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Abstract: We use the principle of maximum entropy to propose a parsimonious model for
generation of simulated rainfall during the wettest three-month season at a typical location
on the east coast of Australia. The model uses a checkerboard copula of maximum entropy to
model the joint probability distribution for total seasonal rainfall and a set of two-parameter
gamma distributions to model each of the marginal monthly rainfall totals. The model allows
us to match the grade correlation coefficients for the checkerboard copula to the observed
Spearman rank correlation coefficients and hence provides a model that correctly describes
the mean and variance for each of the monthly totals and also for the overall seasonal total.
Thus we avoid the need for a posteriori adjustment of simulated monthly totals in order to
correctly simulate the observed seasonal statistics.
Detailed results are presented for modelling and simulation of seasonal rainfall at the town
of Kempsey on the mid-north coast of New South Wales. Empirical evidence from extensive
simulations is used to validate this application of the model. A similar analysis for Sydney
is also described.
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1. Introduction

We propose a model for seasonal rainfall using the principle of maximum entropy. To demonstrate
our model we used official records from the Australian Bureau of Meteorology for station 059017 (Wide
Street) at Kempsey in New South Wales during the period 1889 to 2011. The town of Kempsey is a
typical location on the east coast of Australia with a humid sub-tropical or temperate climate and no
pronounced dry season. The Köppen classification is Cfa. Although the annual rainfall is relatively high
and is generally regarded as reliable there is ample historical evidence of extended periods with well
below average rainfall.

There is consensus amongst climate scientists that summer and autumn rainfall in eastern Australia
is influenced on a recurring basis by the quasi-periodic seasonal climatic events El Niño and La Niña.
During El Niño rainfall is inhibited and during La Niña it is enhanced. It is therefore not especially
surprising to find positive correlation for monthly rainfall at Kempsey during the period February-March-
April—the wettest time of the year. Our aim is to construct a parsimonious model for a vector-valued
random variable X = (X1, X2, X3) ∈ R3 that can be used to simulate typical monthly rainfall time
series for February-March-April at Kempsey. We will show that the key observed seasonal statistics lie
well within the commonly accepted empirical confidence intervals established by repeated simulations
with our proposed model. Our results also show that even seemingly significant trends in the observed
data could be due to chance alone.

2. A brief literature review

A comprehensive review of the vast array of relevant literature is neither feasible nor helpful. Instead
we shall be content to refer only to articles of fundamental historical significance or to those that are
directly relevant to the methods used in this paper.

The topic of entropy has a long and distinguished research history dating back to the fundamental
principles of thermodynamics proposed by Rudolf Clausius in 1855. The principle of maximum entropy,
enunciated much later by the physicist E. T. Jaynes [7,8] in 1957, is a recurring theme in our discussion.
We apply this principle to both discrete and continuous entropy. The modern notion of discrete entropy
[12] was introduced by John von Neumann in his 1927 treatise on quantum mechanics in which he
defined the entropy of a statistical operator ρ = {pn, ψn}n where pn > 0 and

∑
n pn = 1 and where

{ψn} is a complete orthonormal system of basis vectors as the weighted ensemble average S(ρ) =

−k 〈ρ loge ρ〉n = −k Tr(ρ loge ρ) = −k∑n pn loge pn. See [21, pp 348–353] for more details.
This measure was adopted in 1948 by C. E. Shannon [16] as a measure of information in the theory

of communication systems. Shannon also introduced the analogous notion of continuous or differential
entropy S(f) = −

∫
Ω
f(x) loge f(x)dx where f(x) ≥ 0 and

∫
Ω
f(x)dx = 1 for continuous probability

distributions. The entropy of a system is commonly described as a measure of the inherent disorder
within the system. Entropy is maximized when the system is in the highest possible state of disorder.
For a system with a finite number of possible states the entropy is maximized when all probabilities are
equal.

By contrast the topic of rainfall modelling has a much more recent research history. The early work,
such as the paper by Stern and Coe [19], follows a classical style that is typical of the physical sciences.
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However the focus has shifted in recent times to a more pragmatic approach that is less concerned with
a logical axiomatic basis and more concerned with a positive utilitarian outcome. The most relevant
recent paper in relation to our work is the comprehensive 2005 report to the Australian Cooperative
Research Centre for Catchment Hydrology by Srikanthan [18]. We shall discuss this paper in some
detail. Although the report describes a successful scheme for generation of daily rainfall data at multiple
sites a substantive difficulty emerges in the accumulation of simulated daily rainfall totals. This difficulty
lies at the very heart of the problem that we will address. At each site Srikanthan uses a simple two by
two Markov chain to generate realistic sequences of wet and dry days. On the designated wet days a
two-parameter gamma distribution is invoked to generate rainfall depths. However Srikanthan makes the
following critical observation.

The generated daily rainfall amounts when aggregated into monthly and annual totals will
not in general preserve the monthly and annual characteristics.

Hence it is necessary to implement a nested correction process. In the first place the generated monthly
total X̃i for the current month i obtained by summing the daily totals is modified to produce a corrected
monthly total Xi according to the iterative formula

Xi − µi
σi

= ρi
Xi−1 − µi−1

σi−1

+ (1− ρ2
i )

1/2 X̃i − νi
τi

where, in our simplified notation, µi is the observed mean and σi is the observed standard deviation
for month i, ρi is the observed correlation between the normalized totals for the current month i and
the previous month i − 1, and νi is the theoretical mean and τi is the theoretical standard deviation
for the sum of the generated daily totals in month i. The iterative process relies on knowledge of the
previous corrected total but Srikanthan does not say how the initial correction is obtained. The generated
daily totals are now multiplied by a factorXi/X̃i to ensure that the corrected monthly total is obtained by
summing the corrected daily totals. In the second place a similar correction is necessary when converting
the monthly totals to annual totals with a further corresponding correction required for the daily totals.

