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Abstract. This paper is a companion to a lecture given at the Prague
Spring School in Analysis in April 2006. It highlights four distinct varia-
tional methods of proving that a finite dimensional Chebyshev set is con-
vex and hopes to inspire renewed work on the open question of whether
every Chebyshev set in Hilbert space is convex.

1. Introduction

Let us set some notation and definitions which are for the most part
consistent with those in [6, 9, 24, 12]. For a nonempty set A in a Banach
space (X, ‖ · ‖) we consider the indicator function ιA(x) := 0 if x ∈ A and
+∞ otherwise. The distance function dA(x) := infa∈A ‖x − a‖ and the
radius function rA(x) := supa∈A ‖x − a‖ are our main players. Note that
rA is finite if and only if A is bounded and then rA = rco A is a continuous
convex function.

The variational problems we consider are to determine when and if dA

and rA attain their bounds. Specifically

PA(x) := argmin dA

and

FA(x) := argmax rA,

define the nearest point and farthest point operators respectively. When
PA(x) 6= ∅ we say x admits best approximations or nearest points and call the
elements of PA(x) nearest points or proximal points. Worst approximation
and farthest point are correspondingly defined in terms of FA. A set is called
proximal (sometimes proximinal) if D(PA) = X and Chebyshev if PA is both
everywhere defined and single-valued. We try to reserve the symbols S for
a Chebyshev set and E for a Euclidean space. In that case especially, PA is
often called the metric projection on A, and we shall not always distinguish
{PA(x)} and PA(x).
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2. Concepts and Tools

As we shall see, these two problems are wonderful testing grounds for
nonlinear and convex analysis. A fine variational tool is:

Theorem 1. (Basic Ekeland principle, [9, 6, 15, 17].) Suppose the func-
tion f : E 7→ (−∞,∞] is closed and the point x ∈ E satisfies f(x) < inf f +ε
for some real ε > 0. Then for any real λ > 0 there is a point v ∈ E satisfying
the conditions

(a) ‖x− v‖ ≤ λ,
(b) f(v) + (ε/λ)‖x− v‖ ≤ f(x), and
(c) v minimizes the function f(·) + (ε/λ)‖ · −v‖.

Usually (b) is decoupled to yield (a) and (b
′
) f(v) ≤ f(x), but we shall

need the full power of (b). Sadly, the short finite-dimensional proof in [17,
6, 9] does not seem to produce (b).

Fact 2. (Projection, [12].) Let A be a closed set in a Hilbert space. Suppose
that a ∈ PA(x). Then PA(tx + (1− t)a) = {a} for 0 < t < 1.

This clearly holds in any rotund Banach space—that is one with a strictly
convex unit ball.

Fact 3. (Chebyshev, [12, 15, 9].) Every Chebyshev set is closed and every
closed convex set in a rotund reflexive space is Chebyshev. In particular
every non-empty closed convex set in Hilbert space is Chebyshev.

Uniqueness requires only rotundity. A much deeper result is:

Proposition 4. (Reflexivity, ([12, 15].) A space X is reflexive iff every
closed convex set C is proximinal iff every closed convex set has nearest
points.

Proof. In reflexive space every closed convex set is boundedly relatively
weakly compact. Since the norm is weakly lower semicontinuous the problem
minc∈C ‖x− c‖ is attained for all x ∈ X.

If X is not reflexive, then the James theorem [14] guarantees the existence
of a norm-one linear functional f such that f(x) < 1 for all x ∈ BX , the
unit ball. It is an instructive exercise to determine that df−1(0)(x) is not
attained unless f(x) = 0. ¤

We shall see in Corollary 20 that there are non-reflexive spaces in which
each bounded closed set admits proximal points. The non-expansiveness of
the metric projection on a closed convex set in Hilbert space is standard and
follows from the necessary and sufficient condition

〈x− PC(x), c− x〉 ≤ 0

for all x ∈ C.
We will now be more precise and interpolate a notion which greatly

strengthens the property of Fact 2. We call S ⊂ E a sun if, for each point
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x ∈ E, every point on the ray PS(x) + R+(x − PS(x)) has nearest point
PS(x).

Proposition 5. (Suns, [6, 12, 15].) In Hilbert space (i) a closed set C is
convex iff (ii) C is a sun iff (iii) the metric projection PC is nonexpansive.

