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Abstract toc

It is not knowledge, but the act of learning, not possession but the
act of getting there, which grants the greatest enjoyment. When I
have clarified and exhausted a subject, then I turn away from it, in
order to go into darkness again; (Carl Friedrich Gauss, 1777-1855)

• I display roughly a dozen examples where computational
experimentation, computer algebra and special function theory
have lead to pleasing or surprising results.

• In the style of Ramanujan, very few proofs are given but may
be found in the references.

• Much of this work requires extensive symbolic, numeric and graphic
computation. It makes frequent use of the new NIST Handbook of
Mathematical Functions and related tools such as gfun.

My intention is to show off the interplay between symbolic,
numeric and graphic computing while exploring the various topics
in my title.
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Mathodology

Experimental Mathodology 

“Computers are 
useless, they can 

only give answers.”    
Pablo Picasso  

Experimental  Mathodology 

 
 

Comparing –y2ln(y) (red) to  y-y2 and y2-y4 

1. Gaining insight and intuition 

2. Discovering new relationships 

3. Visualizing math principles 

4. Testing and especially falsifying 
conjectures 

5. Exploring a possible result to see 
if  it merits formal proof 

6. Suggesting approaches for 
formal proof 

7. Computing replacing lengthy 
hand derivations 

8. Confirming analytically derived 
results 

Science News 
2004 
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. . . Visual Theorems: Reflect-Reflect-Average

To find a point on a sphere and in an affine subspace

Briefly, a visual theorem is the graphical or visual output
from a computer program — usually one of a family of
such outputs — which the eye organizes into a coherent,
identifiable whole and which is able to inspire
mathematical questions of a traditional nature or which
contributes in some way to our understanding or
enrichment of some mathematical or real world situation.
— Chandler Davis, 1993, p. 333.
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Congratulations to NIST http://dlmf.nist.gov/

DLMF: NIST is still a 19C

handbook in 21C dress.

DDMF: INRIA’s way of the

future?

Special Functions 
in the 21st Century: 

Theory & Applications 
April 6–8, 2011
Washington, DC 

Objectives. The conference will provide a forum for the exchange of expertise, experience and 
insights among world leaders in the subject of special functions. Participants will include expert authors, 
editors and validators of the recently published NIST Handbook of Mathematical Functions and Digital 
Library of Mathematical Functions (DLMF). It will also provide an opportunity for DLMF users to interact 
with its creators and to explore potential areas of fruitful future developments.

F.W.J. Olver 

Special Recognition of Professor Frank W. J. Olver. This 
conference is dedicated to Professor Olver in light of his seminal con-
tributions to the advancement of special functions, especially in the area of 
asymptotic analysis and as Mathematics Editor of the DLMF.

Plenary Speakers 
Richard Askey, University of Wisconsin  
Michael Berry, University of Bristol 
Nalini Joshi, University of Sydney, Australia 
Leonard Maximon, George Washington University 
William Reinhardt, University of Washington 
Roderick Wong, City University of Hong Kong 

Call for Contributed Talks (25 Minutes) 
Abstracts may be submitted to Daniel.Lozier@nist.gov until March 15, 2011.

Registration and Financial Assistance. Registration fee: $120. Courtesy of SIAM, limited travel 
support is available for US-based postdoc and early career researchers. Courtesy of City University of 
Hong Kong and NIST, partial support is available for others in cases of need. Submit all requests for 
financial assistance to Daniel.Lozier@nist.gov.

Venue. Renaissance Washington Dupont Circle Hotel, 1143 New Hampshire Avenue NW, Washington, 
DC, 20037 USA. The conference rate is $259, available until March 15. Refreshments are supplied 
courtesy of University of Maryland.

Organizing Committee. Daniel Lozier, NIST, Gaithersburg, Maryland; Adri Olde Daalhuis, Univer-
sity of Edinburgh; Nico Temme, CWI, Amsterdam; Roderick Wong, City University of Hong Kong

To register online for the conference, and reserve a room at the conference hotel, see 
http://math.nist.gov/~DLozier/SF21
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Related Work and References

1 This describes joint research with many collaborators over
many years – especially DHB and REC.

2 Earlier results are to be found in the books:
• Mathematics by Experiment with DHB (2004-08) and

Experimentation in Mathematics with DHB & RG (2005)
• The Computer as Crucible with Keith Devlin (2008).

www.carma.newcastle.edu.au/~jb616/papers.html#BOOKS.
3 Recent results surveyed with AS in Theor. Comp Sci 2012:

• http://carma.newcastle.edu.au/jon/wmi-paper.pdf

4 Exploratory experimentation: with DHB, AMS Notices Nov11
• http://carma.newcastle.edu.au/jon/expexp.pdf

What are closed forms: with REC, AMS Notices Jan13
• http://carma.newcastle.edu.au/jon/closed.pdf

5 This talk and related talks are housed at www.carma.
newcastle.edu.au/~jb616/papers.html#TALKS
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Some of my Current Collaborators (Straub, Borwein and Wan)
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La plus ça change, I
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1. What is that Integral? (Bailey and Crandall) toc

Question

∫ 1

0

(1− x)4x4

1 + x2
dx = ??? (1)

Remark (Kondo-Yee, 2011.)

Pi now computed to ten trillion decimal places. First four trillion
hex digits appear very normal base 16 (Exp. Maths, in press).
See http://carma.newcastle.edu.au/jon/normality.pdf.
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Let’s be Clear: π Really is not 22
7

Even Maple or Mathematica ‘knows’ this since

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π, (2)

though it would be prudent to ask ‘why’ it can perform the integral
and ‘whether’ to trust it?

