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Abstract. A 2001 article by Bauschke, Borwein and Combettes [2] showed
how to extend naturally the classical definitions of essential smoothness and
essential strict convexity from functions on Rn in a compatible fashion to any
Banach space. They were able, among other things, to show that substantial
duality results hold for Legendre functions in reflexive spaces. That article
focused on essential smoothness in the Gâteaux sense. Our goal herein is to
show that similar results hold for Fréchet smoothness and to study related
properties of such functions on reflexive Banach spaces.
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1 Introduction and preliminary results

We work in a real Banach space X whose closed unit ball is denoted by
BX . By a proper function f : X → (−∞,+∞] we mean a function that is
somewhere finite-valued. A proper function f : X → (−∞,+∞] is convex if
its domain is a convex set and

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)y for all x, y ∈ dom f, 0 ≤ λ ≤ 1.

If, additionally, the preceding inequality is strict for 0 < λ < 1, then f is
strictly convex.
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We use the notation ∂f(x) for the convex subdifferential of f at x in the
domain of f , and for ε > 0 we denote the ε-subdifferential of f at x in the
domain of f by ∂εf(x), that is,

∂εf(x) = {φ ∈ X∗ : φ(y)− φ(x) ≤ f(y)− f(x) + ε, x ∈ X};

when ε = 0, this reduces to the definition of ∂f(x). The conjugate function of
f : X → (−∞,+∞] is defined for x∗ ∈ X∗ by f∗(x∗) = supx∈X〈x∗, x〉−f(x).

Relevant background material on convex analysis can be found in fine
texts such as [14, 17] and in our own book [7]. Recall that a multifunc-
tion Ω is locally bounded at a point x if some neighbourhood U of x has a
norm bounded image Ω(U). The following general definitions for essential
smoothness and essential strict convexity were introduced in [2] and are also
described in detail in [7, Chapter 7].

Definition 1.1. A proper lower semicontinuous convex function f : X →
(−∞,+∞] is said to be

(a) essentially smooth if ∂f is both locally bounded and single-valued on
its domain;

(b) essentially strictly convex if (∂f)−1 is locally bounded on its domain
and f is strictly convex on every convex subset of dom ∂f .

(c) Legendre if it is both essentially smooth and essentially strictly convex.

Additionally, [2, Theorem 5.11] shows these definitions are compatible
on Rn with the classical definitions as in [14] and moreover, under these
definitions, the duality results [14, Section 26] extend to reflexive Banach
spaces. In particular, let us state the following capstone result:

Theorem 1.2 (Theorem 5.4 and Corollary 5.5 of [2]). Suppose X is a reflex-
ive Banach space and f : X → (−∞+∞] is a proper lower semicontinuous
convex function. Then f is essentially smooth if and only if f∗ is essentially
strictly convex.

Hence f is a Legendre function if and only if f∗ is a Legendre function.

Reflexivity is necessary in the preceding theorem because one can com-
mence with a norm ‖·‖ on `1 that is both Gâteaux differentiable and strictly
convex [10], as in [2, 7]. Then f := 1

2‖ · ‖
2 is a Legendre function but its

conjugate cannot be Legendre because `∞ does not admit any equivalent
Gâteaux differentiable norm; see [2, Example 6.7] for further details on this
example.
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Our goal is to show that duality results similar to Theorem 1.2 hold for
an appropriately defined Fréchet-Legendre function. For this, recall that
a function f on X is Fréchet differentiable at x0 with Fréchet derivative
f ′(x0) ∈ X∗ if the limit

lim
t→0

f(x0 + th)− f(x0)
t

= 〈f ′(x0), h〉

exist uniformly for h ∈ BX ; when the limit exists pointwise, this defines
Gâteaux differentiability. We will say a proper lower semicontinuous convex
function is essentially Fréchet smooth if it is essentially smooth and addi-
tionally is Fréchet differentiable at each point in the interior of its domain—
equivalently ∂f is locally bounded, single-valued, and norm-to-norm contin-
uous throughout its domain.