Proof. We sketch the proof. It is easy to see that (i) implies (ii); while (iii)
implies (i) is usually proved by a mean value argument. It remains to show
(ii) implies (iii). Denoting the segment between points y, z ∈ E by [y, z],
one shows that property (ii) implies

PS(x) = P[z,PS(x)](x) for all x ∈ E, z ∈ S,

which quickly yields (iii), [6, 12]. ¤
In three(?)–or-more dimensions non-expansivity characterizes Euclidean

space [?].
A fundamental result of much independent use is:

Proposition 6. (Characterization of Chebyshev sets, [6, 12, 15].) If
E is Euclidean then the following are equivalent.

(1) S is Chebyshev.
(2) PS is single-valued and continuous.
(3) d2

S is everywhere Fréchet differentiable with ∇F d2
S/2 = I − PS .

(4) The Fréchet sub-differential ∂F (−dS)2(x) is never empty.

Proof. (1) ⇒ (2) follows by a compactness argument. (2) ⇒ (3) is nearly
immediate since I − PS is a continuous selection of ∂d2

S/2. (3) ⇒ (4). We
will see a proof of (4) ⇒ (1) in the next section. ¤

This all remains true assuming only the space to be finite dimensional
with a smooth and rotund norm—indeed many of implications remain true
in Banach space at least for ‘tame’ sets. The only really problematic step is
(1) ⇒ (2).

A more flexible notion than that of a sun is that of an approximately
convex set, [6, 15]. We call C ⊂ X approximately convex if, for any closed
norm ball D ⊂ X disjoint from C, there exists a closed ball D′ ⊃ D disjoint
from C with arbitrarily large radius. Immediate from the definitions, as
illustrated in Figure 1 we have:

Proposition 7. Every sun is approximately convex.

Proposition 8. (Approximate convexity, [6, 15].) Every convex set in a
Banach space is approximately convex. When the space is finite dimensional
and the dual norm is rotund every approximately convex set is convex.

Proof. The first assertion follows easily from the Hahn-Banach theorem [15,
9, 24].

Conversely, suppose C is approximately convex but not convex. Then
there exist points a, b ∈ C and a closed ball D centered at the point c :=
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Figure 1. Suns and approximate convexity.

(a + b)/2 and disjoint from C. Hence, there exists a sequence of points
x1, x2, . . . such that the balls Br = xr + rB are disjoint from C and satisfy
D ⊂ Br ⊂ Br+1 for all r = 1, 2, . . ..

The set H := cl ∪rBr is closed and convex, and its interior is disjoint from
C but contains c. It remains to confirm that H is a half-space. Suppose
the unit vector u lies in the polar set H◦. By considering the quantity
〈u, ‖xr−x‖−1(xr−x)〉 as r ↑ ∞, we discover H◦ must be a ray. This means
H is a half-space. ¤

In `1 or `∞ norms this clearly fails as the righthand-side of Figure 1 sug-
gests. In the first case consider {(x, y) : y ≤ |x|}. Vlasov [15, p. 242] shows
dual rotundity characterizes the coincidence of convexity and approximate
convexity, [15].

We shall also exploit unexpected relationships between convexity and
smoothness properties of dA and rA. For this we begin with:

Fact 9. (Fenchel conjugation,[6, 15].) The convex conjugate of an ex-
tended real-valued function f on a Banach space X is defined by

f∗(x∗) := sup
x∈X

{〈x, x∗〉 − f(x)}

and is a convex, closed function (possibly infinite). Moreover, the biconju-
gate defined on X∗ by

f∗∗(x) := sup
x∗∈X∗

{〈x, x∗〉 − f∗(x∗)}

agrees with f exactly when f is convex, proper and lower-semicontinuous.

Fact 9 is often a fine way of proving convexity of a function g by showing
g arises as a conjugate, see [24, 6, 9], even by computer [2]. A particularly
good tool is:
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Figure 2. A smooth nonconvex ‘W’ function and its non-
smooth conjugate.

Proposition 10. (Smoothness and biconjugacy, [19, 27].) If f∗∗ is
proper in a Banach space and f∗ is everywhere Fréchet differentiable then
f is convex.

Proof. The general result may be found in [8, 27]. Under stronger conditions
in a finite dimensional space E we shall prove more, [6, 18].

We consider an extended real valued function f that is closed and bounded
below and satisfies the growth condition

lim
‖x‖7→∞

f(x)
‖x‖ = +∞,

along with a point x ∈ dom f . Then Carathéodory’s theorem [6, §1.2] ensures
there exist points x1, x2, . . . , xm ∈ E and real λ1, λ2, . . . , λm > 0 satisfying

∑

i

λi = 1,
∑

i

λixi = x,
∑

i

λif(xi) = f∗∗(x).