Assume we trust it. Then the integrand is strictly positive on
(0, 1), and the answer in (2) is an area and so strictly positive,
despite millennia of claims that π is 22/7.

• Accidentally, 22/7 is one of the early continued fraction
approximation to π. These commence:

3,
22

7
,

333

106
,

355

113
, . . .
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Archimedes Method circa 1800 CE
As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the
19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set a0 := 2
√

3, b0 := 3. Compute

an+1 =
2anbn
an + bn

(H)

bn+1 =
√
an+1bn (G)

These tend to π, error decreasing by a factor of four at each step.

• The greatest mathematician (scientist) to live before the
Enlightenment. To compute π Archimedes had to invent many
subjects — including numerical and interval analysis.

J.M. Borwein Meetings with Special Functions



2. Introduction and Three Elementary Examples
35. Three Intermediate Examples

54. More Advanced Examples
68. Current Research and Conclusions

11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Archimedes Method circa 1800 CE
As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the
19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set a0 := 2
√

3, b0 := 3. Compute

an+1 =
2anbn
an + bn

(H)

bn+1 =
√
an+1bn (G)

These tend to π, error decreasing by a factor of four at each step.

• The greatest mathematician (scientist) to live before the
Enlightenment. To compute π Archimedes had to invent many
subjects — including numerical and interval analysis.

J.M. Borwein Meetings with Special Functions



2. Introduction and Three Elementary Examples
35. Three Intermediate Examples

54. More Advanced Examples
68. Current Research and Conclusions

11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Archimedes Method circa 1800 CE
As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the
19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set a0 := 2
√

3, b0 := 3. Compute

an+1 =
2anbn
an + bn

(H)

bn+1 =
√
an+1bn (G)

These tend to π, error decreasing by a factor of four at each step.

• The greatest mathematician (scientist) to live before the
Enlightenment. To compute π Archimedes had to invent many
subjects — including numerical and interval analysis.

J.M. Borwein Meetings with Special Functions



2. Introduction and Three Elementary Examples
35. Three Intermediate Examples

54. More Advanced Examples
68. Current Research and Conclusions

11. Archimedes and Pi
18. A 21st Century postscript
28. Sinc functions

Archimedes Method circa 1800 CE
As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the
19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set a0 := 2
√

3, b0 := 3. Compute

an+1 =
2anbn
an + bn

(H)

bn+1 =
√
an+1bn (G)

These tend to π, error decreasing by a factor of four at each step.

• The greatest mathematician (scientist) to live before the
Enlightenment. To compute π Archimedes had to invent many
subjects — including numerical and interval analysis.
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Proving π is not 22
7

In this case, the indefinite integral provides immediate reassurance.
We obtain∫ t

0

x4 (1− x)4

1 + x2
dx =

1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t)

as differentiation easily confirms, and the fundamental theorem of
calculus proves (2). QED

One can take this idea a bit further. Note that∫ 1

0
x4 (1− x)4 dx =

1

630
. (3)
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... Going Further

Hence

1

2

∫ 1

0
x4 (1− x)4 dx <

∫ 1

0

(1− x)4x4

1 + x2
dx <

∫ 1

0
x4 (1− x)4 dx.

Combine this with (2) and (3) to derive:

223/71 < 22/7− 1/630 < π < 22/7− 1/1260 < 22/7

and so re-obtain Archimedes’ famous

3
10

71
< π < 3

10

70
. (4)
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Aesthetics and the Colour Calculator
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Never Trust Secondary References

• See Dalziel in Eureka (1971), a Cambridge student journal.

• Integral (2) was on the 1968 Putnam, an early 60’s Sydney
exam, and traces back to 1944 (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical
magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

– Archimedes, Huygens, Riemann, De Morgan, and many others had similar sentiments.
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2. BBP Digit Extraction Formulas toc

Algorithm (What We Did, January to March 2011)

Dave Bailey, Andrew Mattingly (L) and Glenn Wightwick (R) of IBM

Australia, and I obtained and confirmed on a 4-rack BlueGene/P system

at IBM’s Benchmarking Centre in Rochester, Minn, USA:

1 106 digits of π2 base 2 at the ten trillionth place base 64

2 94 digits of π2 base 3 at the ten trillionth place base 729

3 141 digits of G base 2 at the ten trillionth place base 4096

– G is Catalan’s constant. The full computation suite took about 1500 cpu years.

– Notices of the AMS, in Press: http://www.carma.newcastle.edu.au/~jb616/bbp-bluegene.pdf
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π,
you had to generate the (order of) the entire first d digits.

• This is not true, at least for hex (base 16) or binary (base 2)
digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an
algorithm for individual hex digits of π. It produces:

• a modest-length string hex or binary digits of π, beginning at
an any position, using no prior bits;

1 is implementable on any modern computer;
2 requires no multiple precision software;
3 requires very little memory; and has
4 a computational cost growing only slightly faster than the digit

position.
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What BBP Is? Reverse Engineered Mathematics
This is based on the following then new formula for π:

π =

∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
(5)

• The millionth hex digit (four millionth binary digit) of π can
be found in under 30 secs on a fairly new computer in Maple
(not C++) and the billionth in 10 hrs.