Because Fréchet and Gâteaux differentiability are equivalent for convex
functions on Rn, this definition is again compatible with the classical defi-
nition of essential smoothness. It follows from Theorem 1.2 that a proper
lower semicontinuous convex function f on a reflexive space is Legendre if
and if f and f∗ are essentially smooth (this again can fail outside of re-
flexive spaces). Thus, it is also compatible with the classical definitions to
say a proper lower semicontinuous convex function f on a reflexive space
is Fréchet-Legendre if (and only if) both f and f∗ are essentially Fréchet
smooth.

A compelling reason for examining Fréchet-Legendre functions is the
duality of Fréchet differentiability with strong minimizations principles. For
this, recall that a function f attains its strong minimum at x0 ∈ dom f if
‖xn−x0‖ → 0 whenever f(xn)→ f(x0) and f(x0) = infX f . If f(x0) < f(x)
for all x ∈ X \ {x0} then f is said to attain its strict minimum at x0. The
following result is taken from [13, Proposition 4] and has its origins in [1].

Theorem 1.3. Let X be a Banach space and f : X → (−∞,+∞] be proper
lower semicontinuousand let y be a point in int dom f∗ then f∗ is Fréchet
differentiable at y if and only if f − y attains its strong minimum.

This result leads neatly to Stegall’s variation principle; see [13] and also
[8, 7] for a slightly different approach.

Remark 1 An overarching theme of both [8, 13] is that Fréchet differ-
entiability is connected dually to various powerful minimization principles.
This reinforces the argument that it is well worth the effort to investigate the
theory Fréchet-Legendre functions. Moreover, continuous convex functions
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are generically differentiable on reflexive spaces [7, 10], and many natural
globally Fréchet differentiable functions exist on those spaces because they
have an abundance of Fréchet differentiable norms [10]. A less well known
but important supply of Fréchet differentiable convex functions arises with
spectral functions of matrices and of Hilbert-Schmidt or Schatten p-class
operators [7, §6.5] and [9, §7.3].

Lets us recall that if φ ∈ X∗, and f − φ attains its strong minimum
at x0, then the functional (φ,−1) strongly exposes the epigraph of f at
(x0, f(x0)). Likewise if f − φ attains its strict minimum at x0, then (φ,−1)
exposes the epigraph of f at (x0, f(x0)) [7, 10]. Hence in these cases we
will say φ strongly exposes (resp. exposes) f at x0. In this language, much
of the natural duality theory developed for norms translates seamlessly to
continuous convex functions.

Based on the corresponding standard definition for norms, it is natural
to say a convex function f : X → (−∞,+∞] is locally uniformly convex if
whenever a (bounded) sequence x0, x1, x2, . . . ⊂ dom f satisfies

f(xn) + f(x0)
2

− f
(
xn + x0

2

)
→ 0,

then ‖xn − x0‖ → 0. (It is reasonably easy to show that one may drop the
requirement that the sequence be bounded [7].)

The following is perhaps the most useful tool for testing differentiability.
Proofs for it can be found in [17, Theorem 3.3.2] and[6, Fact 2.3].

Theorem 1.4 (Šmulian). Suppose the convex function f is continuous at x0.
Then f is Fréchet (resp. Gâteaux) differentiable at x0 if and only if φn → φ
(resp. φn →w∗ φ) whenever φn ∈ ∂εnf(x0), φ ∈ ∂f(x0) and εn → 0+, and
necessarily φ is the Fréchet (resp. Gâteaux) derivative at f at x0.

Using Šmulian’s theorem one can capture the typical duality between
exposedness and smoothness as in the following whose proof can be found
in, for example, [7, Proposition 5.2.4].

Proposition 1.5. Let f : X → (−∞,+∞] be a lower semicontinuous con-
vex function that is continuous at x0.

(a) Then f∗ is strongly exposed by x ∈ X at φ ∈ X∗ if and only if f is
Fréchet differentiable at x with f ′(x) = φ.

(b) Then f∗ is exposed by x ∈ X at φ ∈ X∗ if and only if f is Gâteaux
differentiable at x with f ′(x) = φ.
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2 Legendre functions on reflexive Banach spaces

Let X be a reflexive Banach space. We will say a continuous convex function
f : X → R is strongly convex it is strictly convex and ‖xn−x0‖ → 0 whenever
f(xn)→ f(x0) and xn →w x0, moreover, it is consistent with the eponymous
definition for norms from [4, Definition 6.4]. This is also consistent with—
though less general than—the definition of strongly rotund functions which
play a central role in the theory of maximum entropy reconstruction [5,
7] while strongly rotund norms are key to the study of non-convex best
approximation problems [4].

