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Abstract of Convexity Talk, |

JONATHAN BORWEIN, University of Newcastle, NSW
Why Convex?

This lecture makes the case for the study of convex
functions focussing on their structural properties. We
highlight the centrality of convexity and give a selection of
salient examples and applications.

It has been said that most of number theory devolves to
the Cauchy-Schwarz inequality and the only problem is
deciding ‘what to Cauchy with.’ In like fashion, much
mathematics Is tamed once one has found the right
convex ‘Green's function.’

Why convex? Well, because ...




Abstract of Convexity Talk, I

From Chapter 1 of Convex Functions (JMB and JDV, 2009)

The first modern formalization of the concept of convex function appears
in J. L. W. V. Jensen, “Om konvexe funktioner og uligheder mellem midel-
vaerdier.” Nyt Tidsskr. Math. B 16 (1905), pp. 49-69. Since then, at first
referring to “Jensen’s convex functions,” then more openly, without needing any
explicit reference, the definition of convex function becomes a standard element
in calculus handbooks. (A. Guerraggio and E. Molho) Historia Mathematica 2004

Convezity theory ... reaches out in all directions with useful vigor. Why is
this so? Surely any answer must take account of the tremendous impetus the
subject has recewved from outside of mathematics, from such diverse fields as
economics, agriculture, military planning, and flows in networks. With the in-
vention of high-speed computers, large-scale problems from these fields became
at least potentially solvable. Whole new areas of mathematics (game theory, lin-
ear and nonlinear programming, control theory) aimed at solving these problems
appeared almost overnight. And in each of them, convexity theory turned out to
be at the core. The result has been a tremendous spurt in interest in convexity
theory and a host of new results. (A. Wayne Roberts and Dale E. Varberg,
1973) Klee SIAM Rev 1976
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The Sum of What | know

Convex Functions Web site

Jon Vanderwert
La Sierra University

Jonathan Borwein, F
University of Newcastle
and Dalhousie University

Coming In 2009 to a website near you,
Cambridge University Press Engyclopedia of
Mathematics and Applications volume 109,

entitled
Convex Functions: Constructions,
Characterizations and Counterexamples.
This book is intended for:
« Researchers, practitioners and students

e In computation, optimization, analysis

» With applications throughout the mathematical
sciences,




Even Three Dimensions Is Subtle

AN ESSENTIALLY STRICTLY CONVEX FUNCTION WITH
NONCONVEX SUBGRADIENT DOMAIN
AND WHICH IS NOT STRICTLY CONVEX

max{(x-2)A2+yA2-1,-(x*y)A(1/4)}




Abstract of Convexity Talk, Il

| now offer a variety of examples of convexity
appearing (often unexpectedly) in my research.
(Log) convex functions are not denatured. They are
everywhere.
Each illustrates either the power of convexity, or of
modern symbolic computation, or of both ...

Principle of Uniform Boundedness

falz) :=supgecq |A(2)]]

Proof. (i) f, IS convex and lower-semicontinuous as a
supremum of such functions;

(i) a pointwise bounded collection forces finiteness;

(i) by Baire, f is continuous and so the linear operators are
uniformly bounded. QED




Outline of Convexity Talk

A. Generalized Convexity of Volumes (Bohr-Mollerup, 1922).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.

D. Characterizations of Banach space.

The talk ends when |
do
There are three bonus

tracks!

Full detalils are in the reference texts
http://projects.cs.dal.ca/ddrive/ConvexFunctions/
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The Brothers Bohr Ei& fg

 One Nobel Prize
— Nils (1885-1962)
— Physics (1922)

* One Olympic Medal
— Harald (1887-1951)
— Soccer (1908)

1887-1920, 1887-1951, 1887-1985
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Generalized Convexity of Volumes

A. Generalized Convexity of Gamma (Bohr-Mollerup, 1922).

[ is usually defined for Re(x) > 0 as

o0

M(z) = / et 1 dt. (1)

0

Theorem 1 (Bohr-Mollerup) I is the unique
function f : (0,00) — (0,00) such that:
(a) f(1)=1;(b) f(x+ 1) =zf(x),

(c) fis log-convex (x — log f(x) is convex).

e Application is often automatable in a com-
puter algebra system, as I now illustrate:




Generalized Convexity of Volumes
A. Generalized Convexity of Gamma (Beta function).

The B—function is defined by

fy) = [ ea-nrta (1)

for Re(x),Re(y) > 0. As is often established

using polar coordinates and double integrals
M(z) M(y)

Proof (2) Use f =z — B(z,y) Mz +v)/T(v).

