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Abstract. We survey and enhance salient parts of the literature about dif-
ference convex functions with specific regard to current knowledge and appli-

cations of DC functions.

1. Introduction and Preliminaries

There is a large if somewhat scattered literature on difference convex, (= delta-
convex, or DC), functions—functions which are the difference of two continuous
convex functions. It is our goal in this note to survey and enhance salient parts of
this literature with specific regard to the current state of knowledge and interesting
examples of DC functions. Throughout, our “assertions” are often formulated for
real-valued functions even if some of them were originally proved for more general
mappings.

The class of DC functions is a remarkable subclass of locally Lipschitz functions
that is of interest both in analysis and optimization. It appears very naturally as
the smallest vector space containing all continuous convex functions on a given set.

Let X be a normed linear space, X∗ its dual and SX the unit sphere in X. Unless
stated otherwise, all spaces are real. The duality between X and X∗ is denoted 〈·, ·〉,
that is, 〈x∗, x〉 = 〈x, x∗〉 := x∗(x), for all x ∈ X and x∗ ∈ X∗. In the Hilbert space
context, we will use 〈·, ·〉 for the inner product. The distance function dC : X → R
of a closed set C ⊂ X is defined by dC(x) = infc∈C ‖x− c‖ for all x ∈ X.

If f : X → R is a continuous convex function, its subdifferential at x ∈ X is the
set

∂f(x) := {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈y − x, x∗〉 for all y ∈ X} .
A locally Lipschitz function f : X → R is strictly Gâteaux differentiable at x ∈ X
if it is Gâteaux differentiable at x (where ∇f(x) denotes the Gâteaux differential
at x) and for each y ∈ SX and ε > 0 there exists a δ > 0 such that∣∣∣∣f(z + ty)− f(z)

t
−∇f(x)(y)

∣∣∣∣ < ε,

whenever 0 < t < δ and ‖z − x‖ < δ. If this holds uniformly over y ∈ SX , we say
that f is strictly (Fréchet) differentiable at x ∈ X. Note that in finite dimensions
these two notions agree.
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Given a real-valued function f on X, we say that f is weak Hadamard differen-
tiable at a point x ∈ X if there exists x∗ ∈ X∗ such that, for any weakly compact
set C ⊂ X, the limit

lim
t↓0

f(x+ th)− f(x)− x∗(th)

t
= 0

uniformly in h ∈ C. If a function f : X → R is Fréchet differentiable and the
derivative is a Lipschitz mapping, we shall say that f is of the class C1,1.

Let f : X → R be locally Lipschitz around x ∈ X. Since f is locally Lipschitz the
Clarke directional derivative of f at x in the direction u ∈ X, denoted by f◦(x;u),
may be defined as follows:

f◦(x;u) := lim sup
y→x
t↓0

f(y + tu)− f(y)

t
,

where y ∈ X and t > 0. The Clarke subdifferential of f at x is

∂Cf(x) := {z ∈ X : 〈z, u〉 ≤ f◦(x;u) for all u ∈ X}.

In particular ∂Cf(x) = ∂f(x) for a convex function f continuous around x.
Let C ⊂ X be a convex set. We say that a function f : C → R is DC (delta

convex or difference convex [14]) on C if it is expressible as the difference of two con-
tinuous convex functions on C, or equivalently, if there exists a continuous convex
function g : C → R such that the functions f + g and −f + g are both convex.

When Y is another normed linear space, a mapping F : C → Y is said to be
DC when there exists a continuous convex function g : C → R such that for all
y∗ ∈ SY ∗ the function y∗◦F+g is convex. In this case, g is called a control function.
Note that when Y is finite-dimensional this is equivalent to each component of F
being DC. This definition of a DC mapping is due to L. Veselý and L. Zaj́ıček
[29] and is far from being obvious. In the same paper, the authors show why this
definition is to be preferred to various other possibilities. We consider one other
option in Section 3.7. Lastly, a function or a mapping is locally DC if each point
of its domain has a convex neighborhood wherein it is DC.

Standard lattice notation is used. The pointwise maximum, resp. minimum of
f, g : X → R is denoted f ∨ g, resp. f ∧ g, and we put f+ := 0 ∨ f along with
f− := −(0 ∧ f). Finally, N stands for the set of positive integers.

2. Positive results

Let us start with well-known properties of DC functions, most of which can be
traced back to [14] and in some cases further. When practicable, we give more
direct proofs.

2.1. Lattice and ring structures. First observe that each DC function is a dif-
ference of two nonnegative convex continuous functions. Indeed, if X is a normed
linear space and f : X → R is DC, then

f = f1 − f2 + h = f1 − f2 + h+ − h−

where f1, f2 are nonnegative convex and h is affine —since any lower semicontinuous
proper convex function has an affine minorant. The functions h+, h− are then also
nonnegative and convex.
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The equality (f − g) ∨ 0 = (f ∨ g) − g for any f, g : X → R implies that if a
function h is DC so are h+, h−, |h|. Hence the class of DC functions on X (or on a
subset A) forms a vector lattice.