We provide five theorems describing the ambit of Fréchet-Legendre func-
tions and their relatives. We begin with a natural duality theorem in reflex-
ive spaces.

Theorem 2.1 (Duality in reflexive space). Suppose X is a reflexive Banach
space and f : X → R is a continuous cofinite convex function. Then:

(a) f is Gâteaux differentiable if and only if f∗ is strictly convex.

(b) The following are equivalent:

(i) f is Fréchet differentiable;

(ii) f∗ is strongly exposed at each x∗ ∈ X∗ by each subgradient in ∂f(x∗);

(iii) f∗ is strongly exposed at each x∗ ∈ X∗.

(iv) f∗ is strongly convex.

Proof. The reader may find a proof of (a) and of (b) (ii) ⇒ (i) ⇒ (iii)
that relies on Proposition 1.5, for example, in [7, Theorem 5.3.7]. For the
remainder we argue as follows.

(iii) ⇒ (iv): Condition (iii) implies f∗ is strictly convex so we assume
f∗(xn) → f∗(x) and xn →w x. Let φ ∈ X strongly expose f∗ at x. It is
immediate that (f∗ − φ)(xn)→ (f∗ − φ)(x). Because φ strongly exposes f∗

at x, ‖xn − x‖ → 0 and so f∗ is strongly convex.
(iv) ⇒ (ii): Conversely suppose f∗ is strongly convex. Let φ ∈ ∂f∗(x).

Then (f∗−φ) attains its strict minimum at x because f∗ is strictly convex.
Suppose by way of contradiction that φ does not strongly expose f∗ at x.
Then there is a sequence (xn) such that (f∗ − φ)(xn) → (f∗ − φ)(x), but
‖xn − x‖ ≥ ε > 0 for all n. Because f∗ − φ is convex and attains its
minimum at x, we may assume (xn) is bounded. The Eberlein-Šmulian
theorem implies there is a subsequence (xk) →w x̄ for some x̄ ∈ X∗. Now
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φ(xk) → φ(x̄) and it follows f∗(xk) → f∗(x̄). Consequently, (f∗ − φ)(x̄) =
(f∗− φ)(x). Thus x̄ = x since f∗− φ attains its strict minimum at x. Thus
we arrive at the contradiction ‖xk − x‖ → 0.

Remark 2 If one removes the reflexivity assumption, the previous theo-
rem may fail. Indeed, consider Talagrand’s construction of a Fréchet differ-
entiable norm ‖ ·‖ on C[0, ω1] whose dual is not strictly convex [15]; then let
f := 1

2‖ · ‖
2. It may even fail on R without the cofinite assumption. Indeed,

f := exp is locally uniformly convex, but its conjugate, x 7→ x log x − x,is
not differentiable everywhere on its domain. Further, in the reflexive case,
one can not strengthen (ii) or (iii) to say that f∗ is locally uniformly convex.
For this, let f := 1

2‖ · ‖
2 where ‖ · ‖ is a Fréchet differentiable norm whose

dual is not locally uniformly convex as was constructed by Yost [16].
Recalling that a function is cofinite if its conjugate is everywhere finite,

the existence of cofinite Fréchet-Legendre functions actually characterizes
reflexive Banach spaces.

Theorem 2.2 (Reflexive characterization of Fréchet differentiability). Sup-
pose X is a Banach space. Then X is reflexive if and only if it admits
a continuous cofinite and convex function f such that f and f∗ are both
Fréchet differentiable.

Proof. If X is reflexive consider f := 1
2‖ · ‖

2 where ‖ · ‖ is an equivalent
locally uniformly convex and Fréchet differentiable norm on X [10]. For the
converse, use the Moreau-Rockafellar theorem (see [7, Theorem 4.4.10]) to
deduce that f∗ is coercive. From such an f∗ one can deduce in a standard
fashion that X∗ has an equivalent dual Fréchet differentiable norm (see the
proof of [6, Theorem 3.5(a)]), and as a consequence X is reflexive. See [7,
Exercise 5.1.28] for further details.