While this is an eminently sensible correction process—effectively a top-down approach based on
the primary importance of the annual distribution—it also recognises a fundamental problem with the
original model in which correlations in the daily rainfall, although undoubtedly very small, are apparently
ignored. It is known that the introduction of a single correlation parameter allows one to adjust the
standard deviation for the sum of the daily totals in a month so that it matches the observed monthly
standard deviation. See for instance the correlative coherence analysis proposed by Getz [4]—which,
incidentally, makes direct use of the Shannon entropy—and the model proposed by Hasan and Dunn
[5] which uses a Tweedie distribution. It is perverse, in retrospect, to select a gamma distribution that
will generate realistic daily rainfall depths if one intends, subsequently, to modify the generated data.
This inevitably means that the modified daily rainfall depth distributions will be biassed relative to the
observed distributions.

While we acknowledge the utility and undoubted practicality of the Srikanthan model we are
concerned about what appears to be an ad hoc theoretical basis. There is no clear statement about
the relationship between the sample measurements and the a priori criteria that will be used to judge
goodness-of-fit. In this regard there is one further point we wish to make. In order to embed spatial
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correlation into the rainfall generation process Srikanthan uses a multivariate normal distribution to
generate appropriately correlated sequences of random numbers at the various sites. This is equivalent to
using a multivariate normal copula to construct a joint distribution that preserves the marginal single
site distributions. Srikanthan points out that there is no known theoretical method to calculate the
corresponding grade correlation coefficients from the correlation matrix and hence concedes that it is
necessary to use a process of iterative adjustment to find the correct correlation matrix. This is one
more reason why calculation of a checkerboard copula of maximum entropy—as we propose in this
paper—may be a more computationally efficient way to generate the required correlations. Since there
are many other copulas that could be chosen for this task it would also seem to be good practice to
provide some rationale for the choice.

There is a large number of other papers that we could legitimately cite but we mention only a few.
For a more comprehensive review we refer to Srikanthan and McMahon [17] and to an earlier review
by Wilks and Wilby [20]. The over-dispersion phenomenon that bedevils the Srikanthan model was
studied by Katz and Parlange [9] who suggested that higher order Markov models can reduce apparent
discrepancies in the number of generated wet days and the number of observed wet days. Rosenberg et
al [15] constructed a joint density using Laguerre series to incorporate correlation between successive
months and hence correct the seasonal variance but the optimal parametric structure of this model is
unclear. Hasan and Dunn [5] have recently used a Tweedie distribution to model monthly rainfall.
The model combines a Poisson process to generate wet and days and a collection of correlated gamma
distributions to model daily rainfall depth. There is insufficient freedom in this model to match individual
daily correlations but it is possible to adjust the correlation parameters so as to avoid the over-dispersion
problem.

3. First experiment: comparing the observed seasonal rainfalls with simulated observations for a
stationary time series at various timescales.

In practice it may be possible to observe only a finite number of terms {xi}Ni=1 in a doubly-infinite
time series {xi}∞i=−∞. In such cases we may define the moving average {xi(k)}Nk

i=1 whereNk = N−k+1

at scale k by

xi(k) =
1

k

i+k−1∑
`=i

x`

for each i = 1, . . . , Nk and k = 1, . . . , N . For each fixed time frame s ≤ N we can also define the mean
{µs(k)}Ns

k=1 and standard deviation {σs(k)}Ns
k=1 for time frame s at scale k by

µs(k) =
1

s

s∑
i=1

xi(k) and σs(k)2 =
1

s

s∑
i=1

(xi(k)− µs(k))2.

If the time series {xi}∞i=−∞ is stationary in the wide sense then

1. E[µs(k)] = µ for all k = 1, . . . , Ns; and

2. E[σs(k)2] = Rs(k) for all k = 1, . . . , Ns
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for each fixed time frame s ≥ 1. We cannot test these properties directly for a partially observed time
series {xi}Ni=1. Indeed Koutsoyannis [10] argues that it is difficult to tell, from a single realization,
whether an observed time series is stationary. Nevertheless, he suggests that it is useful to compare the
standard deviation at scale k for the partially observed time series to the adjusted standard deviation at
scale k for simulated observations of a known stationary time series over the same period.

Consequently, we compared the observed time series {xi(k)}Ni=1 of seasonal rainfall totals at
Kempsey, where N = 123 years, with a large number of independently generated simulated observed
time series {ui}Ni=1 of uniformly distributed uncorrelated pseudo-random numbers. For a timeframe
of s = 25 years we compared the graphs of the log mean {loge µs(k)}Ns

k=1 and log standard deviation
{log σs(k)}Ns

k=1 at scale k against loge k for the observed rainfall to the corresponding graphs of the
adjusted log mean {loge cs νs(k)}k=1Ns where cs = µs(1)/νs(1), and adjusted log standard deviation
{loge ds σs(k)}Ns

k=1 where ds = σs(1)/τs(1) for the pseudo-random numbers. The pseudo-random
numbers were generated in MATLAB.

If the partially observed time series of seasonal rainfalls is a wide sense stationary time series of
independent random numbers with mean µ and standard deviation σ then for time frame s the expected
values E[µs(k)] and E[σs(k)2] at scale k are given by

E[µs(k)] = µ, E[σs(k)2] =


1

s− 1

[
s

k
− 1 +

(
k − 1

k

)
1

3s

]
σ2 for 1 ≤ k ≤ s

1

3k2
(s+ 1)σ2 for s ≤ k ≤ Ns − 1.

(1)

Figure 1. Left: Plots of loge µs(k) against loge k (blue graph) showing corresponding graphs
for 100 simulated series of pseudo-random numbers (light blue graphs) and logeE[µs(k)] for
a stationary time series (black graph). Right: Plots of loge σs(k) against loge k (blue graph)
showing corresponding graphs for 100 simulated series of pseudo-random numbers (light
blue graphs) and 1

2
logeE[σs(k)2] for a stationary time series (black graph).
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The graphs in Figure 1 show that the mean and standard deviation at scale k for the series of seasonal
rainfall totals {xi}Ni=1 exhibit similar behaviour to that of the corresponding adjusted mean and standard
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deviation for the simulated observations {ui}Ni=1 of a stationary time series of uncorrelated pseudo-
random numbers. We conclude that it is reasonable to model the observed seasonal rainfall as a stationary
time series and hence deduce that the distribution of observed values can be modelled by a real-valued
random variable.