We now give a direct proof that the product of two DC functions is DC (and
hence that squares of DC functions are DC). Let f, g : X → R be DC function,
that is,

f = f1 − f2, g = g1 − g2

where f1, f2, g1, g2 are nonnegative, continuous, and convex. Since

2f1f2 = (f1 + f2)2 − f2
1 − f2

2

is DC, so is

f2 = f2
1 + f2

2 − 2f1f2.

And consequently, fg is DC because

2fg = (f + g)2 − f2 − g2.

The latter result also follows from [32, Theorem 4.1].
We conclude that the class of DC functions on X (or on a subset A) is also an

algebra.
In finite dimensions the reciprocal of a strictly positive DC function is DC, see

[14, Corollary]. We shall see in Theorem 4.4 that this fails generally in infinite
dimensional Banach space.

2.2. Mixing property. What follows is a broad generalization of the fact that
the class of DC functions is closed under taking maxima of finitely many functions,
[29, Lemma 4.8].

Proposition 2.1 (Veselý, Zaj́ıček). Let X be a normed linear space and A ⊂ X
a convex open set. Suppose f1, . . . , fn are DC functions on A. If f : A → R is
continuous and

f(x) ∈ {f1(x), . . . , fn(x)} for all x ∈ A,
then f is DC on A.

2.3. Approximation of continuous functions. As a corollary of the result
in subsection 2.1 we obtain the following approximation result via the Stone-
Weierstrass theorem (since DC functions contain constants and separate points
of the underlying space).

Proposition 2.2. Let X be a normed linear space, K ⊂ X a compact convex set,
and f : K → R a continuous function. Then there exists a sequence {fn}n of DC
functions on K which converges to f uniformly on K.

In Euclidean spaces this also follows from the fact that polynomials are DC, see
subsection 3.3. In consequence, there are in some sense too many DC functions for
the class to preserve many structurally useful properties.

2.4. Differentiability properties of DC functions. Some differentiability prop-
erties are inherited from convex functions, but not all, see Example 4.7. We first
recall some of the positive results from [15]. Let f : Rn → R be DC with a decom-
position f = f1 − f2. Then:

• ∂Cf(x) = ∂f1(x)− ∂f2(x) for all x ∈ Rn;
• ∂Cf reduces to ∇f a.e. on Rn;
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• ∂Cf is differentiable a.e. on Rn;
• f has a second-order Taylor expansion a.e. on Rn;
• f is strictly Fréchet differentiable a.e. on Rn.

Unlike the case of convex functions, it is easy to see that ∂Cf(x) need not reduce
to a singleton when f is differentiable at x ∈ Rn. See Example 5.3.

Observe also that f : [0, 1] → R is DC if and only if f is absolutely continuous
(AC) and f ′ has bounded variation. Indeed, just recall that a function of bounded
variation (a BV function) is precisely a difference of two nondecreasing functions
and conversely.

We next present a portion of [29, Theorem 3.10] and [29, Proposition 3.1].

Theorem 2.3 (Veselý, Zaj́ıček). Let X be a Banach space and A ⊂ X an open
convex subset. Suppose f : A→ R is locally DC.

(a) All one-sided directional derivatives of f exist on A.
(b) If X is Asplund, then f is strictly Fréchet differentiable everywhere on A

excepting a set of the first category.
(c) If X is weak Asplund, then f is Gâteaux differentiable everywhere on A

excepting a set of the first category.

Finally, recall [29, Proposition 3.9] and compare it with Theorems 4.8 and 4.9.

Proposition 2.4. Let X be a normed linear space and A ⊂ X open and convex.

Suppose f : A→ R is DC on A with a control function f̃ .

(a) If f̃ is Fréchet differentiable at x ∈ A, then f is strictly Fréchet differentiable
at x.

(b) If f̃ is Gâteaux differentiable at x ∈ A, then f is Gâteax differentiable at x.

2.5. Composition of DC mappings. We first recall a classical result on compo-
sition of DC functions and mappings due to P. Hartman [14].

Theorem 2.5 (Hartman). Let A ⊂ Rm be convex and either open or closed. Let
B ⊂ Rn be convex and open. If F : A→ B and g : B → R are DC, then g ◦ F is a
locally DC function on A.

Hartman also proved that a function on A = Rm is DC if and only if it is locally
DC. This fails broadly for infinite dimensional Banach spaces.

We now give a generalization of Hartman’s theorem for Banach spaces. The
ingenious proof technique developed by L. Veselý also applies to this slightly mod-
ified version of a result of his in [33]. We chose to give the proof because it so well
exemplifies the virtues of the notion of a control function.

Theorem 2.6 (Veselý). Let X be a Banach space, Y a normed linear space, and
A ⊂ X, B ⊂ Y be open convex sets. If F : A → B and g : B → R are locally DC,
then g ◦ F is a locally DC function on A.