This result underlines how tightly the existence of conjugate convex
Fréchet differentiable functions is coupled to reflexivity.

Let us say that a proper function f is supercoercive if

lim
‖x‖→∞

f(x)
‖x‖

=∞.

Recall that f is coercive if merely lim‖x‖→∞ f(x)/‖x‖ > 0. Thus | · | is
coercive but not supercoercive while x 7→ x log x is supercoercive. (Note that
for convex functions coercivity is equivalent to f(x) → ∞ when‖x‖ → ∞
[7].)
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Theorem 2.3 (Fréchet-differentiable and locally uniformly convex func-
tions). Let X be a reflexive Banach space and assume that f : X → (−∞,+∞]
is a lower semicontinuous proper function.

(a) Suppose f is continuous, cofinite and f and f∗ are both Fréchet differ-
entiable. Then f and f∗ are both locally uniformly convex.

(b) A function f is supercoercive, bounded on bounded sets, locally uniformly
convex, and Fréchet differentiable if and only if f∗ is.

Proof. (a) We will show that f is locally uniformly convex. For this, suppose
that (xn)∞n=1 is bounded and

(2.1)
f(x) + f(xn)

2
− f

(
x+ xn

2

)
→ 0.

Let φ ∈ ∂f(x) and φn ∈ ∂f(x+xn
2 ). Then

1
2
f(x) +

1
2
f(xn)−

{
φn

(
x+ xn

2

)
− f∗(φn)

}
→ 0 and so

1
2
{f(x)− φn(x)}+

1
2
{f(xn)− φn(xn)}+ f∗(φn) → 0.

Now both f(x)− φn(x) ≥ −f∗(φn) and f(xn)− φn(xn) ≥ −f∗(φn), and so
we may conclude that

(2.2) φn(x)− f(x)− f∗(φn)→ 0 and φn(xn)− f(xn)− f∗(φn)→ 0.

Thus, f(x) + f∗(φn) ≤ φn(x) + εn where εn → 0+, and hence one can
check that φn ∈ ∂εnf(x). Because f is Fréchet differentiable at x, Theo-
rem 1.4 implies that ‖φn−φ‖ → 0. Because (xn)∞n=1 is bounded, this implies
φn(xn) − φ(xn) → 0. From (2.2), we also have φ(xn) − f(xn) ≥ f∗(φ) − εn
where εn → 0+.

Again, one can check φ ∈ ∂εnf(xn) which in turn implies xn ∈ ∂εnf∗(φ).
Because f∗ is Fréchet differentiable at φ, Theorem 1.4 implies ‖xn−x‖ → 0
as desired. It follows that f is locally uniformly convex, because ‖xn−x0‖ →
0 whenever (2.1) holds for a bounded sequence (xn). Because f∗∗ = f , the
argument implies f∗ is locally uniformly convex as well.

Part (b) follows from (a) because f is supercoercive and bounded on
bounded sets if and only if f∗ is (see e.g. [7, Theorem 4.4.13]) and since f is
Fréchet differentiable when f∗ is locally uniformly convex as can be deduced
from Proposition 1.5; see [7, Proposition 5.3.6] .
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Remark 3 Theorem 2.3 (a) deserves a comment. In [4, Thm 6.6], consis-
tent with Theorem 2.1 (b), it is shown that a dual norm on X∗ is Fréchet
differentiable if and only if X is reflexive and the original norm is strongly
convex : that is, the norm is strictly convex and has the Kadec-Klee property
(weak and norm convergence agree on unit the sphere). That strong con-
vexity is strictly weaker than local uniform convexity is shown by the norm
on `2(N), due to Mark Smith [4, Remark 6.7], given by

f(x) := |||x|||2 := ‖Tx‖2 + (|x|+ ‖Px‖)2

where
Tx := (0, x2/2, x3/3, · · · , xn/n, · · · )

and
Px := (0, x2, x3, · · · , xn, · · · ).