4. First theoretical principle: the gamma distribution is the maximum entropy model for a random
variable defined only by a finite number of strictly positive observations

In his influential 1957 papers the physicist E. T. Jaynes [7,8] wrote down the following general
principle—now known as the principle of maximum entropy.

In making inferences on the basis of partial information we must use that probability
distribution which has maximum entropy subject to whatever is known. This is the only
unbiassed assignment we can make; to use any other would amount to arbitrary assumption
of information which, by hypothesis, we do not have.

We will use this principle to argue that the gamma distribution is the best model to represent the
distribution of a random variable X provided the means of the partially observed totals {xi}Ni=1 and of
the natural logarithm of the partially observed totals {loge xi}Ni=1 are both well-defined and finite. This
is true if we assume that the observed totals {xn}Nn=1 are strictly positive.

It is useful to outline the mathematical argument. We wish to find a probability density f : (0,∞)→
[0,∞) such that the differential entropy

h(f) = (−1)

∫ ∞
0

f(x) loge f(x)dx (2)

is maximized subject to the additional constraints imposed by the observed means

E[X] = x =
1

N

N∑
n=1

xn and E[logeX] = loge x =
1

N

N∑
n=1

loge xn. (3)

We can formulate this problem as a convex optimization with linear constraints. From the theory of
Fenchel duality and the Fenchel-Young inequality ([3], pp. 171-178) we have

p = inf
f∈L1[(0,∞)]

{
−h(f)− 1 | E[1] = 1, E[X] = x,E[logeX] = loge x

}
≥ sup

(α,β,κ)∈R3

{
loge κ− x/β + (α− 1)loge x− κ

∫ ∞
0

xα−1e−x/βdx

}
= sup

(α,β,κ)∈R3

{
loge κ− x/β + (α− 1)loge x− κΓ(α)βα

}
= sup

(α,β,κ)∈R3

ϕ(α, β, κ)

= − loge[Γ(α)β] + (α− 1)ψ(α)− (α + 1) = d (4)

where the parameters α, β and κ = κ(α, β) are determined by the equations

loge β + ψ(α) = loge x, αβ = x, κ =
1

Γ(α)βα
(5)
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and where ψ(α) = Γ ′(α)/Γ(α) is the digamma function. The supremum and the conditions (5) are
found simply by solving the equations ∂ϕ/∂α = 0, ∂ϕ/∂β = 0 and ∂ϕ/∂κ = 0. The function

fα,β(x) =
1

Γ(α)βα
xα−1e−x/β,

which arises naturally in (4) when solving the dual optimization problem to find d, is the probability
density on (0,∞) for the gamma distribution with parameters α and β. If X is a random variable with
this distribution we write X ∼ Γ(α, β). We will also use the notation

Fα,β(x) =

∫ x

0

fα,β(ξ)dξ

for x > 0 to denote the corresponding cumulative probability distribution. In the case where α and β
are determined by (5) then the additional constraints (3) are also satisfied. Since it is easy to show that
−h(fα,β) − 1 = d it follows that p = d and that fα,β is the unique solution to our original convex
optimization problem.

We conclude that the gamma distribution with parameters α and β determined by solving the
equations (5) is the least ordered or least prescriptive probability distribution on (0,∞) satisfying the
given constraints. It is pleasing that the equations (5) are also the maximum likelihood equations used to
estimate α and β if one has decided a priori to fit a gamma distribution to the observed values {xn}Nn=1.

5. Second experiment: a comparison of the trend-slopes for the observed time series of monthly
rainfall totals and the trend-slopes for simulated time series of monthly rainfall totals generated
by the appropriate maximum likelihood gamma distributions.

The observed monthly rainfall totals for February, March and April at Kempsey for the period 1889

to 2011 are all strictly positive. Our tests so far suggest that we may reasonably propose the following
null hypothesis—that the observed monthly rainfall totals at Kempsey in February, March and April can
be modelled as outcomes of the stationary random variables Xi ∼ Γ(αi, βi) for each i = 1, 2, 3 where

α = (1.5502, 2.0134, 1.2735) and β = (100.4753, 77.2556, 91.1034).

We tested the null hypothesis by a linear regression on the observed time series of monthly rainfall
totals and on each of 20000 simulated time series of monthly rainfall totals over the same period of 123

years generated by the proposed gamma distributions. Let {ri(t)} denote the rainfall in month i and
year t. We used MATLAB to find (pi, qi) such that

∑123
t=1 |ri(t) − (pit + qi)|2 is minimized. The slope

pi of this line is the trend-slope. In each case we found that the trend-slope of the observed rainfall
data sets lay well within the empirical 95% confidence intervals for the trend-slopes of the simulated
rainfall data sets. The trend-slopes for the observed data sets and the corresponding 95% confidence
intervals for the trend-slopes of the simulated data sets were p1 = 0.22 ∈ [−0.63, 0.63] in February,
p2 = 0.19 ∈ [−0.55, 0.55] in March and p3 = 0.14 ∈ [−0.52, 0.52] in April. We conclude that there
is insufficient evidence to reject the hypothesis that the observed monthly rainfall totals {xi,j}j=1,...,N

are the outcomes of a stationary random variable Xi ∼ Γ(αi, βi) for each i = 1, 2, 3. This means
the apparent observed trends could reasonably be regarded as due to chance alone. The results of our
simulations are shown in Figure 2.
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Figure 2. Trend-slope histograms for 20000 simulated rainfall data sets generated by
maximum likelihood gamma distributions for February (left), March (centre) and April
(right). The vertical red lines show the observed trend-slopes lying inside the empirical
95% confidence intervals for the simulated trend-slopes.
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Since ri(t) ≈ pit + qi and since pi > 0 for each i = 1, 2, 3 one could possibly argue that all
observed trend-slopes are positive and that a null hypothesis of a positive trend slope in each case is
more appropriate. If so a more complex time dependent model for both monthly and seasonal rainfall
would be required. Although most climate scientists expect rainfall events in eastern Australia to become
more extreme we believe there is currently no firm agreement about such rainfall trends.