The definitional Fenchel-Young inequality, f(x)+ f∗(x∗) ≥ 〈x, x∗〉 valid for
all x, x∗, implies that

∂(f∗∗)(x) =
⋂

i

∂f(xi).

Suppose now that the conjugate f∗ is indeed everywhere differentiable.
If x ∈ ri (dom (f∗∗)), we argue that xi = x for each i. We conclude that
ri (epi (f∗∗)) ⊂ epi (f), and use the fact that f is closed to deduce f = f∗∗;
and so f is convex. ¤

We illustrate the duality for W := x 7→ (1−x2)2 in Figure 2. The lefthand
picture shows W and W ∗∗, the righthand shows W ∗.

We record next two lovely Hilbertian duality formulas:
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Fact 11. (Hilbert duality, [6, 18].) For any closed set A in a Hilbert space
(

ιA + ‖ · ‖2

2

)∗
=

‖ · ‖2 + d2
A

2
(1)

(
ι−A − ‖ · ‖2

2

)∗
=

r2
A − ‖ · ‖2

2
.(2)

Each identity once known is an easy direct computation from the defini-
tions.

We now turn to our final approach via inversive geometry. The self-inverse
map ι : E \ {0} 7→ E defined by ι(x) = ‖x‖−2x is called the inversion in
the unit sphere. While this is meaningful in any Banach space it is nicest in
Hilbert space.

Fact 12. (Preservation of spheres, [1].) If D ⊂ E is a ball with 0 ∈ bd D,
then ι(D\{0}) is a halfspace disjoint from 0. Otherwise, for any point x ∈ E
and radius δ > ‖x‖,

ι((x + δB) \ {0}) =
1

δ2 − ‖x‖2
{y ∈ E : ‖y + x‖ ≥ δ}.

3. Proximality and Chebyshev sets in Euclidean space

We now describe four approaches to the following classic theorem.

Theorem 13. (Motzkin-Bunt, [1, 6, 12, 15, 18].) A finite dimensional
Chebyshev set is convex.

Proof. (1, via fixed point theory, [6, 12].) By Proposition 5 it suffices
to show S is a sun. Suppose S is not a sun, so there is a point x 6∈ S with
nearest point PS(x) =: x such that the ray L := x + R+(x − x) strictly
contains

{z ∈ L | PS(z) = x}.
Hence by Fact 2 and the continuity of PS , the above set is a nontrivial closed
line segment [x, x0] containing x.

Choose a radius ε > 0 so that the ball x0 + εB is disjoint from S. The
continuous self map of this ball

z 7→ x0 + ε
x0 − PS(z)
‖x0 − PS(z)‖

has a fixed point by Brouwer’s theorem. We then quickly derive a contra-
diction to the definition of the point x0. We illustrate this construction in
Figure 3. ¤

Alternatively, via Proposition 8 it suffices to show S is approximately
convex. This method is the least coupled to Hilbert space.
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Figure 3. Failure of a sun.

Proof. (2, via the variational principle, [6, 15].) Suppose S is not ap-
proximately convex. We claim that: for each x 6∈ S

lim sup
y→x

dS(y)− dS(x)
‖y − x‖ = 1.(3)

This is a consequence of the (Lebourg) mean-value for (Lipschitz) functions
[6, 11], since all Fréchet (super-)gradients have norm-one off S.

We now appeal to the Basic Ekeland principle of Proposition 1 as follows:
Consider any real α > dC(x). Fix reals σ ∈ (0, 1) and ρ satisfying

α− dC(x)
σ

< ρ < α− β.

By applying the Basic Ekeland variational principle to the function −dC +
δx+ρB, prove there exists a point v ∈ E satisfying the conditions

dC(x) + σ‖x− v‖ ≤ dC(v)
dC(z)− σ‖z − v‖ ≤ dC(v) for all z ∈ x + ρB.

We deduce ‖x− v‖ = ρ, and hence x + βB ⊂ v + αB. Thus, C is approxi-
mately convex and Proposition 8 concludes this proof. ¤

We next consider two theorems that exploit conjugate duality.

Proof. (3, via conjugate duality, [6, 18].) First, d2
S is differentiable by

Proposition 6. Now consider formula (1). The righthand side is clearly
differentiable and it suffices to appeal to Proposition 10 to deduce that
ιS + ‖ · ‖2 is convex. A fortiori, so is S. ¤

We may also deduce a ‘dual’ result about farthest points that we shall
use in our fourth proof.