It is easy to check that f is strongly convex since T is a compact opera-
tor; but it is not locally uniformly convex since |||en||| → |||e1||| = 1 and
|||(en + e1)/2||| → 1 yet |||en − e1||| → 2. Note also that while f∗ is Fréchet
differentiable, f is not. Thus, we see the necessity of the hypotheses on both
f and f∗ in Theorem 2.3 (a). The reader will note that we could have also
used Yost’s [16] example as mentioned earlier to the same end.

Theorem 2.4 (Fréchet-Legendre functions). Let X be a reflexive Banach
space, and let f be a lower semicontinuous proper convex function on X.

(a) f is essentially Fréchet smooth if and only if (i) f∗ is essentially strictly
convex and (ii) every point of range(∂f) is a strongly exposed point of f∗.

(b) Moreover, f is Fréchet-Legendre if and only if f∗ is.

(c) A continuous and cofinite function f is a Fréchet-Legendre function if
and only if it is Fréchet differentiable and locally uniformly convex.

Proof. (a) Suppose f is essentially Fréchet smooth. Then f∗ is essentially
strictly convex by [2, Theorem 5.4]. Suppose φ ∈ ∂f(x). Then x ∈ int dom f
by [2, Theorem 5.6] and so f is Fréchet differentiable at x. According to
Proposition 1.5, f∗ is strongly exposed by x at φ. For the converse, f
is essentially smooth by [2, Theorem 5.4]. Fix x0 ∈ int dom f . Then f
is Gâteaux differentiable at x0. Let φ ∈ ∂f(x0) and φn ∈ ∂fεn(x0) where
εn → 0+. Then x0 ∈ ∂f∗(φ), φn →w∗ φ by Theorem 1.4; moreover f∗(φn)→
f∗(φ). Now let y strongly expose f∗ at φ. Because φn → φ weakly, it now
follows that lim sup(f∗−y)(φn) ≤ (f∗−y)(φ). Consequently, ‖φn−φ‖ → 0.
According to Theorem 1.4, f is Fréchet differentiable at x0.
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(b) follows because f∗∗ = f .
(c) follows because in the cofinite case f is locally uniformly convex if f

and f∗ are Fréchet differentiable as shown in Part (a) of Theorem 2.3.

We conclude this section by describing how the relationship between
strict convexity and essential strict convexity for coercive functions char-
acterizes reflexive spaces. In this construction we will use the concept of
a Markushevich basis (M-basis) which for a separable space X is a system
{xn, x∗n} ⊂ X ×X∗ such that: (i) x∗n(xm) = 1 if m = n and 0 otherwise; (ii)
the norm closed span of {xn}∞n=1 = X and (iii) {x∗n} separates points in X.
A concise introduction to M-bases can be found in [12, Chapter 6].

Theorem 2.5 (Essentially strictly convex functions). Let X be a Banach
space. Then X is reflexive if and only if every proper coercive lower semi-
continuous strictly convex function on X is essentially strictly convex.

Proof. ⇒: Suppose X is reflexive and let f : X → (−∞,∞] be a coercive
proper lower semicontinuous strictly convex function. Then 0 ∈ int dom f∗

according to a Moreau-Rockafellar theorem (see [7, Theorem 4.4.10]). In
particular, int dom f∗ 6= ∅. According to [2, Lemma 5.1], ∂f∗ is single-
valued on its domain since f = (f∗)∗ is strictly convex. Now [2, Theorem
5.6] ensures that f∗ is essentially smooth (since condition (ii) therein is
satisfied). Consequently Theorem 1.2 shows that f is essentially strictly
convex.
⇐: SupposeX is not reflexive. Consider the separable case first. Because

X is not reflexive there is a bounded basic sequence (xn) and φ ∈ X∗ so that
limn φ(xn) > 0. (See, for example, the Eberlein-Šmulian theorem presented
in [11, p. 41]). This basic sequence can be extended to a Markushevich
basis on all of X (see [12, Theorem 6.42]). Call this M-basis (yn, y∗n). We
may scale it so ‖yn‖ ≤ 1 for all n, and so that φ(yn) = ε for infinitely many
n. Replacing φ with λφ for appropriate λ > 0 we may assume φ(yn) = 1 for
infinitely many n, and re-scaling the M-basis we may assume |φ(yn)| ≤ 1 for
all n.