(a) and (b) are easy. For (c) we show f is

log-convex via Holder's inequality. Thus f=1T

as required. QED

e [ IS hyper-transcendental as is (.




Generalized Convexity of Volumes

A. Convexity of Volumes (Blaschke-Santalo inequality)  (p-ball duality in Cinderella)

For a convex body C in R"™ its polar is

C° = {yeR": (y,z) <1 for all z € C}.

Denoting n-dimensional Euclidean volume of
S C R™ by V,(S), Blaschke-Santalo says

Vn(C) Va(C®) < Vi(B) Va(E®) = V;7(Bn(2))

(1)
where maximality holds (only) for any ellipsoid
E and Byp(2) is the Euclidean unit ball.

Question Explain cases of (1) as convexity
estimates? Noting By = B, if 1/p+1/q=1.



pAndqBalls.cdy

Generalized Convexity of Volumes

A. Convexity of Volumes (Dirichlet Formulae).

The volume of the ball in the ||-||p-norm, V,.(p),

was first determined by Dirichlet s ‘*\
g 7
r(1+4 Ly» ¥4 \
Vo(p) = 2" b | 2 >
r(14+2) :
p /)
' of
When p = 2, \ v

Vn:

r1+%2) r@a+%y
IS more concise than that usually recorded.

Maple code derives this formula as an iterated
integral for arbitrary p and fixed n.

. TG)" _ I’(%)” 1,2,0c-bals In R

1-ball in R3




Generalized Convexity of Volumes

A. Convexity of Volumes (Ease of Drawing Pictures).

e

0 | — 3 4 5 6 0 02" 04 06 08 ©4° 12 154° 16 18 ° 2

log M (x) log V,(1/x) fora = 4/3,3

Discover the formula for 3-,,~1 Va(2)




Generalized Convexity of Volumes

A. Convexity of Volumes (‘mean’ log-convexity). 2002

Theorem 2 [(H,A) log-concavity] The func-
tion Va(p) = 29T (1 + %)O‘/I‘(l + &) satisfies

Va () Va()1 ™ < va( e ) (1)

Ag~+ (1= XM)p

forall o > 1, ifp,q>1, p#%gq, and X € (0,1).

In (|a=n, 3++ =1 with A =1-X=1/2|re-

covers t
and the

lower bound.

ne p—norm case of Blaschke-Santalo;

T his extends to substi-

tution norms. Q. How far can one take this?




Generalized Convexity of Zeta

(Ease of Drawing Pictures).

The Euler product shows
log ((2) = >, log(1 — e~ '°8P)

is convex for z > 1
(p ranges over primes)

0.5+

R B e e L e e
2 3 4 5 & 7 & 9 10

log ((z) is convex

log(1 — e~ %) has a nice Fenchel conjugate
ylogy+(1—y)log(l—y) (Fermi-Dirac entropy)




"HeasS  witene Mou
vWDE MOUL MISTAKE..”




Outline of Convexity Talk

A. Generalized Convexity of Volumes (Bohr-Mollerup, 1922).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.

D. Characterizations of Banach space.

The talk ends when |
do
Drlve




Coupon Collecting and Convexity

B. The origin of the problem.

Consider a network objective function py:

pn(q) == > (ﬁ 1o )(% Nl )

sesy \i=1 2590 ()] \i=1 Xjm=i G (j)
summed over all N! permutations; so a typical

term is
N N
qi 1
(st ) (Beta)

For example, with N = 3 this is

(aovs) (70) (o) aFmre are o)
NeB g Fota)\ota)\a)\ateta ot a)

This arose as the cost function in a 1999 PhD thesis on coupon collection. lan
Affleck wished to show p, was convex on the positive orthant. | hoped not!




Coupon Collecting and Convexity

B. Doing What is Easy.

First, we try to simplify the expression for pys.
The partial fraction decomposition gives:

1
p1(z1) = —,

1
1 1 1

pQ(xlaxQ) — + — ;
r1 T T1t+ T2
1 1 1 1 1

p3(3§'1,3’52,$3) — + + — —

ry X2 X3 T1t+T2 T2+ T3

1
1 —I— Lo —I— 333.
Partial fractions are an arena in which com-
puter algebra is hugely useful. Try performing
the third case in (1) by hand. It is tempting to
predict the “same” pattern will hold for N = 4.
This is easy to confirm (by computer) and so

we are led to: A facet of Coxeter’s favourite polyhedron

r1 + 23

-




Coupon Collecting and Convexity

B. A Non-convex Integrand.

CONJECTURE. For each N, the function py given by

fool{l—ﬂ(l—tmk)} dt

is convex. Indeed 1/py is concave.

e Randomized numeric checks were run up to N = 20.
e (N > 6) Computing the Hessian symbolically is impossible:

e Lven just the diagonal will not fit on the largest Maple.