6. Third experiment: using Q-Q plots to test the goodness-of-fit for the simulated time series of
monthly rainfalls generated by the maximum likelihood gamma distributions to the observed time
series of monthly rainfalls

We demonstrate the goodness-of-fit for the observed monthly rainfall data to the designated gamma
distributions using Q-Q plots.

Firstly we used the designated gamma distribution to generate 1000 simulated data sets. Then we
plotted the simulated quantiles against the theoretical quantiles. The results are shown in Figure 3.
These plots show the full range of random variation that one should expect from observations of the
designated gamma random variable from 1000 samples each of size N = 123. By discarding the bottom
25 and top 25 values for each quantile from the simulated data sets we found empirical 95% confidence
intervals.

Secondly, we plotted the observed quantiles against the theoretical quantiles for the gamma
distribution. The results are shown in Figure 4. We used grey bars on these plots to show the empirical
95% confidence intervals for the simulated quantiles. In all but one of twenty four cases the observed
values lie within the desired intervals. Thus, on the basis of the Q-Q plots, there are no recognised
statistical grounds to reject the hypothesis that the monthly rainfall totals can be modelled by the
designated gamma distributions.

Remark 6.1. We have been taken to task by some in the engineering community for not comparing
our proposed model to other models currently in popular use. Nevertheless, our model is based on a
well-established scientific methodology. We use the principle of maximum entropy to argue that the
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maximum likelihood gamma distribution is the most appropriate model for rainfall accumulations where
the observed totals are strictly positive.

Thus, we use maximum likelihood to calculate the relevant parameter values and then test our model
rigorously and impartially against the observed values according to accepted statistical wisdom. The
conclusion is clear—there are no reasonable statistical grounds for rejecting the model. The argument
that other models may provide a better fit to the observed data is essentially scientific nonsense.
Indeed this criticism embraces a fundamental misconception that an observed sample is always a true
representation of the entire population. Moreover, the suggested iterative correction methods used by
Srikanthan and others are subject to concerns about overfitting [1].

A legitimate criticism of our model would need to argue either that the principle of maximum entropy
is inappropriate or else that we should use more extensive data measurements.

Figure 3. Q-Q plots of quantiles for 1000 simulated data sets with each set covering a period
of 123 years versus corresponding theoretical quantiles for Xi ∼ Γ(αi, βi) at Kempsey in
February (left), March (centre) and April (right).
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Figure 4. Q-Q plots for observed quantiles versus theoretical quantiles for Xi ∼ Γ(αi, βi)

at Kempsey in February (left), March (centre) and April (right). The vertical grey bars show
empirical 95% confidence intervals for simulated quantiles generated by Xi ∼ Γ(αi, βi).
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7. Second theoretical principle: finding a checkerboard copula of maximum entropy to construct a
joint density for seasonal rainfall that matches the observed marginal rank correlation coefficients
and preserves the desired marginal monthly distributions

The next step in the modelling process is to construct a joint probability distribution for the entire
three-month time period. We will do this in what we believe is the most natural way—by using the
principle of maximum entropy. Past studies of rainfall accumulations over several months [9,15] have
concluded that the variance of the simulated time series of seasonal rainfall totals generated by models
with independent marginal distributions is often not consistent with the observed variance. Since the
observed data at Kempsey shows positive correlation for February–March–April we expect the observed
variance in seasonal rainfall to be higher than one would find with independent marginal monthly
distributions.

Our aim will be to construct a joint distribution that not only preserves the desired monthly rainfall
characteristics but also replicates the observed variance in the seasonal rainfall totals. We will do this
using a checkerboard copula of maximum entropy. Once again we will proceed on the basis that
our model should satisfy the fundamental physical requirements—that the marginal distributions are
preserved and that the joint distribution is constrained by the observed rank correlation coefficients—and
that we should test the model against the observed data using accepted statistical principles. In the first
instance we need to show that the model satisfies the required constraints. In the second instance we
wish to show that the variance of the simulated seasonal rainfall totals is consistent with the observed
variance.

7.1. Copulas with prescribed grade correlation coefficients

An m-dimensional copula, where m ≥ 2, is a cumulative probability distribution C(u) ∈ [0,∞)

defined on the m-dimensional unit hypercube u = (u1, u2, . . . , um) ∈ [0, 1]m for a vector-valued random
variableU = (U1, U2, . . . , Um) with uniform marginal distributions for U1, U2, . . . , Um. We refer to [11]
for a full discussion. The correlation coefficients for the joint distribution are defined by

ρr,s =
E[(Ur − 1/2)(Us − 1/2)]√

E[(Ur − 1/2)2]E[(Us − 1/2)2]
= 12E[UrUs]− 3 (6)

for each 1 ≤ r < s ≤ m. In order to model the joint probability distribution for a vector-valued random
variable X = (X1, X2, . . . , Xm) ∈ (0,∞)m with known marginals ui = Fi(xi) we simply construct
uniformly distributed random variables Ui = Fi(Xi) ∈ (0, 1) for each i = 1, 2, . . . ,m and use the
m-dimensional copula C(u) = C(F (x)) = C(F1(x1), F2(x2), . . . , Fm(xm)). We say that the grade
correlation coefficients forX are simply the correlation coefficients for U defined above. That is

ρr,s =
E[(Fr(Xr)− 1/2)(Fs(Xs)− 1/2)]√

E[(Fr(Xr)− 1/2)2]E[(Fs(Xs)− 1/2)2]
= 12E[Fr(Xr)Fs(Xs)]− 3 (7)

for each 1 ≤ r < s ≤ m. In this paper we distinguish between the Spearman rank correlation coefficients
ρ̂r,s obtained from the observed data {xi,j}Nj=1, or equivalently from the transformed observed data
{ui,j}Nj=1, and the grade correlation coefficients ρr,s defined by (7).
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For our proposed application we make the following observation. Once it has been decided that the
monthly rainfall Xi can be modelled by a gamma distribution Xi ∼ Γ(αi, βi) with Fi(x) = Fαi,βi(x)

then we can define transformed random variables Ui = Fi(Xi) for each i = 1, 2, 3 which will be
uniformly distributed on (0, 1). The original observed data set {xi,j}j=1,2,...,N for the random variable
Xi ∼ Γ(αi, βi) can be transformed into a corresponding data set {ui,j = Fi(xi,j)}j=1,2,...,N for the
uniformly distributed random variable Ui ∼ U([0, 1]) for each i = 1, 2, 3. This transformation is also
important insofar as it removes seasonal factors from the observed data.

