For example, if we put

a0 =
N∑

n=1

(−1)n−1z2n−1

2n− 1
, a1 =

(−1)Nz2N+1

2N + 1
, a2 = −2N + 1

2N + 3
z2, a3 = −2N + 3

2N + 5
z2, · · ·

then we get

(5) arctan(z) =
N∑

n=1

(−1)n−1 z2n−1

2n− 1
+

(−1)Nz2N+1

2N + 1 +

(2N + 1)2z2

(2N + 3)− (2N + 1)z2 +

(2N + 3)2z2

(2N + 5)− (2N + 3)z2 +

(2N + 5)2z2

(2N + 7)− (2N + 5)z2 +
· · · .

2.2. Gauss’s Continued Fraction. A rich vein lies in Gauss’s continued fraction

for the ratio of two hypergeometric functions
F(a, b + 1; c + 1; z)

F(a, b; c; z)
, see [5]. Recall

that within its radius of convergence, the Gaussian hypergeometric function is de-
fined by

F(a, b; c; z) = 1 +
ab

c
z +

a(a + 1)b(b + 1)
2!c(c + 1)

z2

+
a(a + 1)(a + 2)b(b + 1)(b + 2)

3!c(c + 1)(c + 2)
z3 + · · · .(6)

The general continued fraction is developed by a reworking of the contiguity relation

F(a, b; c; z) = F(a, b + 1; c + 1; z)− a(c− b)
c(c + 1)

z F(a + 1, b + 1; c + 2; z),(7)

and formally at least is quite easy to derive. Convergence and convergence estimates
are more delicate. We therefore have

F(a, b + 1; c + 1; z)
F(a, b; c; z)

=
(

1− a(c− b)
c(c + 1)

z
F(a + 1, b + 1; c + 2; z)

F(a, b + 1; c + 1; z)

)−1

and this yields the recursive process for the continued fraction. In the limit, for
b = 0 and replacing c by c− 1, this process yields

F(a, 1; c; z) =
1
1 −

a1z

1 −

a2z

1 −

a3z

1 −
· · ·(8)

which is the case of present interest. Here

a2l+1 =
(a + l)(c− 1 + l)

(c + 2l − 1)(c + 2l)
a2l+2 =

(l + 1)(c− a + l)
(c + 2l)(c + 2l + 1)

for l = 0, 1, · · · . We also let

FM (a, 1; c; z) =
1
1 −

a1z

1 −

a2z

1 −
· · ·

−

aM−1z

1

denote the Mth convergent of the continued fraction to F (a, 1; c; z).
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It is well known and easy to verify that log(1 + z) = z F(1, 1; 2;−z). It is then a
pleasant surprise to discover that log(1 + z)− z = − 1

2z2 F(2, 1; 3;−z), log(1 + z)−
z + 1

2z2 = 1
3z3 F(3, 1; 4;−z) and to conjecture that

log (1 + z) +
N−1∑
n=1

(−1)n
zn

n
= − (−1)NzN

N
F(N, 1;N + 1;−z).(9)

This is easy to first verify for a few cases and then confirm rigorously. As always,
a formula for log leads correspondingly to one for arctan:

(10) arctan (z)−
N−1∑
n=0

(−1)n
z2 n+1

2 n + 1
=

(−1)Nz2 N+1

2 N + 1
F
(

N +
1
2
, 1;N +

3
2
;−z2

)
.

Happily, in both cases (8) is applicable — as it is for a variety of other functions
such as log

(
1+z
1−z

)
, (1+z)k, and

∫ z

0
(1+ tn)−1 dt = z F

(
1
n , 1; 1 + 1

n ;−zn
)
. Note that

this last function recaptures log(1 + z) and arctan(z) for n = 1 and 2 respectively.
We next give the explicit continued fractions for (9) and (10).