Proof. Choose a ∈ A and then V ⊂ B a convex open neighborhood of F (a) such g
is DC on V with a control function g̃ : V → R and both g and g̃ are Lipschitz on
V with some Lipschitz constants L1 and L2, respectively. Further, choose U ⊂ A
a convex open neighborhood of a such that F (U) ⊂ V and F is DC on U with a

control function F̃ . Put L := L1 + L2.
We will show that g ◦ F is DC on U with a control function g̃ ◦ F + LF̃ . Let

x0 ∈ U and x∗ ∈ ∂F̃ (x0).
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(i) Let y∗ ∈ ∂g̃ (F (x0)) and y∗0 ∈ Y ∗ such that ‖y∗0‖ = 1 and y∗ = ‖y∗‖ · y∗0 . Let

u∗ ∈ ∂
(
y∗0 ◦ F + F̃

)
(x0).

Then, for any x ∈ U,

g̃ (F (x)) + LF̃ (x)− g̃ (F (x0))− LF̃ (x0)

≥ 〈F (x)− F (x0), y∗〉+ L
(
F̃ (x)− F̃ (x0)

)
= ‖y∗‖

(
〈F (x)− F (x0), y∗0〉+ F̃ (x)− F̃ (x0)

)
+ (L− ‖y∗‖)

(
F̃ (x)− F̃ (x0)

)
≥ ‖y∗‖〈x− x0, u

∗〉+ (L− ‖y∗‖) 〈x− x0, x
∗〉.

Thus, the function g̃ ◦ F + LF̃ is supported by a continuous affine function at any
x0 ∈ U . By [27, Theorem 43C] it is continuous and convex on U.
(ii) Let v∗± ∈ ∂(±g+g̃) (F (x0)) and v∗± ∈ Y ∗ such that ‖v∗±‖ = 1 and v∗± = ‖v∗±‖·v∗±.
Let w∗ ∈ ∂

(
v∗± ◦ F + F̃

)
(x0).

Then for every x ∈ U we have

±g (F (x)) + g̃ (F (x)) + LF̃ (x)−
(
±g (F (x0)) + g̃ (F (x0)) + LF̃ (x0)

)
≥

〈
F (x)− F (x0), v∗±

〉
+ ‖v∗±‖

(
F̃ (x)− F̃ (x0)

)
+
(
L− ‖v∗±‖

) (
F̃ (x)− F̃ (x0)

)
≥ ‖v∗±‖〈x− x0, w

∗〉+
(
L− ‖v∗±‖

)
〈x− x0, x

∗〉.

By the same argument as above, the functions ±g ◦F + g̃ ◦F +LF̃ are continuous
and convex on U. This finishes the proof. �

An even more general version of a composition theorem follows. For its proof
see [32, Proposition 3.1].

Theorem 2.7 (Veselý, Zaj́ıček). Let X,Y be normed linear spaces, A ⊂ X a convex
set, and B ⊂ Y open and convex. If F : A → B and g : B → R are locally DC,
then g ◦ F is locally DC on A.

Some limitations for composition results are described in Theorem 4.2. We finish
this subsection by recording a global composition theorem.

There are several known conditions which ensure that composition of two DC
mappings is a DC mapping, see [32, Sections 3,4]. We formulate a part of [32,
Proposition 3.3].

Proposition 2.8 (Veselý, Zaj́ıček). Let X,Y be Banach spaces, A ⊂ X open
convex, and B ⊂ Y convex. Let F : A → B be DC and g : B → R when restricted
on any convex bounded subset of B is Lipschitz and DC with a Lipschitz control
function. Then g ◦ F is DC on A.

2.6. Difference convexity is an absolute property. It follows easily from
Proposition 2.8 that if a mapping F is DC then ‖ · ‖ ◦ F is a DC function. Quite
pleasantly, we observe that the converse is true for Lipschitz functions. This follows
fairly directly from the mixing property of Theorem 2.1. We are indebted to Scott
Sciffer for the explicit proof.

Theorem 2.9 (Absoluteness of difference convexity). Let X be a Banach space
and A ⊂ X open convex set. Suppose f : A→ R is Lipschitz on A. Then f is DC
on A if and only if |f | is.
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Proof. It remains to show the ‘if’ part. Suppose |f | is DC, that is |f | = g − h,
where g and h are continuous convex functions on A. Define functions r : A → R
and s : A→ R, for x ∈ A, by

r(x) :=

 g(x) if f(x) ≥ 0

h(x) if f(x) < 0
and s(x) :=

 h(x) if f(x) ≥ 0

g(x) if f(x) < 0

It is immediate that r and s are Lipschitz and that f = r − s. What remains to
show is that r and s are convex. Around any point x ∈ A where f(x) 6= 0 there
is a neighborhood where r (or s) is equal to g (or h), and hence it has a local
subgradient. At a point x ∈ A where f(x) = 0 we have g(x) = h(x), but also g ≥ h
(since g−h = |f | ≥ 0), which shows that any subgradient of h is also a subgradient
of r and of s. But then r and s have (local) subgradients at every point, which
certainly makes them convex [7]. �

On the other hand, in the next section we show that the previous statement fails
with modulus replaced by norm for Lipschitz mappings, even when the range is just
two-dimensional (Example 4.11), and for order-convex mappings (Example 4.10).