* a notationally efficient representation of no help with a proof




Coupon Collecting and Convexity

B. A Very Convex Integrand. (Is there a direct proof?)

A year later, Omar Hijab suggested re-expressing p, as the
joint expectation of Poisson distributions. This leads to:

If £ = (x1,---,2zn) iS @ point in the positive
orthant R" , then

pN(z) = (H fcz) /n ~Y max(yy, -+, yn) dy

o (x,y) =x1y1+ -+ xnyn is the inner product

Now y; — X; y; and standard techniques show 1/p, is concave,
since the integrand is.[We can now ignore probability if we wish!]
Q “inclusion-exclusion” convexity? OK for 1/g(x) > O, g concave.




Goethe’'s One Nice Comment About Us

"Mathematicians are a kind of
Frenchmen:
whatever you say to them they
translate into their own language, and
right away it Is something entirely
different.”

(Johann Wolfgang von Goethe)
Maximen und Reflexionen, no. 1279







Outline of Convexity Talk

A. Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.

D. Characterizations of Banach space.

The talk ends when |
do
Drlve




Convexity of Spectral Functions

C. Eigenvalues of symmetric matrices (Lewis (95) and Davis (59) ).
A(S) lists decreasingly the (real, resp. non-negative)

eigenvalues of a (symmetric, resp. PSD) n-by-n matrix S.
The Fenchel conjugate is the convex closed function given

> *(2) := supy(y, ) — f(3).

Theorem (Spectral conjugacy) If f : R" —
(—oo,00] is a symmetric function, it satisfies

the formula @A)* = f*o MJFan tr(AB) < M(A)TA(B)
Corollary [Davis/Lewis] Suppose f : R" —
(—o0, 0] is symmetric. The ‘“spectral func-

tion” f o X is closed and convex (resp. dif-
ferentiable) iff f is closed and convex (resp.

_ _ Also for trace
differentiable). [Von Neumann for norms] class operators




Convexity of Spectral Functions

C. Three Amazing Examples (Lewis).

I. Log Determinant Let Ib(z) := — log(z125 - - zn)
which iIs clearly symmetric and convex. The

corresponding spectral function is|S — — log det(S).

II. Sum of Eigenvalues Ranging over permu-
tations, let fi.(x) := maxﬁ{:c,,r(l) T (2)
Tr(k)}- This is clearly symmetric and convex.
T he corresponding spectral function is

o (S) 1= A1(S) + A2(5) + - - A (5).

In particular the Targest eigenvalue, o1, IS a
continuous convex function of S and is differ-
entiable if and only if the eigenvalue is simple.




Convexity of Spectral Functions

C. Three Amazing Examples (Lewis).

III. k—th Largest Eigenvalue The k—th largest
eigenvalue may be written as

pe(S) = 0 (S) —or_1(S)}

In particular, this represents u; as the differ-
ence of two convex continuous, hence locally
Lipschitz, functions of S and so we discover
the very difficult result that for each k, ui(S)
is a locally Lipschitz function of S.

N=3. M\2(A) = tr(A) — Anax(A4) — Amin(A)
e Hard analogues exist for singular values, hgs—s

Trace c

perbolic polynomials, Lie algebras, etC. operators




Convexity of Barrier Functions

C. A Fourth Amazing Example (Nesterov & Nemirovskii, 1993).

IV Self-concordant Barrier Functions Let A
be a nonempty open convex set in RN . Define,
for x € A, F,(X)=|1/x-0|=1/x

Fn(z) := AN((A —2)°)

where Ay is N-dimensional Lebesque measure
and (A — z)° is the polar set. Then Fjy is an
essentially Fréchet|smooth, log-convex| barrier
function for A.

e Central to modern interior point methods.

e The orthant yields Ib(x) := — X1V, log xy.

e Hilbert space analog? (JB-JV, CUP, 2009)




"He was very big in Vienna."




Outline of Convexity Talk

A. Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.