Theorem 2. Gauss’s continued fractions for (9) and (10) are:

log (1 + z) +
N−1∑
n=1

(−1)n
zn

n
(11)

=
(−1)N+1zN

N +

N2z

N + 1 +

12z

N + 2 +

(N + 1)2z
N + 3 +

22z

N + 4 +
· · ·

and

arctan (z)−
N−1∑
n=0

(−1)n
z2 n+1

2 n + 1
(12)

=
(−1)Nz2N+1

2N + 1 +

(2N + 1)2z2

2N + 3 +

22z2

2N + 5 +

(2N + 3)2z2

2N + 7 +

42z2

2N + 9 +
· · · .

Suppose we return to Gregory’s series, but add a few terms of the continued
fraction for (10). One observes numerically that if the results are with N = 500, 000,
adding only six terms of the continued fraction has the effect of increasing the
precision by 40 digits.

Example 3.

Let

E1(N,M, z) := log(1 + z)−

(
−

N∑
n=1

(−z)n

n
− (−z)N+1

N + 1
FM (N + 1, 1;N + 2;−z)

)
and

E2(N,M, z) := arctan(z)−

(
N−1∑
n=0

(−1)nz2n+1

2n + 1
+

(−1)Nz2N+1

2N + 1
FM (N +

1
2
, 1;N +

3
2
;−z2)

)
.

Then E1(N,M, z) and E2(N,M, z) measure the precision of the approximations to
log(1 + z) and arctan(x) obtained by computing the first N terms of Taylor series
and then adding M terms of their continued fractions respectively. Tables 1, 2,
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5× 10 5× 102 5× 103 5× 104

0 0.48× 10−4 0.13× 10−25 0.15× 10−232 0.13× 10−2292

1 0.43× 10−4 0.11× 10−25 0.14× 10−232 0.11× 10−2292

2 0.40× 10−8 0.11× 10−31 0.14× 10−240 0.11× 10−2302

M 3 0.34× 10−8 1.00× 10−32 0.12× 10−240 0.10× 10−2302

4 0.12× 10−11 0.40× 10−37 0.50× 10−248 0.41× 10−2312

5 0.10× 10−11 0.35× 10−37 0.45× 10−248 0.37× 10−2312

6 0.78× 10−15 0.31× 10−42 0.40× 10−255 0.33× 10−2321

Table 1. Error |E1(N,M, 0.9)| for N = 5 × 10k(1 ≤ k ≤ 4) and
0 ≤ M ≤ 6.

5× 10 5× 102 5× 103 5× 104 5× 105 5× 106

0 0.99× 10−2 1.00× 10−3 1.00× 10−4 1.00× 10−5 1.00× 10−6 1.00× 10−7

1 0.97× 10−2 1.00× 10−3 1.00× 10−4 1.00× 10−5 1.00× 10−6 1.00× 10−7

2 0.91× 10−6 1.00× 10−9 1.00× 10−12 1.00× 10−15 1.00× 10−18 1.00× 10−21

M 3 0.86× 10−6 1.00× 10−9 1.00× 10−12 1.00× 10−15 1.00× 10−18 1.00× 10−21

4 0.31× 10−9 0.39× 10−14 0.40× 10−19 0.40× 10−24 0.40× 10−29 0.40× 10−34

5 0.28× 10−9 0.39× 10−14 0.40× 10−19 0.40× 10−24 0.40× 10−29 0.40× 10−34

6 0.22× 10−12 0.34× 10−19 0.36× 10−26 0.36× 10−33 0.36× 10−40 0.36× 10−47

Table 2. Error |E1(N,M, 1)| for N = 5 × 10k(1 ≤ k ≤ 6) and
0 ≤ M ≤ 6.