2.7. Toland duality. In this subsection we reproduce some results from [12, 16].
The proof for Euclidean spaces appeared in [12] and holds without modification in
the Banach space context, however, the latter was explicitly given in [16].

We work with extended-valued functions, that is, functions with values in (−∞,+∞].
For such a function f : X → (−∞,+∞] define its domain as dom f := {x ∈ X :
f(x) < +∞}. Given any function f : X → (−∞,+∞] on a Banach space X we
define its (convex) conjugate function by

f∗(x∗) := sup
x∈X
{〈x∗, x〉 − f(x)} x∗ ∈ X∗.

The definition immediately yields

(1) inf
x∈X

f(x) = −f∗(0)

The following theorem states Toland duality, see [12, 16], and [28, Section 3.1].

Theorem 2.10 (Ellaia, Hiriart-Urruty). Let X be a Banach space, h : X → R be
convex continuous, and g : X → (−∞,+∞] any function. Then

(g − h)∗(x∗) = sup
y∗∈domh∗

{g∗(x∗ + y∗)− h∗(y∗)}

for any x∗ ∈ dom g∗.

Proof. Pick x∗ ∈ dom g∗. By direct calculation,

(g − h)∗(x∗) = sup
x∈X
{〈x∗, x〉 − (g − h)(x)}

≥ 〈x∗ + y∗, x〉 − g(x) + h(x)− 〈y∗, x〉 for any x ∈ X, y∗ ∈ X∗.

Consequently,

(g − h)∗(x∗) + h∗(y∗) ≥ g∗(x∗ + y∗)

for any y∗ ∈ X∗, and

(g − h)∗(x∗) ≥ sup
y∗∈domh∗

{g∗(x∗ + y∗)− h∗(y∗)} .



ON DIFFERENCE CONVEXITY 7

Note that we have not used convexity of h yet. To prove the converse inequality it
suffices, for a given x ∈ dom g, to find some y∗x ∈ domh∗ such that

〈x∗, x〉 − (g − h)(x) ≤ g∗(x∗ + y∗x)− h∗(y∗x).

Given x ∈ dom g we choose y∗x ∈ ∂h(x), and get

h(x) + h∗(y∗x) = 〈y∗x, x〉

by the Fenchel-Young inequality, see [7, Proposition 4.4.1]. Having y∗x ∈ domh∗ we
conclude

〈x∗, x〉 − (g − h)(x) = 〈x∗ + y∗x, x〉 − g(x) + h(x)− 〈y∗x, x〉
= 〈x∗ + y∗x, x〉 − g(x)− h∗(y∗x)

≤ sup
z∈X
{〈x∗ + y∗x, z〉 − g(z)} − h∗(y∗x) = g∗(x∗ + y∗x)− h∗(y∗x).

�

Corollary 2.11. By Theorem 2.10 and (1) one gets

(2) inf
x∈X

(g(x)− h(x)) = inf
x∗∈domh∗

(h∗(x∗)− g∗(x∗)) .

If we assume that both g, h are continuous convex, hence g − h is DC on X, we
arrive at (2) along with a similar results for suprema.

sup
x∈X

(g(x)− h(x)) = sup
x∗∈dom g∗

(h∗(x∗)− g∗(x∗)) .

2.8. Formula for the ε-subdifferential. In connection with Toland duality of
Section 2.7, we mention a formula for the ε-subdifferential of a DC function due to
Mart́ınez-Legaz and Seeger, [23]. Recall that, for a lsc function f : X → (−∞,∞]
and ε ≥ 0, the ε-subdifferential of f at x ∈ X is the set

∂εf(x) = {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈y − x, x∗〉 − ε for all y ∈ X} .

We can now state the main result of [23] for DC functions on Banach spaces. We
use the notation

A	B := {x∗ ∈ X∗ : x∗ +B ⊂ A}
where A,B ⊂ X∗.

Theorem 2.12 (Mart́ınez-Legaz, Seeger). Let f, g be continuous convex functions
on a Banach space X. Suppose x ∈ X and ε ≥ 0. Then

(3) ∂ε(f − g)(x) =
⋂
λ≥0

∂ε+λf(x)	 ∂λg(x).

In [23], the authors also show that (3) is equivalent to a result by Hiriart-
Urruty, [17]:

x is an ε-minimum of f − g if and only if ∂λf(x) ⊂ ∂ε+λg(x) for all λ ≥ 0.

For further details, we refer the reader to [17].