Equation (5) was discovered numerically using integer relation
methods over months in our Vancouver lab, CECM. It arrived in
the coded form:

π = 4 2F1

(
1,

1

4
;
5

4
,−1

4

)
+ 2 tan−1

(
1

2

)
− log 5

where 2F1(1, 1/4; 5/4,−1/4) = 0.955933837 . . . is a Gauss
hypergeometric function.
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Edge of Computation Prize Finalist

• BBP was the only mathematical finalist (of about 40) for the
first Edge of Computation Science Prize

– Along with founders of Google, Netscape, Celera and many
brilliant thinkers, ...

• Won by David Deutsch — discoverer of Quantum Computing.
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π2 base 2 or base 3

Remarkably, both formulas below have the needed digit-extraction
properties:

π2 =
9

8

∞∑
k=0

1

26k
×{

16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1

(6k + 5)2

}

π2 =
2

27

∞∑
k=0

1

36k
×

{
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2

− 27

(12k + 5)2
− 72

(12k + 6)2
− 9

(12k + 7)2

− 9

(12k + 8)2
− 5

(12k + 10)2
+

1

(12k + 11)2

}
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π2 base 2 (with DHB & IBM, 2011) toc

Base-64 digits of π2 beginning at position 10 trillion.
The first run produced base-64 digits from position 1012 − 1. It required
an average of 253,529 secs per thread, divided into seven partitions of
2048 threads. The total cost was

7 · 2048 · 253529 = 3.6× 109 CPU-secs.

Each IBM Blue Gene P system rack features 4096 cores, so the total cost
is 10.3 “rack-days.” The second run, producing digits starting from
position 1012, took the same time (within a few minutes).
The two resulting base-8 digit strings are

75|60114505303236475724500005743262754530363052416350634|573227604

xx|60114505303236475724500005743262754530363052416350634|220210566

(each pair of base-8 digits corresponds to a base-64 digit).

Digits in agreement are delimited by |. Note that 53 consecutive base-8

digits (159 binary digits) agree.
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π2 base three

Base-729 digits of π2 beginning at position 10 trillion.
Now the two runs each required an average of 795,773 seconds per
thread, similarly subdivided as above, so that the total cost was

6.5× 109CPU-secs

or 18.4 “rack-days” for each run.

• Each rack-day is approximately 11.25 years of serial
computing time on one core.

The two resulting base-9 digit strings are

001|12264485064548583177111135210162856048323453468|10565567635862

xxx|12264485064548583177111135210162856048323453468|04744867134524

(each triplet of base-9 digits corresponds to one base-729 digit).
Note that 47 consecutive base-9 digits (94 base-3 digits) agree.
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But not π2 base 10 or π base 3: Trojan horses

Be skeptical. Almqvist-Guillera (2011) discovered:

1

π2
?
=

32

3

∞∑
n=0

(6n)!

(n!)6

(
532n2 + 126n+ 9

)
106n+3 .

• It will not work base-10 because of the factorial term.

Zhang (2011) discovered and proved:

π =
2

177147

∞∑
n=0

(
2

3

)12n

×
{

177147

24n + 1
+

118098

24n + 2
+

78732

24n + 5
+

104976

24n + 6
+

52488

24n + 7

+
23328

24n + 10
+

23328

24n + 11
−

15552

24n + 13
−

10368

24n + 14
−

6912

24n + 17

−
9216

24n + 18
−

4608

24n + 19
−

2048

24n + 22
−

2048

4n + 23

}
.

• It will not work base-3 because of the 2.
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Two Sporadic Rational Gems PSLQ, I

Gourevich 2001

25

π3
?
=

∞∑
n=0

(12)7n
(1)7n

(1 + 14n+ 76n2 + 168n3)

(
1

2

)6n

where an := a(a+ 1) · · · (a+ n− 1) so that (1)n = n!

Cullen 2010

211

π4

?
=

∞∑
n=0

( 1
4 )n( 1

2 )7n( 3
4 )n

(1)
9
n

(21 + 466n+ 4340n2 + 20632n3 + 43680n4)

(
1

2

)12n

I rediscovered and confirmed both to 10,000 digits while preparing
the slide! As follows....
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Two Sporadic Rational Gems PSLQ, II

Discovering and validating Cullen’s formula in Maple:

> Digits:=100:r:=n->p(1/4,n)*p(3/4,n)*p(1/2,n)^(7)/n!^(9); 
>  S4:=k-> Sum(r(n)*n^k/2^(12*n),n=0..infinity);  
>  normal(combine(Pslq(1/Pi^4,[seq(S4(k),k=0..4)],50)));  

• Confirming the value of the sum to 10,000 places is near
instant and 100,000 places took 21.35 secs.
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3. What is that Sequence? (sinc(x) := sinx
x ). toc

For n = 0, 1, 2, . . . set

Jn :=

∫ ∞
−∞

sincx · sinc
(x

3

)
· · · sinc

(
x

2n+ 1

)
dx.

Then — as Maple and Mathematica confirm — we have:

J0 =

∫ ∞
−∞

sincx dx = π,

J1 =

∫ ∞
−∞

sincx · sinc
(x

3

)
dx = π,

...

J6 =

∫ ∞
−∞

sincx · sinc
(x

3

)
· · · sinc

( x
13

)
dx = π.
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π, π, π, π, π, π, π, ?