5× 10 5× 102 5× 103 5× 104 5× 105 5× 106

0 0.50× 10−2 0.50× 10−3 0.50× 10−4 0.50× 10−5 0.50× 10−6 0.50× 10−7

1 0.49× 10−2 0.50× 10−3 0.50× 10−4 0.50× 10−5 0.50× 10−6 0.50× 10−7

2 0.47× 10−6 0.50× 10−9 0.50× 10−12 0.50× 10−15 0.50× 10−18 0.50× 10−21

M 3 0.44× 10−6 0.49× 10−9 0.50× 10−12 0.50× 10−15 0.50× 10−18 0.50× 10−21

4 0.16× 10−9 0.20× 10−14 0.20× 10−19 0.20× 10−24 0.20× 10−29 0.20× 10−34

5 0.15× 10−9 0.19× 10−14 0.20× 10−19 0.20× 10−24 0.20× 10−29 0.20× 10−34

6 0.12× 10−12 0.17× 10−19 0.18× 10−26 0.18× 10−33 0.18× 10−40 0.18× 10−47

Table 3. Error |E2(N,M, 1)| for N = 5 × 10k(1 ≤ k ≤ 6) and
0 ≤ M ≤ 6.

3 and 4 record those data for the approximations to log(1.9), log(2), arctan(1) and
arctan(1/2) + arctan(1/5) + arctan(1/8) respectively. Note that

π

4
= arctan(

1
2
) + arctan(

1
5
) + arctan(

1
8
)

is a formula of Machin type used by Johann Dase to compute 205 digits of π in his
head in 1844.

After some further numerical experimentation it is clear that for large a, c the
continued fraction F(a, 1, c; z) is rapidly convergent. And indeed the rough rate is
apparent.



6JONATHAN MICHAEL BORWEIN, KWOK-KWONG STEPHEN CHOI AND WILFRIED PIGULLA

5× 10 5× 102

0 0.31× 10−32 0.37× 10−304

1 0.19× 10−33 0.23× 10−305

2 0.11× 10−37 0.15× 10−311

M 3 0.26× 10−38 0.37× 10−312

4 0.56× 10−42 0.92× 10−318

5 0.13× 10−42 0.23× 10−318

6 0.59× 10−46 0.13× 10−323

Table 4. Error |E2(N +1,M, 1/2)+E2(N +1,M, 1/5)+E2(N +
1,M, 1/8)| for N = 5× 10k(1 ≤ k ≤ 2) and 0 ≤ M ≤ 6.

This is part of the content of the next theorem:

Theorem 4. Suppose 2 ≤ a, a + 1 ≤ c ≤ 2a and M ≥ 2. Then for −1 ≤ z < 0 one
has

|F(a, 1; c; z)− FM (a, 1; c; z)|

≤ Γ(n + 1)(n + a)Γ(n + c− a)Γ(a)Γ(c)
Γ(n + a)Γ(n + c)aΓ(c− a)

(
2a

(c− 2)
(
1− 2

z

)
+ (2a− c)

)M

where n = [M/2] and FM (a, 1; c; z) is the M -th convergent of the continued fraction
to F (a, 1, c; z).

Proof. Recall that Gauss’s continued fraction for F(a, 1; c; z) is

F(a, 1; c; z) =
1
1 −

a1z

1 −

a2z

1 −

a3z

1 −
· · ·

where

a2l+1 =
(a + l)(c− 1 + l)

(c + 2l − 1)(c + 2l)
a2l+2 =

(l + 1)(c− a + l)
(c + 2l)(c + 2l + 1)

for l = 0, 1, · · · . Let
An(z)
Bn(z)

=
1
1 −

a1z

1 −

a2z

1 −
· · ·

−

an−1z

1
= Fn(a, 1; c; z)

be the n-th convergent of the continued fraction. It can be proved by induction
that A1(z) = A2(z) = B1(z) = 1, B2(z) = 1− a1z and

Ak(z) = Ak−1(z)− ak−1zAk−2(z),

and
Bk(z) = Bk−1(z)− ak−1zBk−2(z),

for k ≥ 3. Hence for k ≥ 2, we have

Ak(z)Bk−1(z)−Ak−1(z)Bk(z) = a1 · · · ak−1z
k−1.