Theorem 14. Suppose that every point in Euclidean space admits a unique
farthest point in a set A. Then A is singleton.
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Proof. We leave it to the reader to deduce that r2
A is differentiable (and

strictly convex), [6, p. 226]. One way is to use the formula for the sub-
gradient of a convex max-function over a compact (convex) set [6, p. 129,
Exercise 10], or [11, 19, 24, 9]. Uniqueness of the farthest point FA(x) then
implies that

1
2

∂r2
A(x) = x− FA(x) =

1
2
∇r2

A(x).

Now consider formula (2). The righthand side is again clearly differen-
tiable and it an to appeal to Proposition 10 to shows that ι−A − ‖ · ‖2 is
convex. As −‖ · ‖ is strictly concave, A can not contain two points. ¤

Proof. (4, via inversive geometry, [1, 6].) Without loss of generality,
suppose 0 6∈ C but 0 ∈ cl conv C. Consider any point x ∈ E. Fact 12 implies
that the quantity

ρ := inf{δ > 0 | ιC ⊂ x + δB}
satisfies ρ > ‖x‖. Now let z denote the unique nearest point in C to the point
(−x)/(ρ2 − ‖x‖2). and observe, again via Fact 12, that ι(z) is the unique
furthest point in ι(C) to x. By Theorem 14 the set ι(C) is a singleton which
is not possible. ¤

4. Proximality and Chebyshev sets in infinite dimensions

In this section we make a discursive look at the subject in infinite dimen-
sions. In 1961, Victor Klee [21] asked whether a Chebyshev set in Hilbert
space must be convex? The literature is large but a good start can be made
by reading the relevant parts of [12] and [15]. A comprehensive survey up
to 1973 is given in [25]. The cleanest partial answer yet known is:

Theorem 15. (Chebyshev Sets, [1, 8, 12, 21, 15].) A weakly closed Cheby-
shev set in Hilbert space is convex.

Proof. Once we establish the Fréchet differentiability of d2
S the second and

third proofs need no change. To do this it suffices to argue that I−PS is still
norm-weak∗ continuous while x 7→ ‖x − PS(x)‖ = dS(x) is continuous. We
then appeal to the fact that norm and weak convergence agree on spheres
in Hilbert space.

Asplund’s proof likewise holds—indeed, this was his proof of the theorem,
[1]. The first proof also extends as far as boundedly norm-compact sets via
Schauder’s fixed point theorem, albeit with a little more effort [9, p. 219]. ¤

Remark 16. (Generalizations.) Indeed, the second proof actually shows
Vlasov’s (1970) result that in a Banach space with a rotund dual norm
any Chebyshev set with a continuous projection is convex as described in
[4, 15, 16] since (3) will hold under these hypotheses.
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Asplund’s method [1] also yields the striking result that if there is a
non-convex Chebyshev set in Hilbert space there is also one that is the com-
plement of an open convex body—a so called Klee cavern. This is both sur-
prising yet consistent with Figure 3 that we drew for the proof via Brouwer’s
theorem.

While a sun in a smooth Banach space is known to be convex, [25], the
existence in a renorming of C[0, 1] of a disconnected non-Chebyshev sun,
[22], indicates the limitations of the first approach. ¤

Remark 17. (Counter-examples.) Opinions differ about whether every
(norm-closed) Chebyshev set in Hilbert space is convex. Since there are even
closed sets of rotund reflexive space with discontinuous projections [10], in
that level of generality one must somehow establish the continuity of PS or
avoid the issue to show S is convex.

It is known that any non-convex Chebyshev set in Hilbert space must have
a badly discontinuous metric projection [26]. That paper uses monotone
operators to show that H \ {x : ∇F dS(x) exists} is the countable union of
nonconstant Lipschitz curves. This is based on the fact that PS is max-
imal monotone if and only if S is Chebyshev and PS is continuous. In
the separable case Duda [13] shows the the covering can be achieved by
difference-convex surfaces.

It is also known that there is an example of a bounded non-convex Cheby-
shev set (actually it can be disconnected Chebyshev foam) in an incomplete
inner-product space, [20, 12]. ¤

Recall that a norm is (sequentially) Kadec-Klee if weak and norm topolo-
gies coincide (sequentially) on norm spheres.

Theorem 18. (Dense and generic proximality.) Every closed set A in
a Banach space densely (equivalently generically) admits nearest points iff
the norm is Kadec-Klee and the space is reflexive.