The really obvious pattern — see Corollary below — is confounded by

J7 =

∫ ∞
−∞

sincx · sinc
(x

3

)
· · · sinc

( x
15

)
dx

=
467807924713440738696537864469

467807924720320453655260875000
π < π,

where the fraction is approximately 0.99999999998529 . . ..

1912 G. Pólya showed that given the slab

Sk(θ) := {x ∈ Rn : |〈k, x〉| ≤ θ/2, x ∈ Cn}

inside the hypercube Cn =
[
− 1

2 ,
1
2

]n
cut off by the hyperplanes

〈k, x〉 = ±θ/2, then

Voln(Sk(θ)) =
1

π

∫ ∞
−∞

sin(θx)

x

n∏
j=1

sin(kjx)

kjx
dx. (6)
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π, π, π, π, π, π, π, ? has gone viral

• Also http://www.tumblr.com/tagged/

the-borwein-integral-is-the-troll-of-calculus

• There is even a movie:
http://www.qwiki.com/embed/Borwein_integral.
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Mathematics is becoming Hybrid: and none to soon

1968 A ‘solved’ MAA problem.
1971 Withdrawn.
May 2011 Seemed still ‘open’? (JSTOR).

Oct 2011 (MAA, Aug-Sept 2012): a fine
symbolic/numeric/graphic (SNaG) chal-
lenge:
http://carma.newcastle.edu.au/jon/

sink.pdf and below:
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What has happened to J7?

The fact that J0 = J1 = · · · = J6 = π follows from:

Corollary (Simplest Case)

Suppose k1, k2, . . . , kn > 0 and there is an index ` such that

k` >
1

2

∑
ki.

Then, the original solution to the Monthly problem is valid:

In =

∫ ∞
−∞

n∏
i=1

sin(ki(x− ai))
x− ai

dx = π
∏
i6=`

sin(ki(a` − ai))
a` − ai

.
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What has happened to J7?

Theorem (First bite, DB-JB 1999)

Denote Km = k0 + k1 + l, · · ·+ km. If 2kj ≥ kn > 0 for
j = 0, 1, . . . , n− 1 and Kn > 2k0 ≥ Kn−1 then∫ ∞

−∞

n∏
j=0

sin(kjx)

x
dx = πk1k2 · · · kn −

π

2n−1n!
(Kn − 2k0)

n. (7)

But if 2k0 > Kn the integral evaluates to πk1k2 · · · kn.

The theorem makes it clear that the pattern that Jn = π for
n = 0, 1, . . . , 6 breaks for J7 because

1

3
+

1

5
+ . . .+

1

15
> 1

whereas all earlier partial sums are less than 1.
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Other Surprises I

Theorem (Baillie-Borwein-Borwein, MAA 2008)

Suppose that k1, k2, . . . , kn > 0. If k1 + k2 + . . .+ kn < 2π then∫ ∞
−∞

n∏
j=1

sinc(kjx) dx =

∞∑
m=−∞

n∏
j=1

sinc(kjm). (8)

As a consequence, with kj = 1
2j+1 :

Corollary

∫ ∞
−∞

n∏
j=0

sinc

(
x

2j + 1

)
dx ≥

∞∑
m=−∞

n∏
j=0

sinc

(
m

2j + 1

)
(9)

with equality iff n = 1, 2, . . . , 7, 8, . . . , 40248.
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Other Surprises II

The difficulty lies, not in the new ideas, but in escaping the old
ones, which ramify, for those brought up as most of us have been,
into every corner of our minds. (John Maynard Keynes, 1883-1946)

Example (What is equality?)

• An entertaining example takes the reciprocals of primes
2, 3, 5, . . .: using the Prime Number theorem one estimates
that the sinc integrals equal the sinc sums until the number of
products is about 10176.

• That of course makes it rather unlikely to find by mere testing
an example where the two are unequal.

• Even worse for the naive tester is the fact that the discrepancy
between integral and sum is always less than 10−10

86
—

smaller if the Riemann hypothesis is true.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

How to Judge a new Scientific Claim

Was the problem and solution the ‘GPS’

• See http://experimentalmath.info/blog/2011/11/mathematics-and-scientific-fraud/,
http://experimentalmath.info/blog/2011/06/

quick-tests-for-checking-whether-a-new-math-result-is-plausible/ and
http://experimentalmath.info/blog/2011/06/has-the-3n1-conjecture-been-proved/
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

4. What is that Number? toc

1995: Andrew Granville emailed and challenged me to identify:

α := 1.4331274267223 . . . (10)

I think this was a test I could have failed.

• I asked Maple for its continued fraction.
• In conventional concise notation I was rewarded with

α = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...]. (11)

• Even those unfamiliar with continued fractions, will agree the
representation in (11) has structure not apparent from (10)!

• I reached for a good book on continued fractions and found

α =
I1(2)

I0(2)
(12)

where I0 and I1 are Bessel functions of the first kind.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Number?

Actually, I remembered that all arithmetic continued fractions arise
in such fashion, but as we shall see one now does not need to.

In 2011 there are at least three “zero-knowledge” strategies:

1 Given (11), type “arithmetic progression”, “continued
fraction” into Google.

2 Type “1, 4, 3, 3, 1, 2, 7, 4, 2” into Sloane’s Encyclopedia of
Integer Sequences.1

3 Type the decimal digits of α into the Inverse Symbolic
Calculator.2

I illustrate the results of each strategy.