7.2. Problem formulation and solution for the checkerboard copula of maximum entropy with prescribed
grade correlation coefficients

We outline the basic ideas. An m-dimensional multivariate checkerboard copula is a probability
distribution on the unit hypercube [0, 1]m defined by subdividing the hypercube into nm congruent small
hypercubes with constant density on each one. If the density on Ii where i = (i1, i2, . . . , im) is defined
by nm−1hi ≥ 0 then the marginal distributions will be uniform if∑

i∈S(r,i)

hi = 1 for each r and each i,

where S(r, i) = {i | ir = i} for r = 1, 2, . . . ,m and i = 1, 2, . . . , n. In such cases we say that
h = [hi] ∈ R` where ` = nm is multiply-stochastic. We wish to construct a joint density in this form
with the desired grade correlation coefficients. For sufficiently large n there are many ways that this can
be done.

The principle of maximum entropy means that the best such distribution is the most
disordered or least prescriptive solution—the multiply-stochastic hypermatrix h ∈ R` which
has the most equal subdivision of probabilities but still allows the required correlations.
In mathematical terminology this is the hypermatrix that satisfies the grade correlation
constraints and has the highest possible entropy.

We have the following formal statement of the problem.

Problem 7.1 (The primal problem). Find the hypermatrix h = [hi] ∈ R` where i = (i1, . . . , im) and
` = nm to maximize the entropy

J(h) = (−1)

 1

n

∑
i ∈ {1,...,n}m

hi loge hi + (m− 1) loge n

 (8)

subject to the multi-stochastic constraints ∑
i∈S(r,i)

hi = 1 (9)

for all r = 1, 2, ...,m and i = 1, 2, ..., n and

hi ≥ 0 (10)
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for all i ∈ {1, . . . , n}m and the grade correlation coefficient constraints

12

 1

n3

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2)

− 3 = ρ̂r,s (11)

for 1 ≤ r < s ≤ m where the observed rank correlation coefficient ρ̂r,s is known for all 1 ≤ r < s ≤ m.

The problem can be neatly and rigorously solved using the theory of Fenchel duality. The solution
and a full description of the construction process for the trivariate checkerboard copula of maximum
entropy1 can be found elsewhere [13,14]. Them-dimensional copula of maximum entropy is determined
by m(m− 1)/2 real parameters—the grade correlation coefficients—defined in equation (7).

7.3. The checkerboard copula of maximum entropy for seasonal rainfall in February-March-April at
Kempsey

We set m = 3 and n = 4. The triply-stochastic hypermatrix h ∈ R4×4×4 describing the trivariate
checkerboard copula of maximum entropy for February–March–April rainfall at Kempsey is shown
below to four decimal place accuracy. We set ρ12 = ρ̂12 = 0.202, ρ13 = ρ̂13 = 0.112 and
ρ23 = ρ̂23 = 0.152 and calculate

h1 ≈


0.1262 0.0975 0.0733 0.0536

0.0870 0.0756 0.0639 0.0525

0.0567 0.0554 0.0527 0.0487

0.0350 0.0384 0.0411 0.0427

, h2 ≈


0.0920 0.0765 0.0618 0.0486

0.0750 0.0701 0.0637 0.0563

0.0578 0.0608 0.0621 0.0618

0.0422 0.0499 0.0573 0.0641

,

h3 ≈


0.0641 0.0573 0.0499 0.0422

0.0618 0.0621 0.0608 0.0578

0.0563 0.0637 0.0701 0.0750

0.0486 0.0618 0.0765 0.0920

, h4 ≈


0.0427 0.0411 0.0384 0.0350

0.0487 0.0527 0.0554 0.0567

0.0525 0.0639 0.0756 0.0870

0.0536 0.0733 0.0975 0.1262

,

where hi = [hijk]. The entropy is given by J(h) ≈ −0.040714. For the given rank correlation
coefficients a simple MATLAB program computed the checkerboard copula in 0.78 s on a Macintosh
OS laptop computer.

8. Fifth experiment: simulations for seasonal rainfall at Kempsey

We used the copula of maximum entropy to generate numerous simulated data sets each spanning a
period of N = 123 years. The simulation finds the monthly rainfalls in each year, draws a histogram
of the total seasonal rainfall and plots the corresponding time series. The simulations show that
sample statistics are quite variable. Selected results in Figures 5 and 6 from 16 successively generated

1 MATLAB algorithms to construct the copula in 3-dimensions are lodged at the CARMA website,
www.carma.newcastle.edu.au/hydro, and are also available from the corresponding author Emeritus
Professor Phil Howlett.
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simulated data sets illustrate the typical range of variation in samples of this size. Consequently it is
not unreasonable to believe that the statistics for an observed sample taken over a period of 123 years
may exhibit similar variation. In view of these observations we suggest that it is prudent to regard minor
changes in statistical parameters from the observed values during the 30-year standard period 1961 to
1990 as random fluctuations. To obtain more reliable observed samples it would be necessary to take
observations over a much larger time span than 123 years.

Figure 5. Selected histograms for total rainfall from 15 successive random simulations of
seasonal rainfall at Kempsey for February–March–April with each simulation spanningN =

123 years using the copula of maximum entropy. The histograms—for Sim #4 (left), Sim
#6 (centre) and Sim #11 (right)—show typical sample variation for N = 123 years. The
sample mean x and variance s2 are shown on the plots.
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Figure 6. Selected time series for total rainfall from 15 successive random simulations
of seasonal rainfall at Kempsey for February–March–April with each simulation spanning
N = 123 years using the copula of maximum entropy. The time series—Sim #4 (left), Sim
#6 (centre) and Sim #11 (right)—show typical sample variation for N = 123 years.
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In Figure 7 we compare the observed frequencies for total rainfall with the probability density of
the maximum likelihood gamma distribution X ∼ Γ(3.6524, 116.9983) for total rainfall2 and also show
generated frequencies from a typical simulation using the copula of maximum entropy spanning a period
of 12300 years. Summary statistics for both models are shown in Figure 7.