3. DC functions in analysis

In this section we present a few examples of DC functions from various parts of
analysis.
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3.1. Variational analysis. A function f : X → R is paraconvex if there exists
λ ≥ 0 such that the function

f +
λ

2
‖ · ‖2

is continuous and convex. A function g is paraconcave if −g is paraconvex. Ob-
viously, paraconvex and paraconcave functions are ‘very’ DC. Recall that lower-C2

functions on Hilbert spaces coincide with locally paraconvex functions, [26, Theo-
rem 3.2].

3.2. Game theory. Nash’s celebrated proof of the existence of equilibrium points
in finite non-cooperative games applies Brouwer’s fixed-point theorem to a mapping
which happens to be DC, [24, Theorem 1]. We recall the basic framework of this
we work.

One considers a finite game with n players. Each player has finitely many pure
strategies, say (πiα)α is the set of pure strategies of player i. This set is identified
with the canonical basis of a Euclidean space. Define mixed strategies of player i as
convex combinations of pure strategies (πiα)α, and denote the set by Si. Further,
player i has a pay-off function pi, which is a real-valued function defined on n-
tuples (π1α1

, . . . , πnαn
) of pure strategies. Clearly, it can be affinely extended to

the n-tuples of mixed strategies. We denote (s, ti) = (s1, . . . , si−1, ti, si+1, . . . , sn)
if player i chooses a strategy ti and sj ∈ Sj for j 6= i. An n-tuple s = (s1, . . . , sn),
where si ∈ Si, is an equilibrium point of the game if

pi(s) = max
ti∈Si

pi(s, ti),

for all i = 1, . . . , n. The maximum can be equivalently taken just over pure strategies
of player i.

Theorem 3.1 (Nash). Every such non-cooperative n-person game admits an equi-
librium point.

Sketch of proof. Denote piα(s) := pi(s, πiα), and

ϕiα(s) := max {0, piα(s)− pα(s)} i = 1, . . . , n,

which are obviously convex functions. Define the mapping T : s 7→ s′ component-
wise by

s′i :=
si +

∑
α ϕiαπiα

1 +
∑
α ϕiαπiα

.

Observe that the equilibrium points coincide with fixed points of T, which exist by
Brouwer’s theorem. �

We observe that the components of T are quotients of convex functions, and
hence T is DC, see Section 2.1.

3.3. Polynomials on RN . We next show that polynomials on RN are DC functions—
and inter alia give an explicit decomposition in the one-dimensional case. Consider
a polynomial

p(x) = anx
n + · · ·+ a1x+ a0, x ∈ R

with n ∈ N and an, . . . , a0 ∈ R. Denote I− = {k ∈ N : 2k − 1 ≤ N, a2k−1 <
0}, I+ = {k ∈ N : 2k − 1 ≤ N, a2k−1 > 0}, J− = {k ∈ N : 2k ≤ N, a2k < 0} and
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J+ = {k ∈ N : 2k ≤ N, a2k > 0}. Then, for x ∈ R,

p(x) = f1(x)− f2(x) where

f1(x) :=
∑
k∈I+

a2k−1 max{0, x2k−1}+
∑
k∈I−

a2k−1 min{0, x2k−1}+
∑
k∈J+

a2kx
2k

f2(x) := −
∑
k∈I+

a2k−1 min{0, x2k−1} −
∑
k∈I−

a2k−1 max{0, x2k−1} −
∑
k∈J−

a2kx
2k,

and f1, f2 are clearly continuous convex functions.
Having proved the one-dimensional case, observe that polynomials on RN are

DC. Indeed, the function (x, y) 7→ xy from R2 to R is DC since 2xy = (x + y)2 −
x2 − y2, and hence the claim follows easily by induction.

For a different approach to difference convexity of polynomials, we refer the
interested reader to [13] and the references therein.

3.4. Functions with Lipschitz gradient. If the underlaying space is sufficiently
nice, for instance Hilbert, then every C1,1 function (that is, differentiable with
Lipschitz gradient) is DC. More generally, we have the following.

Theorem 3.2 (Duda, Veselý, Zaj́ıček). Let X be a normed linear space. Then,
for any normed linear space Y and open convex set A ⊂ X, each F ∈ C1,1(A, Y ) is
DC if and only if X admits an equivalent norm with modulus of convexity of power
type 2.

Proof. See [11, Theorem 11]. �

3.5. Spectral theory. Spectral functions are often DC. Denote SN the set of
real symmetric matrices N by N. Let A ∈ SN and λ(A) = (λ1(A), . . . , λN (A))
denote its eigenvalues ranked in descending order. Then, for example, whenever
f : RN → (−∞,∞] is convex and rearrangement invariant one has that f ◦ λ is
convex (as a spectral function) and

(f ◦ λ)∗ = f∗ ◦ λ.