1See http://www.research.att.com/~njas/sequences/.
2The Inverse Symbolic Calculator http://isc.carma.newcastle.edu.au/

was newly web-accessible in the same year, 1995.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Number? Strategy 1

1. On Oct 15, 2008, on typing “arithmetic progression”,
“continued fraction” into Google, the first 3 hits were:

What Google and MathWorld offer.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Number? Strategy 2

2. Typing the first few digits into Sloane’s interface results in the
response shown in the Figure on the next slide.

• In this case we are even told what the series representations of
the requisite Bessel functions are.

• We are given sample code (in this entry in Mathematica), and
we are lead to many links and references.

• The site is well moderated.

• Note also that this strategy only became viable after May
14th 2001 when the sequence was added to the database
which now contains in excess of 158, 000 entries.
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Sloane’s Online Encyclopedia (OEIS)

Figure : What Sloane’s Encyclopedia offers.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Number? Strategy 3

3. If one types the decimal representation of α into the Inverse
Symbolic Calculator (ISC) it returns:

Best guess: BesI(0,2)/BesI(1,2)

• Most of the functionality of the ISC is built into the identify

function in versions of Maple starting with version 9.5.

• For example,

> identify(4.45033263602792)

returns √
3 + e.

• As always, the experienced user will be able to extract more
from this tool than the novice for whom the ISC will often
produce more.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

5. What is that Limit?

MAA Problem 10832, 2000 (Donald E. Knuth): Evaluate

S =

∞∑
k=1

(
kk

k!ek
− 1√

2πk

)
.

Solution: Using Maple, we easily produced the approximation

S ≈ −0.08406950872765599646.

“Smart Lookup” in the Inverse Symbolic Calculator, yielded

S ≈ −2

3
− 1√

2π
ζ

(
1

2

)
. (13)

• Calculations to higher precision (50 decimal digits) confirmed
this approximation. Thus within a few minutes we “knew” the
answer.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Limit? Proof 1.

Why should such an identity hold and be provable?

• One clue was provided by the surprising speed with which
Maple was able to calculate a high-precision value of this
slowly convergent infinite sum.

• Evidently, the Maple software knew something that we did
not. Peering under the covers, we found that Maple was using
the Lambert W function, which is the functional inverse of
w(z) = zez.

• Another clue was the appearance of ζ(1/2) in the discovered
identity, together with an obvious allusion to Stirling’s formula
in the problem.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Limit? Proof 2.

This led us to

Conjecture

∞∑
k=1

(
1√
2πk
− (1/2)k−1

(k − 1)!
√

2

)
?
=

1√
2π

ζ

(
1

2

)
, (14)

where (x)n := x(x+ 1) · · · (x+ n− 1).

• Maple successfully evaluated this summation, to the RHS.

We now needed to establish that

∞∑
k=1

(
kk

k!ek
− (1/2)k−1

(k − 1)!
√

2

)
= −2

3
.

J.M. Borwein Meetings with Special Functions



2. Introduction and Three Elementary Examples
35. Three Intermediate Examples

54. More Advanced Examples
68. Current Research and Conclusions

37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Limit? Proof 3.

We noted the presence of the Lambert W function,

W (z) =

∞∑
k=1

(−k)k−1zk

k!
. (15)

Since ∞∑
k=1

(1/2)k−1 z
k−1

(k − 1)!
=

1√
1− z

an appeal to Abel’s limit theorem showed it sufficed to prove:

Conjecture

lim
z→1

(
dW (−z/e)

dz
+

1√
2− 2z

)
?
=

2

3
.

• Again, Maple can be coaxed to establish the identity.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Limit? Final thoughts.

• The above manipulations took considerable human ingenuity, in
addition to symbolic manipulation and numerical discovery.

• A challenge for the next generation of mathematical computing
software, is to more completely automate this class of operations.

• E.g., Maple does not recognize W from its Maclaurin series (15).

Figure : W on the real line
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

6. What is that Continued fraction? toc

The Ramanujan AGM continued fraction

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + . . .

enjoys attractive algebraic properties such as a striking
arithmetic-geometric mean relation & elegant links with
elliptic-function theory.

• The fraction presented a serious computational challenge,
which we could not resist.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

5. What is that Continued fraction? The AG fraction.

Figure : Yellow cardioid in which everything works

Theorem (AG continued fraction)

For η > 0 and complex a, b the fraction Rη converges and satisfies:

Rη
(
a+ b

2
,
√
ab

)
=
Rη(a, b) +Rη(b, a)

2

if and only if a/b ∈ H the cardioid given by

H := {z ∈ C :

∣∣∣∣ 2
√
z

1 + z

∣∣∣∣ < 1}.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Continued fraction? A hidden fractal

Figure : The modulus of θ3(q)
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Continued fraction? Closed forms, 1.
Theorem (For a > 0)

R1(a, a) =

∫ ∞
0

sech
(
π x
2 a

)
1 + x2

dx

= 2 a
∞∑
k=1

(−1)
k+1

1 + (2 k − 1) a

=
1

2

(
ψ

(
3

4
+

1

4a

)
− ψ

(
1

4
+

1

4a

))

=
2a

1 + a
F

(
1

2a
+

1

2
, 1;

1

2a
+

3

2
;−1

)
(Gauss c.f.)

= 2

∫ 1

0

t1/a

1 + t2
dt

=

∫ ∞
0

e−x/a sech(x) dx.
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Continued fraction? Closed forms, 2.

• This is deduced from a Riemann sum via an elliptic
integral/theta-function formula.