2 This model generates simulated seasonal rainfall totals directly and does not generate individual monthly rainfall totals.
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Figure 7. Histogram for observed total rainfall for February–March–April during the
period 1889 to 2011 with mean x and variance s2 and designated gamma distribution
X ∼ Γ(3.6524, 116.9983) with mean µ and variance σ2 (left) and typical histogram from
10 successive simulations for total rainfall at Kempsey for February–March–April with each
simulation spanning a period of N = 12300 years using the copula of maximum entropy.
The histogram—Sim # 9 of 10 successive simulations—is a true representation of the entire
model population. The sample mean x and variance s2 are shown on the graph.
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In Figures 8, 9 and 10 we show histograms of sample means for monthly rainfall, sample means and
variances for seasonal rainfall and corresponding values for the rank correlation coefficients from 10000

independently generated simulated data sets. Each data set covers a period of N = 123 years. In each
case the empirical 95% confidence intervals established by the simulations are also shown. The mean
values over all samples and the corresponding empirical 95% confidence intervals were x1 = 156 ∈
[138, 175], x2 = 156 ∈ [140, 173] and x3 = 116 ∈ [101, 132] for the monthly rainfalls, x = 427 ∈
[396, 459] and s2 = 47467 ∈ [36403, 60266] for the seasonal rainfall and seasonal variance, and ρ̂12 =

0.201 ∈ [0.055, 0.340], ρ̂13 = 0.111 ∈ [−0.037, 0.258] and ρ̂23 = 0.152 ∈ [0.004, 0.297] for the rank
correlation coefficients. Importantly we see that the observed overall variance 53762 ∈ [36403, 60266]

lies well within the empirical 95% confidence intervals for the proposed model. We conclude that there
are no reasonable statistical grounds to reject the proposed model.

Figure 8. Histograms for simulated monthly sample means at Kempsey from 10000 samples
with each sample spanning a period of N = 123 years showing empirical 95% confidence
intervals and overall means for February (left), March (centre) and April (right).
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It is one thing to argue that the observed statistics lie within the empirical 95% confidence intervals
generated by the proposed model. It is another thing altogether to turn this statement around and imagine
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Figure 9. Histograms for simulated seasonal sample means (left) and sample variances
(right) at Kempsey from 10000 samples with each sample spanning 123 years showing
empirical 95% confidence intervals and overall mean and variance.
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Figure 10. Histograms for simulated sample rank correlation coefficients at Kempsey from
10000 samples with each sample spanning 123 years showing empirical 95% confidence
intervals and overall mean values for ρ12 (left), ρ13 (centre) and ρ23 (right).
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that the observed statistics were actually generated by the model. If so one might ponder on what should
be expected from the next set of generated statistics. The answer is that one should not be unduly
surprised by a change of ±7% in the average seasonal rainfall. In purely statistical terms such changes
lie within the empirical 95% confidence intervals and as such could be regarded as fluctuations due to
chance alone.

9. Sixth experiment: an alternative joint distribution—the checkerboard normal copula

The normal distribution is popular and is generally regarded as easy to apply. Hence we decided to
compare the copula of maximum entropy to a copula defined by a multivariate normal distribution.

9.1. Constructing a normal checkerboard copula with prescribed grade correlation coefficients

The m-dimensional normal distribution ϕ : Rm → [0,∞) for the vector-valued random variable
Z = (Z1, . . . , Zm)T ∈ Rm with unit normal marginal distributions is defined by the density

ϕ(z) =
1

(2π)m/2(det Σ)1/2
exp

[
− 1

2
zTΣ−1z

]
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where z = (z1, . . . , zm)T ∈ Rm and Σ = E[ZZT ] = [cos θr,s] ∈ [−1, 1]m×m is the correlation matrix.
The marginal distributions for Zr are standard unit normal distributions given by

Φ(zr) =
1

(2π)1/2

∫ zr

−∞
exp

[
− ζ2

r

2

]
dζr.

If we define Ur = Φ(Zr) for each r = 1, 2, . . . ,m then the random variables Ur are uniformly distributed
on the interval [0, 1] and the function c : [0, 1]m → [0,∞) defined by

c(u) =
ϕ(Φ−1(u1), . . . ,Φ−1(um))

Φ′(Φ−1(u1)) · · ·Φ′(Φ−1(um))

is the density for an m-dimensional normal copula C : [0, 1]m → [0, 1] given by

C(u) =

∫
×n

i=1[0,ui]

c(v)dv.

In practice the normal copula is approximated by a checkerboard normal copula. The idea is simple.
We assume that the positive definite symmetric matrix Σ is known. The unit hypercube I = [0, 1]m is
divided into ` = nm congruent hypercubes Ii where i = (i1, . . . , in) and we construct the corresponding
multiply-stochastic hypermatrix k = [ki] ∈ R` where ` = nm by defining

ki = n

∫
Ii

c(u)du. (12)

Write Σ = PΛP T ⇔ Λ = P TΣP where P is orthogonal and Λ is diagonal. Now consider the
successive transformations w = Φ−1(v) ⇔ wr = Φ−1(vr) for each r = 1, . . . ,m, followed by the
length distortion y = Λ1/2w, the orthogonal transformation z = Py and finally the transformation
u = Φ(z) ⇔ ur = Φ(zr) for each r = 1, . . . ,m. It has been shown [14] that the collective
transformation u = Φ[Λ−1/2P TΦ−1(v)] maps v ∈ [0, 1]m into u ∈ [0, 1]m. If we define the region
Ji = Φ[Λ−1/2P TΦ−1(Ii)] ⊂ [0, 1]m then∫

Ii

c(u)du =

∫
Ji

dv = V (Ji)

where V (Ji) denotes the volume of Ji. Thus, it is necessary to calculate the volume of Ji for each index
i in order to find the hypermatrix k. Unfortunately calculation of these volumes is not straightforward.
See [14] for more details. In a further complication we also note that the grade correlation coefficients
for the checkerboard normal copula must be calculated directly using the formula

ρr,s = 12

 1

n3

∑
i ∈ {1,...,n}m

ki(ir − 1/2)(is − 1/2)

− 3.