Using the estimation in Theorem 8.9 of [3], we find that if ai > 0 for all i, then∣∣∣∣F(a, 1; c; z)− An(z)
Bn(z)

∣∣∣∣ ≤ ∣∣∣∣An(z)
Bn(z)

− An−1(z)
Bn−1(z)

∣∣∣∣ = ∣∣∣∣a1 · · · an−1z
n−1

Bn(z)Bn−1(z)

∣∣∣∣
One may verify that Bn(z) are hypergeometric polynomials (see [5]) and explicitly

B2k(z) = F (−k, 1− a− k, 2− c− 2k; z)
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and
B2k+1(z) = F (−k,−a− k, 1− c− 2k; z).

We then apply the estimates of the hypergeometric polynomials and get our result.
A more detailed proof can be found the associated technical report on CECM
preprint server at http://eprints.cecm.sfu.ca/view/year/2004.html. �

In [5] one can find listed many explicit continued fractions which can be de-
rived from Gauss’s continued fraction or various of its limiting cases. These include
exp, tanh, tan and various less elementary functions. One especially attractive frac-
tion is that for Jn−1(z)/Jn(z) and In−1(z)/In(z) where J and I are Bessel functions
of the first kind. In particular,

Jn−1(2z)
Jn(2z)

=
n

z
−

z
(n+1)

1 −

z2

(n+1)(n+2)

1 −

z2

(n+2)(n+3)

1 −
· · · .(13)

Setting z = i and n = 1 leads to the very beautiful continued fraction
I1(2)
I0(2)

= [1, 2, 3, 4, · · · ] .

In general, arithmetic simple continued fractions correspond to such ratios.
An example of a more complicated situation is:

(2 z)2 N+1 F
(
N + 1

2 , 1
2 ;N + 3

2 ; z2
)

(N + 1)
(
2 N+2
N+1

)
F
(

1
2 ,− 1

2 ; 1
2 ; z2

) =
arcsin (z)√

1− z2
− σ2N (z)(14)

where σ2N is the 2N -th Taylor polynomial for arcsin(z)√
1−z2 . Only for N = 0 is this

precisely of the form of Gauss’s continued fraction.

2.3. Perron’s Continued Fraction. Another continued fraction expansion is
based on Stieltjes work on the moment problem (see Perron [4]). In volume 2,
page 18 of [4] one finds a beautiful continued fraction for

(15)
1
zµ

∫ z

0

tµ

1 + t
dt =

z

µ + 1 +

(µ + 1)2z
(µ + 2)− (µ + 1)z +

(µ + 2)2z
(µ + 3)− (µ + 2)z +

· · · .

valid for µ > −1,−1 < z ≤ 1. One may deduce this as a consequence of Euler’s
continued fraction if we write

1
zµ

∫ z

0

tµ

1 + t
dt =

z

µ + 1
− z2

µ + 2
+

z3

µ + 3
− z4

µ + 4
+ · · ·

and observe that (15) follows from (3) in the limit.
Since

zµ+1

µ + 1
F (µ + 1, 1;µ + 2;−z) =

∫ z

0

tµ

1 + t
dt,(16)

z2 µ+1

2 µ + 1
F
(

µ +
1
2
, 1;µ +

3
2
;−z2

)
=

∫ z

0

t2 µ

1 + t2
dt,(17)

for µ > 0, on examining (9) and (10) this is immediately applicable to provide Euler
continued fractions for the tail of the log and arctan series. Explicitly, we obtain:
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Theorem 5. Perron’s continued fractions for (9) and (10) are:

log (1 + z) +
N−1∑
n=1

(−1)n
zn

n
(18)

=
(−1)N+1zN

N +

N2z

(N + 1)−Nz +

(N + 1)2z
(N + 2)− (N + 1)z +

· · ·

and

arctan (z)−
N−1∑
n=0

(−1)n
z2 n+1

2 n + 1
(19)

=
(−1)Nz2N+1

2N + 1 +

(2N + 1)2z2

(2N + 3)− (2N + 1)z2 +

(2N + 3)2z2

(2N + 5)− (2N + 3)z +
· · · .

Moreover, while the Gauss and Euler/Perron continued fractions obtained are
quite distinct, we note the coincidence of (19) and (5). Indeed as we have seen
Theorem 5 coincides with a special case of (3).
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