• For a = p/q rational we obtain an explicit closed form.
Special cases include

R(1) = log 2 and R
(

1

2

)
= 2− π

2
.

– Originally, we could not compute 4 digits of these values! Now
have fast methods in all of C2.

• For a with strictly positive (or negative) real part
R(a) := R1(a) exists and is holomorphic.

• R(ri) (r 6= 0) behaves chaotically with 4-fold bifurcation.

• Find a closed form for R(a, b) for some a 6= b?
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Continued fraction? Closed forms, 3.
The first sech-integral for R(a) and the even Euler numbers

E2n := (−1)n
∫ ∞
0

sech(πx/2)x2n dx

yield

R(a) ∼
∑
n≥0

E2n a
2n+1,

giving an asymptotic series of zero radius of convergence.
Here the E2n commence 1,−1, 5,−61, 1385,−50521, 2702765 . . .
Moreover, for the asymptotic error, we have:∣∣∣∣∣R(a)−

N−1∑
n=1

E2n a
2n+1

∣∣∣∣∣ ≤ |E2N | a2N+1,

• It is a classic theorem of Borel that for every real sequence (an)
there is a C∞ function f on R with f (n)(0) = an.

• Who knew they could be so explicit?
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37. What is that number?
43. Lambert W
48. What is that continued fraction?

What is that Continued fraction? Visual Dynamics
Six months after these discoveries we had a beautiful proof using
genuinely new dynamical results:

Theorem (Divergence of R)

Consider the linearised dynamical system t0 := t1 := 1:

tn ←↩
1

n
tn−1 + ωn−1

(
1− 1

n

)
tn−2,

where ωn = a2, b2 for n even, odd resp. (or is more general).
Then

√
n tn is bounded ⇔ R1(a, b) diverges.

Numerically all we learned is that tn → 0 slowly.
Pictorially we saw more (in Cinderella):
http://carma.newcastle.edu.au/jon/dynamics.

html and originally in Maple.
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56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

La plus ça change, II

Figure : The problem and solution was ‘GPS’
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56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

7. What is that Probability? toc

Question (SIAM 100 digit challenge, 2003)

[#10.] A particle at the center of a 10× 1 rectangle undergoes
Brownian motion (i.e., 2-D random walk with infinitesimal step
lengths) till it hits the boundary. What is the probability that it
hits at one of the ends rather than at one of the sides?

• J.M. Borwein, “The SIAM 100 Digit Challenge,” Extended review, Mathematical Intelligencer, 27 (4)
(2005), 40–48. See http://carma.newcastle.edu.au/jon/digits.pdf.

• See also: http://www-m3.ma.tum.de/m3old/bornemann/challengebook/index.html.

• Image is a walk on the first two billion bits of Pi: see http://carma.newcastle.edu.au/walks/.
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56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

What is that Probability? Bornemann’s solution, 1.

Problem #10: Hitting the Ends.

1 Monte-Carlo methods are impracticable.

2 Reformulate deterministically as the value at the center of a
10× 1 rectangle of an appropriate harmonic measure of the
ends, arising from a 5-point discretization of Laplace’s
equation with Dirichlet boundary conditions.

3 Solved with a well chosen sparse Cholesky solver.

4 A reliable numerical value of

3.837587979 · 10−7

is obtained. And the posed problem is solved numerically to
the requisite ten places.

This is only the warm up.
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3.837587979 · 10−7

is obtained. And the posed problem is solved numerically to
the requisite ten places.

This is only the warm up.
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56. What is that probability?
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What is that Probability? Bornemann’s solution, 2.

We develop two analytic solutions — which must agree — on a
general 2a× 2b rectangle:

1 Via separation of variables on the underlying PDE

p(a, b) =
4

π

∞∑
n=0

(−1)n

2n+ 1
sech

(
π(2n+ 1)

2
ρ

)
(16)

where ρ := a/b.

2 Using conformal mappings, yields

arccot ρ = p(a, b)
π

2
+ arg K

(
eip(a,b)π

)
(17)

where K is the complete elliptic integral of the first kind.
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56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

What is that Probability? Bornemann’s solution, 3.

Now (3.2.29)] in Pi&AGM shows that

∞∑
n=0

(−1)n

2n+ 1
sech

(
π(2n+ 1)

2
ρ

)
=

1

2
arcsin kρ (18)

exactly when kρ2 is parameterized by theta functions as follows.

• As Jacobi discovered via the nome, q = exp(−πρ):

kρ2 =
θ22(q)

θ23(q)
=

∑∞
n=−∞ q(n+1/2)2∑∞

n=−∞ q
n2 q := e−πρ.

• Comparing (18) and (16) we see that the solution is

p =
2

π
arcsin (k100),

k100 = 6.02806910155971082882540712292 . . . · 10−7.
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56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

What is that Probability? Bornemann’s solution, 4.

• Classical nineteenth century modular function theory tells us
all rational singular values kn are algebraic (solvable).

• Now, we can hunt in books or obtain the solution
automatically in Maple: Thence

k100 :=

((
3− 2

√
2
)(

2 +
√

5
)(
−3 +

√
10
)(
−
√

2 +
4
√

5
)2)2

• No one anticipated a closed form like this, except perhaps a
few harmonic analysts.

– For what boundaries can one emulate this?

• In fact k210 was sent by Ramanujan to Hardy in his famous
letter of introduction – if only Trefethen had asked for a√

210× 1 box, or even better a
√

15×
√

14 one.
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What is that Probability? A taste of Ramanujan

© 1988 SCIENTIFIC AMERICAN, INC

40 Ramanujan and pi Chapter 3
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8. What is that Limit, II? toc

Consider:

Cn :=
4

n!