Now let ||| · ||| be the equivalent norm on X whose ball B is defined by
B := {x ∈ BX : |φ(x)| ≤ 1}. With this norm, we have |||φ||| = 1 and
φ(yn) = 1 for infinitely many n. Let us relabel this M-basis as

{
{un} ∪

{vn}, {u∗n} ∪ {vn}∗
}
n∈N where φ(un) = 1 for each n.

We now define a continuous strictly convex coercive function via

f(x) := |||x|||+ (u∗1(x)− 1)2 +
∞∑
i=2

(ũ∗i (x))2

2i
+
∞∑
i=1

(ṽ∗i (x))2

2i
,
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where ũ∗i := u∗i
|||u∗i |||

and ṽ∗i := v∗i
|||v∗i |||

.
Now φ ∈ ∂f(u1) since f(u1) = 1 and φ(u1) = 1 and φ(x) ≤ |||x||| for all

x. Also, φ(u1 + nun) = n+ 1, and so φ ∈ ∂|||u1 + nun|||. Let

g(x) := f(x)− |||x|||,

then g′(u1 + nun) = 2ũ∗n(nun)ũ∗n
2n . Therefore,

Λn ∈ ∂f(u1 + nun) where Λn = φ+
2ũ∗n(nun)ũ∗n

2n
.

Observe that |||u1 + nun||| → ∞ while |||Λn − φ||| ≤ n
2n−1 . Thus, (∂f)−1 is not

locally bounded at φ, and accordingly f is not essentially strictly convex.
IfX nonseparable and not reflexive, then it contains a separable subspace

Y that is not reflexive. Construct f : Y → R as above, and define the
desired function as f̃(x) := f(x) if x ∈ Y and f̃(x) := +∞ if x 6∈ Y ,
making sure subgradients above are extended so as to stay close. Now take
a norm- preserving extension of φ ; then likewise extend Λn − φ and add
that extension to the extension of φ to get an extension of Λn which is close
to the extension of φ.

Remark 4 Notice that while the function f constructed above is above
is continuous in the separable case, in general it is not. Indeed whenever a
coercive continuous strictly convex function exists on X, one can use it to
construct a strictly convex norm on the space (see e.g., [6]).

3 Concluding comments

We have, we think, made a clear case for the role of reflexivity in studying
Legendre functions (Gâteaux or Fréchet). It is easy to show with our defini-
tions that, under appropriate constraint qualifications, the sum and infimal
convolution of Legendre functions is again Legendre.

Outside of reflexive space, as we have seen the conjugate of a Legendre
function need not be Legendre. Also, as shown in Theorem 2.5, outside of
reflexive space a coercive lower semicontinuous strictly convex function may–
perhaps counter-intuitively—fail to be essentially strictly convex. Thus,
Euclidean intuition is of little help and it is unrealistic to expect a full
duality to hold in more general spaces.
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That said, it would be highly desirable to find a generalization of the
notion of Legendre function that covers the case of important convex func-
tions which are nowhere continuous such as the strictly convex (negative)
Boltzmann-Shannon entropy

x 7→
∫ 1

0
x(t) log x(t) dλ

defined on L1([0, 1], λ) with λ Lebesgue measure, which has weakly compact
lower level sets and an everywhere Gateaux differentiable conjugate function

x∗ 7→
∫ 1

0
ex
∗(t)−1 dλ

on L∞([0, 1], λ) as discussed in [7, §6.4]. We should also point the reader to
algorithmic applications of Legendre functions in reflexive space as described
in [3, 7].

Finally, another impressive illustration of the value of Fréchet differen-
tiability is afforded by [7, Corollary 4.5.2 (a)]:

Theorem 3.1 (Convexity of pre-conjugates). Suppose f : X → (−∞,+∞]
is such that f∗∗ is proper and that f∗ is Fréchet differentiable at all x∗ in
dom(∂f∗) and f is lower semicontinuous. Then f is convex.

An elegant application of Theorem 3.1 is to show that a finite dimensional
(or just weakly closed) Chebyshev set is convex—this is the Motzkin-Bunt
theorem [7, §4.5]. In general Fréchet differentiability plays an important role
in the study of the distance function to a non-convex set in reflexive space
[9, §5.3].
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