This means that the positive definite symmetric matrix Σ must be iteratively adjusted in order to satisfy
the equations ρr,s = ρ̂r,s.
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9.2. The normal checkerboard copula for Kempsey

We set m = 3 and n = 4. The triply-stochastic hypermatrix k ∈ R4×4×4 describing the trivariate
checkerboard copula of maximum entropy for February–March–April rainfall at Kempsey is shown
below to four decimal place accuracy. We define Σ by setting θ12 = 1.3179, θ13 = 1.4309, θ23 = 1.3813

to give ρ1,2 = ρ̂1,2 = 0.202, ρ1,3 = ρ̂1,3 = 0.112 and ρ2,3 = ρ̂2,3 = 0.152 and calculate

k1 ≈


0.1324 0.0961 0.0759 0.0529

0.0829 0.0719 0.0637 0.0517

0.0585 0.0566 0.0540 0.0487

0.0341 0.0381 0.0402 0.0420

, k2 ≈


0.0891 0.0724 0.0616 0.0475

0.0720 0.0687 0.0648 0.0575

0.0593 0.0629 0.0638 0.0627

0.0424 0.0516 0.0579 0.0662

,

k3 ≈


0.0662 0.0579 0.0516 0.0424

0.0627 0.0638 0.0629 0.0593

0.0575 0.0648 0.0687 0.0720

0.0475 0.0616 0.0724 0.0891

, k4 ≈


0.0420 0.0402 0.0381 0.0341

0.0487 0.0540 0.0566 0.0585

0.0517 0.0637 0.0719 0.0829

0.0529 0.0759 0.0961 0.1324

,

where ki = [kijk]. The entropy J(k) = −0.041158 of the checkerboard normal copula is slightly less
than the maximum entropy but it is nevertheless true that k ≈ h.

Simulation results are very similar to those obtained using the checkerboard copula of maximum
entropy. It is necessary to search for the values of θr,s. For given values θr,s a MATLAB program to find
the necessary volumes by counting the transformed distribution of 643 equally spaced points in (0, 1)3

took 31 s to run and calculated the corresponding k to only 2 decimal place accuracy. This program
was used to iteratively adjust θr,s. For final adjustment the program used 2563 points and took 1970 s to
run. This shows that calculation of the checkerboard normal copula is considerably more difficult than
calculation of the checkerboard copula of maximum entropy.

10. Commentary: the modelling process and model evaluation

In this section we wish to comment on the modelling process. Thus, we compare our proposed model
with two elementary models in order to highlight the key points. We will not compare our model directly
with any of the more sophisticated models—such as the model proposed by Srikanthan—because it is not
our intention to reach a conclusion about which model is best. Our intention is to examine the difficulties
that arise when modelling rainfall accumulations and to examine the physical and theoretical basis for
various assumptions. Our objective is to build a model based on the measurement of certain key statistics
and to decide—on the basis of standard statistical performance criteria—whether the model should be
rejected or accepted.

The question of which population model is best depends on the measurements that have been made
and on the selection criteria. In our case we argue that if we have a single sample of independently
generated monthly rainfall totals and if only the sample mean of the observed values and the sample
mean of the logarithm of the observed values are known, then the principle of maximum entropy tells
us that the maximum likelihood gamma distribution is the best model for random generation of monthly
totals. For the joint distribution of seasonal rainfall we show that if a piecewise constant joint probability
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density is used on a subdivision of the unit cube such that the marginal distributions are uniform and the
grade correlation coefficients are equal to the observed rank correlation coefficients then the principle of
maximum entropy shows that the checkerboard copula of maximum entropy is the best solution. Thus
in a purely theoretical sense, on that axiomatic basis, there is no point in trying to compare our model to
another model based on different measurements and different selection criteria. A much more sensible
debate is to argue about the appropriate measurements and the best selection criteria to be used.

We understand why hydrologists have focussed on model outputs. The problems of catchment
hydrology are real and they require solution. Simulation of realistic rainfall and run-off regimes over
an entire river basin is vital for planning of sustainable agricultural practice and for implementation
and operation of effective flood mitigation infrastructure. There is ample recent evidence in Australia
of failures to understand and appreciate both sustainability of agriculture and management of flood
mitigation infrastructure. The failure of water supplies for irrigation in the Murray-Darling basin during
an extended period of below average rainfall in eastern Australia from 2003–2008 and the flooding of
Brisbane in January 2011 are prime examples.

The main modelling motivations in catchment management are to understand long-term behaviour
and to cope with the management of extreme events. Thus, the model construction should reflect the most
appropriate data collection processes and the best statistical design in relation to the desired objectives.
These issues are addressed in the study by Srikanthan [18] but the approach is somewhat informal
and is general rather than particular. Despite the acknowledged practical imperatives of catchment
management—which seem to have captured the attention of engineers in recent times—we argue that it
is both necessary and beneficial to continue investigating more basic modelling questions for which the
answers are less tangible and the benefits less clear.

In the first place there is the apparent contradiction in the process of modelling rainfall accumulations
at a single site over different timescales. For each fixed timescale there is general agreement that a mixed
gamma distribution with cumulative distribution F (x) = P [0 ≤ X < x] for x ≥ 0 given by

F (x) = p0 + (1− p0)

∫ x

0

fα,β(x)dx

provides a satisfactory description. However, there is no simple model for a joint distribution of daily
rainfall in a particular month which incorporates an appropriate marginal gamma distribution for rainfall
on each separate day and an appropriate gamma distribution for the total monthly rainfall.