∫ ∞
0

· · ·
∫ ∞
0

1(∑n
j=1(uj + 1/uj)

)2 du1
u1
· · · dun

un

Dn :=
4

n!

∫ ∞
0

· · ·
∫ ∞
0

∏
i<j

(
ui−uj

ui+uj

)2
(∑n

j=1(uj + 1/uj)
)2 du1

u1
· · · dun

un

En := 2

∫ 1

0

· · ·
∫ 1

0

 ∏
1≤j<k≤n

uk − uj
uk + uj

2

dt2 dt3 · · · dtn,

where (in the last line) uk =
∏k
i=1 ti.

• The Dn integrals arise in the Ising model (showing
ferromagnetic temperature driven phase shifts)

• The Cn have tight connections to quantum field theory. Also
En ≤ Dn ≤ Cn and En ∼ Dn.
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What is that Limit, II? A discovery

• Fortunately, the Cn can be written as one-dim integrals:

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp,

where K0 is the modified Bessel function.
• Computing Cn to 1000-digit (overkill) accuracy, we identified

C3 = L−3(2) :=
∑
n≥0

(
1

(3n+ 1)2
− 1

(3n+ 2)2

)
, C4 =

7

12
ζ(3),

• Here ζ is Riemann zeta. In particular

C1024 = 0.63047350337438679612204019271087890435458707871273 . . . ,

is the limit value to that precision. The ISC returned

lim
n→∞

Cn = 2e−2γ ,

where γ is Euler’s constant. (Now proven.)
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7. What is that Limit, II? Sterner stuff I.

For D5, E5, we could integrate one variable symbolically.CLOSED FORMS: WHAT THEY ARE AND WHY WE CARE 21

E5 =

∫ 1

0

∫ 1

0

∫ 1

0

[
2(1− x)2(1− y)2(1− xy)2(1− z)2(1− yz)2(1− xyz)2

(
−
[
4(x+ 1)(xy + 1) log(2)

(
y5z3x7 − y4z2(4(y + 1)z + 3)x6 − y3z

((
y2 + 1

)
z2 + 4(y+

1)z + 5)x5 + y2
(
4y(y + 1)z3 + 3

(
y2 + 1

)
z2 + 4(y + 1)z − 1

)
x4 + y

(
z
(
z2 + 4z

+5) y2 + 4
(
z2 + 1

)
y + 5z + 4

)
x3 +

((
−3z2 − 4z + 1

)
y2 − 4zy + 1

)
x2 − (y(5z + 4)

+4)x− 1)] /
[
(x− 1)3(xy − 1)3(xyz − 1)3

]
+
[
3(y − 1)2y4(z − 1)2z2(yz

−1)2x6 + 2y3z
(
3(z − 1)2z3y5 + z2

(
5z3 + 3z2 + 3z + 5

)
y4 + (z − 1)2z

(
5z2 + 16z + 5

)
y3 +

(
3z5 + 3z4 − 22z3 − 22z2 + 3z + 3

)
y2 + 3

(
−2z4 + z3 + 2

z2 + z − 2
)
y + 3z3 + 5z2 + 5z + 3

)
x5 + y2

(
7(z − 1)2z4y6 − 2z3

(
z3 + 15z2

+15z + 1) y5 + 2z2
(
−21z4 + 6z3 + 14z2 + 6z − 21

)
y4 − 2z

(
z5 − 6z4 − 27z3

−27z2 − 6z + 1
)
y3 +

(
7z6 − 30z5 + 28z4 + 54z3 + 28z2 − 30z + 7

)
y2 − 2

(
7z5

+15z4 − 6z3 − 6z2 + 15z + 7
)
y + 7z4 − 2z3 − 42z2 − 2z + 7

)
x4 − 2y

(
z3
(
z3

−9z2 − 9z + 1
)
y6 + z2

(
7z4 − 14z3 − 18z2 − 14z + 7

)
y5 + z

(
7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7
)
y4 +

(
z6 − 14z5 + 3z4 + 84z3 + 3z2 − 14z + 1

)
y3 − 3

(
3z5

+6z4 − z3 − z2 + 6z + 3
)
y2 −

(
9z4 + 14z3 − 14z2 + 14z + 9

)
y + z3 + 7z2 + 7z

+1)x3 +
(
z2
(
11z4 + 6z3 − 66z2 + 6z + 11

)
y6 + 2z

(
5z5 + 13z4 − 2z3 − 2z2

+13z + 5) y5 +
(
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

)
y4 +

(
6z5 − 4

z4 − 66z3 − 66z2 − 4z + 6
)
y3 − 2

(
33z4 + 2z3 − 22z2 + 2z + 33

)
y2 +

(
6z3 + 26

z2 + 26z + 6
)
y + 11z2 + 10z + 11

)
x2 − 2

(
z2
(
5z3 + 3z2 + 3z + 5

)
y5 + z

(
22z4

+5z3 − 22z2 + 5z + 22
)
y4 +

(
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

)
y3 +

(
3z4−

22z3 − 26z2 − 22z + 3
)
y2 +

(
3z3 + 5z2 + 5z + 3

)
y + 5z2 + 22z + 5

)
x+ 15z2 + 2z

+2y(z − 1)2(z + 1) + 2y3(z − 1)2z(z + 1) + y4z2
(
15z2 + 2z + 15

)
+ y2

(
15z4

−2z3 − 90z2 − 2z + 15
)
+ 15

]
/
[
(x− 1)2(y − 1)2(xy − 1)2(z − 1)2(yz − 1)2

(xyz − 1)2
]
−
[
4(x+ 1)(y + 1)(yz + 1)