This relies on earlier work by von Neumann, Fan and Davis among others. See
[9, Corollary 7.2.9, Example 7.3.34], and also [4, 7]. In particular, we deduce that
the sum of the k largest eigenvalues is a locally Lipschitz convex function. As an
immediate corollary:

Theorem 3.3. The k-th largest eigenvalue function λk : A→ λk(A) is DC on the
space of symmetric matrices SN . Indeed, λk = σk − σk−1 where σk, the sum of the
k largest eigenvalues, is convex for each 1 ≤ k ≤ n.

The same ideas show that many other spectral functions are DC. For instance,
let us say that a function f on Rm is symmetric DC if it is both rearrangement
invariant and DC. In this case, f ◦ λ is a DC function on the m-by-m symmetric
matrices. To see this, we observe that we may replace g, h in any decomposition by
their averages over all permutations.

Example 3.4. An explicit example of a DC spectral function which is neither
convex nor concave occurs in R3. Indeed, consider the set S3 of real symmetric
matrices 3× 3. Whereas the largest-eigenvalue function λ1 is convex (being supre-
mum of linear functions and the smallest-eigenvalue function λ3 is concave (being
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infimum of linear functions), the middle-eigenvalue function λ2 is in general neither
convex nor concave. In fact,

λ2 : A 7→ TraceA− λ1(A)− λ3(A) = −λ3(A)− (λ1(A)− TraceA)

for each A ∈ S3. Figure 1 shows the function λ2 when restricted on an affine
subspace of S3 that consists of diagonal matrices with diagonal entries (1, a,−1)
for a ∈ R. �

Fig 1. The middle-eigenvalue function.

A similar statement to Theorem 3.3 extends to infinite dimensions (see [9, 7]) but
we are forced to consider only positive operators. Denote Bsa the set of self-adjoint
bounded linear operators on the complex separable Hilbert space `2c . Note that Bsa

is a real Banach space and contains Schatten classes Bp as subspaces. Recall that
an operator A ∈ Bsa belongs to the Schatten class B0 if it is compact, and belongs
to the Schatten class Bp, for p ∈ [1,+∞), if

‖A‖p := (Trace (|A|p))1/p
<∞,

where |A| = (A∗A)1/2. We say that A ∈ Bsa is positive if 〈Ax, x〉 ≥ 0 for all x ∈ `2c .

Theorem 3.5. For p ∈ {0}∪ [1,+∞) the k-th largest eigenvalue function λk : A→
λk(A) is DC on the set of positive Bp-operators.

3.6. Further operator theory. Let X be a Banach space. Each symmetric
bounded linear operator T : X → X∗ generates a quadratic form on X. In [20,
Theorem 2.12], the authors give a necessary and sufficient condition on the opera-
tor which assures that the corresponding quadratic form is DC.

Before stating the result we need some definitions. A finite sequence (f0, . . . , fn)
of X-valued functions on {−1, 1}n is called a Walsh-Paley martingale if each fk
depends only on the first k coordinates and

fk(ω) =
1

2
[fk+1(ω,−1) + fk+1(ω, 1)]

whenever 0 ≤ k < n and ω ∈ {−1, 1}k.
Given an integer n ≥ 1, and a function f : {−1, 1}n → X, the expectation of f

is defined as

Ef := 2−n
∑

η∈{−1,1}n
f(η) =

∫
{−1,1}n

f dP
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where P = Pn is the uniformly distributed probability measure on {−1, 1}n.
A bounded linear operator T : X → Y, where X,Y are Banach spaces, is a

UMD-operator if there exists C > 0 such that

E

∥∥∥∥∥
n∑
k=1

εkT (fk − fk−1)

∥∥∥∥∥
2

≤ C E‖fn‖2

whenever (f0, . . . , fn) is an X-valued Walsh-Paley martingale and ε1, . . . , εn ∈
{−1, 1}.
Theorem 3.6 (Kalton, Konyagin, Veselý). Let X be a Banach space and T a
symmetric bounded linear operator from X to X∗. Then the quadratic form x 7→
〈Tx, x〉 is DC if and only if T is a UMD operator.

Theorem 3.6 embraces the following special case.

Proposition 3.7. Let T be a symmetric bounded linear operator on a Hilbert space.
Then the function x 7→ 〈Tx, x〉 is DC on X.

Proof. An elementary argument can be found in [29, Corollary 1.12]: it is easy to
see that the function 〈T ·, ·〉 is C1,1, which in Hilbert spaces implies DC. Another
approach is to use [20, Theorem 1.2], which moreover yields a stronger result: the
function 〈T ·, ·〉 is a difference of two nonnegative quadratic forms (which are convex
functions). �

We finish this section by making connections between difference-convex operators
with values in ordered vector spaces and DC mappings.

3.7. Difference of two convex operators. Let X,Y be real normed linear spaces
and S ⊂ Y a closed convex cone inducing an ordering on Y by y1 ≥S y2 iff
y1 − y2 ∈ S. We can then naturally define S-convex mappings between X and
Y by saying that H : X → Y is S-convex (or order-convex ) [3] if for all x, y ∈ X
and λ ∈ [0, 1] we have

H (λx+ (1− λ)y) ≤S λH(x) + (1− λ)H(y).