The same dilemma arises in the relationship between monthly and seasonal rainfall. This is the
problem that we have tried to address. To test the utilitarian value of our model we must test the properties
of the seasonal rainfall totals. By contrast, the Srikanthan model [18] at an individual site is essentially
a disaggregation model—since the model is ultimately adjusted at monthly and daily level to match the
annual characteristics. Hence it was tested, with generally positive results, at a monthly and daily level.
The model will be acceptable—in our view—if it can be shown that the bias introduced by modifying
the monthly and daily rainfall totals is not significant. Incidentally it can be seen that if the generated
rainfall for a particular day at some given site is X̃ ∼ Γ(α, β) then the modified rainfall in the Srikanthan
model will take the form X = kX̃ ∼ Γ(α, kβ). Thus both the daily mean and daily standard deviation
will be multiplied by the correction factor k.
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There are other important modelling issues. We use a model in which monthly rainfall distribution
does not depend on the year. We have tested samples generated by our model and have concluded
using stablished statistical procedures that the apparent trend-slopes in the observed data are well within
the 95% confidence intervals for the randomly generated trend-slopes in the simulated data from our
time independent model. This means that the trends in the observed data could have been generated
by chance alone. This does not mean that the observed data is time independent and it does not mean
that a time dependent model would be unsuitable. Indeed we noted earlier in the paper that a linear
regression against time showed a positive trend-slope for the observations in each month. Thus one
could argue that an unbiassed model should incorporate those observed trends and that one should expect
random fluctuations in these base trend-slopes during simulation. The only clear reason to prefer a time
independent model is that it will be simpler.

The final point we wish to address is the issue of parameter estimation. Perhaps the most contentious
estimation is that of the rank correlation coefficients. In each case subsequent simulations with the
proposed model showed the observed values and the empirical 95% confidence intervals as ρ̂12 =

0.201 ∈ [0.055, 0.340], ρ̂13 = 0.111 ∈ [−0.037, 0.258] and ρ̂23 = 0.152 ∈ [0.004, 0.297]. This suggests
that one could legitimately argue that a model with ρ13 = 0 would be simpler and would possibly
also fit the observed data. Nor is it entirely clear, on the basis of one sample, that all correlations are
truly positive. Indeed the strongest argument for assuming that there is positive monthly correlation is
probably that a model with independent marginals will seriously underestimate the seasonal variance.
Even this argument is not entirely certain since the calculated variance of 38236 for the model with
independent marginals lies within the empirical 95% confidence interval [36403, 60266] for the simulated
variance obtained from our model.

In Table 1 summary statistics for (a) observed total rainfall in February–March–April at Kempsey
are compared to summary population statistics for models using (b) the maximum likelihood gamma
distribution (c) the checkerboard copula of maximum entropy with marginal gamma distributions3 and
(d) the joint distribution with independent marginal gamma distributions.

Table 1. Model comparison for total rainfall in February–March–April at Kempsey.

Distribution mean variance
(a) observed 427 53762

(b) maximum likelihood gamma 427 49996

(c) checkerboard copula of maximum entropy 427 47448

(d) independent 427 38236

11. Seventh experiment: simulations for seasonal rainfall at Sydney

We also successfully simulated seasonal rainfall in March-April-May at Sydney. We used official
records from the Australian Bureau of Meteorology for Station 066062 (Observatory Hill) at Sydney

3 Details of the theoretical calculation procedures for (c) can be found in [13,14].
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in NSW during the period 1859 to 2008. The monthly rainfall totals were again modelled by gamma
distributions Xi ∼ Γ(αi, βi) with the respective parameters defined by

α = (1.7413, 1.3329, 1.2579), β = (74.5972, 94.6996, 95.9645).

The copula of maximum entropy is shown below to four decimal place accuracy. We set ρ12 = ρ̂12 =

0.112, ρ13 = ρ̂13 = 0.043 and ρ23 = ρ̂23 = 0.183 and calculate

h1 ≈


0.1070 0.0847 0.0649 0.0482

0.0766 0.0710 0.0638 0.0555

0.0526 0.0571 0.0600 0.0612

0.0346 0.0440 0.0542 0.0647

, h2 ≈


0.0916 0.0739 0.0577 0.0437

0.0719 0.0680 0.0622 0.0551

0.0542 0.0599 0.0643 0.0667

0.0391 0.0507 0.0637 0.0774

,

h3 ≈


0.0774 0.0637 0.0507 0.0391

0.0668 0.0643 0.0599 0.0542

0.0551 0.0622 0.0680 0.0719

0.0437 0.0577 0.0739 0.0916

, h4 ≈


0.0647 0.0542 0.0440 0.0346

0.0612 0.0600 0.0571 0.0526

0.0555 0.0638 0.0710 0.0766

0.0482 0.0649 0.0847 0.1070

,

where hi = [hijk]. The entropy is J(h) ≈ −0.026749. For purposes of comparison we also modelled
the total seasonal rainfall by a gamma distribution X ∼ Γ(α, β) where we used maximum likelihood to
set α = 3.5157 and β = 107.1866. Summary statistics for seasonal rainfall at Sydney are shown in Table
2. Simulations for Sydney showed similar behaviour to the corresponding simulations for Kempsey.

Table 2. Model comparison for total rainfall in March-April-May at Sydney.

Distribution mean variance
(a) observed 377 37363
(b) maximum likelihood gamma 377 40392
(c) copula of maximum entropy 377 39009
(d) independent 377 33228

12. Conclusions

The problem of seasonal rainfall modelling has no obvious solution. Our model is derived on a
solid theoretical basis and the standard tests of simulated data generated by the model against observed
data showed there was insufficient evidence to reject the model on statistical grounds. There are many
other models that have been proposed recently for the purpose of modelling catchment hydrology. In
most cases researchers report on the successful use of these models in simulation of catchment rainfall.
Although such models are tested extensively to ensure that the simulated data is a good approximation
to the observed data it seems there is often no clear axiomatic model structure, no explicit a priori
measurement strategy for parameter estimation and no coherent testing procedure. It is more like
measure everything you can, use as many parameters as you like and test every statistical parameter
that comes to mind. See [1] for further discussion of the backtest overfitting problem.
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