Proof. If (originally proved by Lau in [23]). We sketch the proof in [9, 3].
Consider a sub-derivative φ ∈ ∂F (−dA)(x), which by the smooth variational
principle exists for a dense set in X \A. Let (an) be a bounded minimizing
sequence, and use reflexivity to extract a subsequence (we use the same
name) converging weakly to z ∈ X. Since φ ∈ ∂F (−dA)(x) it is easy to show
that φ‖ = 1 and that φ(an − x) → dA(x). Thus, we see that ‖z − x‖ ≥
φ(z − x) = dA(x) ≥ lim ‖an − x‖ and by weak lower-semicontinuity of the
norm ‖an − x‖ → ‖z − x‖. The Kadec-Klee property then implies that
an → z in norm and so z ∈ A. As ‖z − a‖ = dA(x) we have shown the set
of points with nearest points in A is dense. Showing genericity takes a little
more effort.

Only if (originally due to Konjagin). We sketch the proof in [3]. We
shall construct a norm closed set A and a neighbourhood U within which
no point admits a best approximation in A. If the space is not reflexive we
appeal to Proposition 4.
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In the reflexive setting, failure of the Kadec-Klee property means there
must be a weakly-null sequence (xn) with ‖xn‖ = 1 and with ‖xn − xm‖ ≥
3ε > 0 (i.e, the sequence is 3ε-separated). Let

A := ∩nxn + εBX .

It is routine to verify that in some neighbourhood U of zero there are no
points with PA(x) non-empty. ¤

Remark 19. (a) An easier version of the ‘if‘ argument exactly proves (4) ⇒
(1) of Proposition 6.

(b) Konjagin’s construction produces a distance function dA which is
Fréchet differentiable (even affine) in a neighbourhood of zero but induces
no best approximations from that neighbourhood. Thus the geometry of the
norm is critical even in the presence of Fréchet derivatives. ¤

Corollary 20. (Existence of proximal points.) A closed set C in a
Banach space X has a nonempty set of proximal points under any of the
following conditions.

(1) X is reflexive and the norm is (sequentially) Kadec-Klee, (Thm. 18).
(2) X has the Radon Nikodym property [14] and C is bounded, [3].
(3) X is norm closed and boundedly relatively weakly compact, [7].

This list is far from exhaustive. For instance:

Example 21. (Norms with dense proximals, [3].) There is a class of re-
flexive non-Kadec-Klee norms such that every nonempty closed set A densely
possesses proximal points. Explicit examples are given in [3]. The counter-
example sketched in Theorem 18 is locally weakly-compact and convex and
so admits dense proximals. ¤

Example 22. (Multiple caverns, [3].) Let us call the complement of
finitely many disjoint open convex bodies a multiple cavern. Using inversive
geometry methods as above, one can show that in a reflexive space every
multiple Klee cavern admits proximal points. In [3] such sets were called
Swiss cheese. ¤

Finally, I discuss two very useful additional properties of the distance
function when the norm is uniformly Gâteaux differentiable as is the case
in Hilbert space and, after renorming, in every super-reflexive and every
separable Banach space, [4]. We say that ∂dA is minimal if it contains no
smaller w∗-cusco—a norm to w∗-upper semicontinuous mapping with non-
empty w∗-compact images.

Remark 23. (Some additional properties of dA, [4].) A Banach space
X is uniformly Gâteaux differentiable if and only if ∂dA is minimal for every
closed nonempty set A. This has lovely consequences for proximal normal
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formulas, [5] (see [9] for the finite dimensional case). It relies on the fact
that such norms also characterize those spaces for which

∂−(−dA)(x) = ∂¦(−dA)(x) = ∂o(−dA)(x),

that is the Dini, Clarke and Michel-Penot sub-differentials (see [6]) coincide
for all closed sets A, and hence that −dA is both Clarke and Michel-Penot
regular, [4].

¤

5. Conclusion

I hope this discussion has whetted some readers’ appetites to attempt at
least one of the following open questions.

Question 1. Is every Chebyshev set in Hilbert space convex?

Question 2. Is every closed set in Hilbert space with unique farthest points
a singleton?

Question 3. Is every Chebyshev set in a rotund reflexive Banach space
convex?

Question 4. Does every closed set in a reflexive Banach space admit a
nearest point? What about rotund smooth renormings of Hilbert space?

Question 5. Does every closed set in a reflexive Banach space admit prox-
imal normals at a dense set of boundary points?

And finally, I certainly hope I have made good advertisements for the
power of variational and nonsmooth analysis.
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[27] C. Zălinescu. Convex Analysis in General Vector Spaces. World Scientific Press, 2002.

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada,
e-mail: jborwein@cs.dal.ca