D. Characterizations of Banach Spaces

The talk ends when |
do
Drlve

Full details are in the three reference texts




D. Is not Madelung’s Constant: > ?P
David Borwein CMS Career Award 2 =

(_1)n-|-m+p

—n%%:,p\/nQ—I—mQ—l—pz

This polished solid silicon bronze sculpture is inspired by the work of
David Borwein, his sons and colleagues, on the conditional series
above for salt, Madelung's constant. This series can be summed to
uncountably many constants; one is Madelung's constant for
electro-chemical stability of sodium chloride. (Convexity is
hidden here too!)

This constant is a period of an elliptic curve, a real surface in four
dimensions. There are uncountably many ways to imagine that
surface in three dimensions; one has negative gaussian curvature
and is the tangible form of this sculpture. (As described by the artist.)



../My Documents/JB616/My Documents/My Pictures/Family Canada Oz/Family/Parents/borweinSculptureLrg.jpg

D. Characterizations
8

Convex functions and classifications of
Banach spaces

A mathematician is a person who can find analogies between theorems; a better mathemati-
cian is one who can see analogies between proofs and the best mathematician can notice
analogies between theories. (Stefan Banach)!

8.1 Canonical examples of convex functions

The first part of this chapter connects differentiability and boundedness properties of
convex functions with respect to a bornology f (see p. 149 for the definition) with
sequential convergence in the dual space in the topology of uniform convergence on
the sets from the bornology. In some sense, many of the results in this chapter illustrate
the degree to which linear topological properties carry over to convex functions. This
chapter also examines extensions of convex functions that preserve continuity, as
well as some related results.




Exemplars

Proposition 8.1.2, Let X be a Banach space. Then the following arve equivalent.

(a) Mackev and norm convergence coincide sequentially in X*.

(b} Every sequence of Isc convex functions that converges to a continuous affine
Junction uniformly on weakly compact sets converges uniformly on bounded sets
to the affine function.

(c) Every continuous convex function that is bounded on weakly compact subsets of
X is bounded on bounded subsets of X.

(d) Weak Hadamard and Fréchet differventiability agree for continuous convex
functions.

8.2 Characterizations of various classes of spaces

In this section we provide a listing of various classifications of Banach spaces in
terms of properties of convex functions. Many of the implications follow from Theo-
rem 8.1.3 or variants of the arguments upon which it is based. We will organize these
results based upon when two of the following notions (Géiteaux, weak Hadamard
or Fréchet) differentiability coincide for continuous convex functions on a space,
and then for continuous weak*-Isc functions on the dual space. First we state the
Josefson—Nissenzweig theorem proved independently by the two authors.

Theorem 8.2.1 (Josefson—Nissenzweig [271, 333]). Suppose X is an infinite-
dimensional Banach space, then there is a sequence (x}) C Sx+ that converges
weak* to 0.




Exemplars

First, we consider when Gateaux and Fréchet differentiability coincide for
continuous convex functions.

Theorem 8.2.2, For a Banach space X, the following ave equivalent.

(a) X is finite-dimensional.
(b) Weak* and norm convergence coincide sequentially in X*.

(¢c) Every confinuous convex function on X is bounded on bounded subsets of X.
(d) Gdteaux and Fréchet differentiability coincide for continuous convex func-

tions on X.
a
A Banach space is said to have the Dunford—Pettis property if (x},xn) — 0
whenever x; —»q 0 and x; >, 0. The term DP*-property derives from the fact
that weak convergence is replaced with weak* convergence in the dual sequence in
Basic idea: the convex th.e Dunford—Petﬁs property. Therefore, 1.t follows @memately that a Banach space
. N with the Grothendieck and Dunford-Pettis properties has the DP* property (but not
f(.QC) = hmn_,oo <£Cn, 35') conversely, e.g. £1). Consequently, the spaces £ (I") for any index set ' have the
*_
captures the sequence (xF))| PP property(seellsa).
@

Theorem 8.2.3. For a Banach space X, the following are equivalent.

(a) X has the DP*-property.
(b) Gdteaux and weak Hadamard differentiability coincide for all confinuous convex
functions on X.

(c) Every continuous convex function on X is bounded on weakly compact sub-
sets of X.

W







Three Bonus Track Follows

A. Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.

C. Convexity of Spectral Functions.

D. Characterizations of Banach space

E. Entropy and NMR.
F. Inequalities and the Maximum Principle.
G. Trefethen’s 4" Digit-Challenge Problem.
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“The object of mathematical rigor is to sanction and legitimize the

conquests of intuition, and there was never any other object for it.”
- J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.