Further, we say that a mapping F : X → Y is S-DC, or order-DC (with respect
to S), if it is the difference of two continuous S-convex mappings. Before stating
when such a mapping is DC let us recall that the dual cone of Y is by definition
the set

S+ := {ϕ ∈ Y ∗ : ϕ(s) ≥ 0 for all s ∈ S} .
Proposition 3.8. Suppose S+ has an order unit (equivalently S+ has nonempty
interior) and F : X → Y is an S-DC mapping. Then F is DC.

Proof. It suffices to show that an S-convex F operator is DC as the DC functions
form a vector space. Let u∗ ∈ S+ be an order unit and fix n ∈ N such that
y∗ ≤S nu∗ for all y∗ ∈ SY ∗ . So for any y∗ ∈ SY ∗ we have that y∗ + nu∗ ∈ S+ and
hence

(y∗ + nu∗) ◦ F
is a continuous convex function on X. Denote f := nu∗ ◦ F which is a continuous
convex function. Then

y∗ ◦ F + f

is continuous and convex for any y∗ ∈ SY ∗ . Hence F is a DC mapping with f as
its control function. �
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We refer the interested reader to [30, 31] for other results on order-convex and
order-DC operators. In particular, there are assumptions under which DC implies
order-DC.

4. Negative results

We turn now to provide a variety of counterexamples to accompany the positive
results from the previous section and to show their limitations.

4.1. Composition of DC functions. Violating an assumption in Theorem 2.5
one can easily produce counterexamples on composition of DC functions.

Example 4.1. [14, p. 708] We first show that the composition of two DC functions
need not be DC even in one-dimensional spaces. Indeed, let

f : (0, 1)→ [0, 1) : x 7→ |x− 1/2|,

and

g : [0, 1)→ R : y 7→ 1−√y.

Then g ◦ f is not DC as it has both left and right derivatives infinite at 1/2, see
the picture in Figure 1. Note that the assumption of openness of B in Theorem 2.5
was not fulfilled in this case, and g is not Lipschitz at zero. �

Fig 2. Function g ◦ f = 1−
√
| · −1/2| is not DC.

In [32, Theorem 5.5], the authors give a very general construction of counterex-
amples to difference convex composition theorems.

Theorem 4.2 (Veselý, Zaj́ıček). Let X,Y be normed linear spaces, X infinite-
dimensional. Let A ⊂ X be open convex and B ⊂ Y convex. Let g : B → R
unbounded on a bounded subset of B. Then there exists a DC mapping F : A→ B
such that g ◦ F is not DC on A.

The proof of the above theorem is, however, rather abstract. One can get a more
explicit example:
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Example 4.3. In Theorem 4.2 set X = Y = A = B = `2. Denote the standard
basis in `2 by {en}n∈N. Define g : `2 → R as

g(x) :=

∞∑
1

〈x, en〉2n, for x ∈ `2.

Then, as discussed more generally in [7, Chapter 9], g is a convex continuous func-
tion which is unbounded on 2BX . Using Theorem 4.2, one gets a DC mapping
F : `2 → `2 such that g ◦ F is not DC. �

4.2. Infinite vs finite dimensions. The following characterization is from [32,
Corollary 5.6].

Theorem 4.4 (Veselý, Zaj́ıček). Let X be a normed linear space and A ⊂ X open
convex set. Then the following are equivalent.

(a) X is infinite-dimensional.
(b) There is a positive DC function f on A such that 1/f is not DC on A.
(c) There is a locally DC function on A which is not DC on A.

The following explicit example appeared in [21, Theorem 14].

Theorem 4.5 (Kopecká, Malý). There exists an explicit function on `2 which is
DC on each bounded convex subset of `2 but is not DC on `2.

Recently, an interesting result appeared, [18]:

Theorem 4.6 (Holický, Kalenda, Veselý, Zaj́ıček). A Banach space X is non-
reflexive if and only if there is a positive convex continuous function f on X such
that 1/f is not DC.

4.3. Differentiability of DC functions. Let X be a Banach space. Then X
does not contain `1 if and only if weak Hadamard and Fréchet differentiability
coincide for continuous convex (resp. concave) functions on X, see [8, Theorem 2]
or [7, Chapter 9]. This is, however, not the case of DC functions, as the following
example shows.

Example 4.7. [8, Theorem 1b] Every nonreflexive Banach space X admits equiv-
alent norms p1, p2 such that p1 − p2 is weakly Hadamard differentiable and not
Fréchet differentiable at some point. �

The next two examples shed some light on how differentiability of a DC function
is related to differentiability of its control function. The first example comes from
[21, Theorem 7].

Theorem 4.8 (Kopecká, Malý). There exists a DC function on R2 which is strictly
Fréchet differentiable at the origin but which does not admit a control function that
is Fréchet differentiable at the origin.