E. CONVEX CONJUGATES and NMR (MRI)

The Hoch and Stern information measure in complex
N-space is H(z) 1= > °_; h(z;/b) where h is convex and
given (for scaling b) by

1) = ol (121412 = 1P

for quantum theoretic (NMR) reasons. Recall the FenchelA
[_egendre conjugate

f*(y) = sup(z,y) — f(z).
Our symbolic convex analysis package produced

h*(z) = cosh(|z]).

Compare the Shannon entropy zIn(z) — z whose conju-
gate is exp(z).
I'd never have tried by hand! Effective dual algorithms are now possible!




Knowing Closed Forms' Helps

For example

(expexp)*(y) = yIn(y) — y{W(y) + W(y)~ '}

where Maple or Mathematica recognize the complex
Lambert W function given by Riemann Surface 7

l
l

W(x)eW® = x,

Thus, the conjugate's ?erieslis: . o | T
—14(In(y) — 1) y—=y°+=y>—Zy*+—y°40 (¢°) .
tn() - Dy—Sy oy —gy + vt (°)

The literature is all in the last decade since W got a hame!




WHAT is ENTROPY?

Despite the narrative force that the concept of
entropy appears to evoke in everyday writing, In
scientific writing entropy remains a thermodynamic
guantity and a mathematical formula that
numerically quantifies disorder. When the American
scientist Claude Shannon found that the
mathematical formula of Boltzmann defined a
useful quantity in information theory, he hesitated to
name this newly discovered quantity entropy
because of Iits philosophical baggage. The
mathematician John Von Neumann encouraged
Shannon to go ahead with the name entropy,
however, since “no one knows what entropy Is, SO
In a debate you will always have the advantage."

The American Heritage Book of English Usage, p. 158




Information Theoretic Characterizations Abound

Theorem. Up to a positive scalar multiple

N
H(P)=—)_prlogp;
k=1

iIs the unique continuous function on finite probabilities
such that [a.] Uncertainly grows:

n
A

H

3 | =)
S|

1‘\
n

, ’no-,

increases with n.

[b.] Subordinate choices are respected: for distribu-
tions p{ andp? and 0 < p < 1,

H (ppi, (1 —p)p3) =pH(pi) + (1 —p) H(p2).







e Consider the two means

1 . r—1Y
£ @ y) = In(z) — In(y)
and
%x%-l-y%
M(z,y) =

A conformal function estimated reduced to

L(M(z,1),vz) > L(z,1) > LM(z,1),1)

for 0O < x < 1.

We first discuss showing

E(x) .= L M(z,1),v/x) — L(z,1) > 0.
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l. Numeric/Symbolic Methods

e lim__ ,+&(x) = oo.

e Newton-like iteration shows that £(z) > 0O
on [0.0,0.9]. When we make each step effective.
This is hardest for the integral.

e Taylor series shows E(x) has 4 zeroes at 1.

4 6
51840( -1 20736( - 1°+0 (@ -1)°)

o Maximum Principle shows there are no more '?J

zeroes inside C 1= {z: |z — 1| = z}: l
1 g

— | == #(£71(0); 0) Drive




Il. Graphic/Symbolic Methods

Consider the opposite (cruder) inequality

N:=L(x,1) — L(M(z,1),1) > 0.

We may observe that it holds since:

e M is a mean;

e L(x,1) decreases with z. Drive

e Thereis an algorithm (Collins) for universal
alaebraic inequalities.




F. Nick Trefethen’s 100 Digit/100 Dollar

Challenge, Problem 4 (SIAM News, 2

002)

# 4. What is the global minimum of the func-
tion

exp(sin(50x)) + sin(60eY) 4+ sin(70sin x)

+ sin(sin(80y)) —sin(10(z 4+ y)) + (z° + y=) /47

e NO bounds are given.
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HDHD Challenge, Problem 4

« This model has been numerically solved by LGO, MathOptimizer, MathOptimizer
Pro, TOMLAB /LGO, and the Maple GOT (by Janos Pinter who provide the
pictures).

» The solution found agrees to 10 places with the announced solution (the latter
was originally based (provably) on a huge grid sampling effort, interval analyisis
and local search).

~ (-0.024627..., 0.211789...)
*~-3.30687 ...

,|u

NN\
| H'I) |I||l

Close-up picture near global

solution: the problem still looks rather difficult
. Mathematica 6 can solve this by ‘ i

“zooming”! bl ’/,, )

\ nl" ‘
W f“\ :I ) \\j,

See lovely SIAM solution book by Bornemann, Laurie, Wagon and Waldvogel
and my Intelligencer Review at http://users.cs.dal.ca/~jborwein/diqgits.pdf



http://users.cs.dal.ca/~jborwein/digits.pdf