Pavlica [25] complemented this result with the following example.

Theorem 4.9 (Pavlica). There exists a DC function on R2 which belongs to the
class C1 but does not admit a control function that is Fréchet differentiable at the
origin.

The same author constructed a DC function on R2 which is of class C1 on R\{0},
and is Fréchet differentiable at the origin, but is not strictly Fréchet differentiable
at the origin, [25].

Note also that
√
· does not preserve the (local) DC property, see Section 5.
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4.4. Difference convexity in norm. The following two examples show that The-
orem 2.9 cannot be extended to mappings.

Example 4.10. Consider F : `2 → `2 defined as

F (x1, x2, . . . ) = (|x1|, |x2|, . . . ) , (x1, x2, . . . ) ∈ `2.
Then ‖ · ‖ ◦ F = ‖ · ‖, so it is DC, and clearly F is Lipschitz. But F is not DC as
it is nowhere Fréchet differentiable, cf. [29, Theorem 3.10].

Note that F is `+2 -convex. �

This example thus shows that an order-convex operator need not be DC in our
sense; and so also illustrates the need for the dual cone to have nonempty interior
in Proposition 3.8.

Example 4.11. Let g(t) := t2 sin(1/t), t ∈ R, and define h(t) := exp(i g(t)), t ∈ R,
viewed as a function from R to R2. Then h is Lipschitz but is not DC (as its first
coordinate is not) while ‖h(t)‖ ≡ 1. �

5. Distance functions

Recall, that, given a closed subset C of a Banach space X, the distance function
is denoted dC . Edgar Asplund observed that, in Hilbert spaces, d2

C is DC on the
whole space [4, 9, 7]. Indeed,

d2
C(x) = inf

c∈C
‖x− c‖2 = − sup

c∈C

(
−‖x− c‖2

)
= ‖x‖2 − sup

c∈C

(
2〈x, c〉 − ‖c‖2

)
.

On the other hand the following example shows that this needn’t be true for dC .
To be more explicit, even in R2 there is a closed set C such that dC is not (locally)
DC on R2. In particular, the operation

√
· does not preserve DC.

Example 5.1 (Borwein, Moors). Let C1 ⊂ [0, 1] be a Cantor set of positive measure
and C := C1×C1 ⊂ R2. It is shown in [5, Example 9.2] that the distance function dC
is not strictly differentiable at any point of bd(C) = C. Consequently, dC cannot
be locally DC on R2 since locally DC functions in finite dimensions are almost
everywhere strictly Fréchet differentiable—as noted in Section 2.4. �

In [1, Introduction], the authors note that the distance function to a nonempty
set in a Hilbert space is the difference of two convex functions. The above example,
however, contradicts this statement even in R2. On the other hand a positive result
does hold true on the complement of the set, as the next theorem establishes.

Theorem 5.2. [9, Theorem 5.3.2] Let X be a Hilbert space and C ⊂ X a closed
set. Then dC is locally DC on X \ C.

Finally, we present an example of a distance function witnessing that Clarke
subdifferential of a differentiable DC function needn’t be a singleton.

Example 5.3. Let A ⊂ R2 and B = −A ⊂ R2 be Euclidean unit balls centered at
(−1, 0) and (1, 0), respectively. Put f := dA∪B which is a DC function since

dA∪B = dA ∧ dB .
One can observe that f is Fréchet differentiable at the origin whereas ∂Cf(0) =
conv{∂CdA(0), ∂CdB(0)} is not a singleton. �

As an open problem we ask whether for all closed sets C in a Banach space the
function d2

C is DC (locally) if the norm is sufficiently nice?
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[21] E. Kopecká, J. Malý: Remarks on delta-convex functions. Comment. Math. Univ.
Carolin. 31 (1990), no. 3, 501–510.

[22] M. Laghdir: Optimality conditions in DC-constrained optimization. Acta Math.
Vietnam. 30 (2005), no. 2, 169–179.

[23] J.-E. Mart́ınez-Legaz, A. Seeger: A formula on the approximate subdifferential of the
difference of convex functions. Bull. Austral. Math. Soc. 45 (1992), no. 1, 37–41.

[24] J. Nash: Non-cooperative games. Ann. of Math. (2) 54 (1951), 286–295.
[25] D. Pavlica: A d.c. C1 function need not be difference of convex C1 functions.

Comment. Math. Univ. Carolin. 46 (2005), no. 1, 75–83.
[26] J.-P. Penot: Favorable classes of mappings and multimappings in nonlinear analysis

and optimization. J. Convex Anal. 3 (1996), no. 1, 97–116.
[27] A.W. Roberts, D.E. Varberg: Convex functions. Academic Press, New York and

London, 1973.
[28] J.F. Toland: Duality in nonconvex optimization. J. Math. Anal. Appl. 66 (1978),

no. 2, 399–415.
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