(
−z2y4 + 4z(z + 1)y3 +

(
z2 + 1

)
y2

−4(z + 1)y + 4x
(
y2 − 1

) (
y2z2 − 1

)
+ x2

(
z2y4 − 4z(z + 1)y3 −

(
z2 + 1

)
y2

+4(z + 1)y + 1)− 1) log(x+ 1)] /
[
(x− 1)3x(y − 1)3(yz − 1)3

]
− [4(y + 1)(xy

+1)(z + 1)
(
x2
(
z2 − 4z − 1

)
y4 + 4x(x+ 1)

(
z2 − 1

)
y3 −

(
x2 + 1

) (
z2 − 4z − 1

)

y2 − 4(x+ 1)
(
z2 − 1

)
y + z2 − 4z − 1

)
log(xy + 1)

]
/
[
x(y − 1)3y(xy − 1)3(z−

1)3
]
−
[
4(z + 1)(yz + 1)

(
x3y5z7 + x2y4(4x(y + 1) + 5)z6 − xy3

((
y2+

1)x2 − 4(y + 1)x− 3
)
z5 − y2

(
4y(y + 1)x3 + 5

(
y2 + 1

)
x2 + 4(y + 1)x+ 1

)
z4+

y
(
y2x3 − 4y(y + 1)x2 − 3

(
y2 + 1

)
x− 4(y + 1)

)
z3 +

(
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x+ 4)y + 4)z − 1
)
log(xyz + 1)

]
/
[
xy(z − 1)3z(yz − 1)3(xyz − 1)3

])]

/
[
(x+ 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

]
dx dy dz

Figure 6. The reduced multidimensional integral for E5, which inte-
gral has led via extreme-precision numerical quadrature and PSLQ to
the conjectured closed form given in (4.1).
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What is that Limit, II? Sterner stuff, II.
• Nonetheless, we obtained 240-digits or more on a highly

parallel computer system — impossible without a dimension
reduction, and needed for reliable D5, E5 hunts.

– We give the integral in extenso to show the difference between
a humanly accessible answer and one a computer finds useful.

In this way, we produced the following evaluations:

D2 = 1/3, D3 = 8 + 4π2/3− 27 L−3(2), D4 = 4π2/9− 1/6− 7ζ(3)/2,

E2 = 6− 8 log 2, E3 = 10− 2π2 − 8 log 2 + 32 log2 2,

E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3 + 16π2 log 2

− 22π2/3.

For D2, D3, D4, these confirmed known analytic (physics) results. Also:

E5
?
= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2− 40 log 2

+ 40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2 + 464 log2 2, (19)

where Li4 denotes the quadra-logarithm.
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E2 = 6− 8 log 2, E3 = 10− 2π2 − 8 log 2 + 32 log2 2,

E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3 + 16π2 log 2

− 22π2/3.

For D2, D3, D4, these confirmed known analytic (physics) results. Also:

E5
?
= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2− 40 log 2

+ 40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2 + 464 log2 2, (19)

where Li4 denotes the quadra-logarithm.
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What is that Limit, II? Data sets
I only understand things through examples and then gradually
make them more abstract. I don’t think it helped Grothendieck in
the least to look at an example. He really got control of the
situation by thinking of it in absolutely the most abstract possible
way. It’s just very strange. That’s the way his mind worked.
(David Mumford, 2004)

1 The form in (19) for E5 was confirmed to 240-digit accuracy.

2 This is 180 digits beyond the level that could be ascribed to
numerical round-off; thus we are quite confident in this result.

3 We tried but failed to recognize D5 in terms of similar constants as
described in the paper.

4 The 500-digit numerical value is accessible3 if anyone wishes to try
to find a closed form; or in the manner of the hard sciences to
confirm our data values.

3http://crd.lbl.gov/~dhbailey/dhbpapers/ising-data.pdf.
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9. What is that Transition value? toc

Example (Weakly coupling oscillators)

In an important analysis of coupled Winfree oscillators, Quinn,
Rand, and Strogatz looked at an N -oscillator scenario whose
bifurcation phase offset φ is implicitly defined, with a conjectured
asymptotic behavior: sinφ ∼ 1− c1/N,; and with experimental
estimate c1 = 0.605443657 . . .. We derived the exact value of this
“QRS constant’:
c1 is the unique zero of the Hurwitz zeta ζ(1/2, z/2) for z ∈ (0, 2).

• We were able to prove the conjectured behavior. Moreover,
we sketched the higher-order asymptotic behavior; something
that would have been impossible without discovery of an
analytic formula.

J.M. Borwein Meetings with Special Functions



2. Introduction and Three Elementary Examples
35. Three Intermediate Examples

54. More Advanced Examples
68. Current Research and Conclusions

56. What is that probability?
62. What is that limit, II?
67. What is that transition value?

9. What is that Transition value? toc

Example (Weakly coupling oscillators)

In an important analysis of coupled Winfree oscillators, Quinn,
Rand, and Strogatz looked at an N -oscillator scenario whose
bifurcation phase offset φ is implicitly defined, with a conjectured
asymptotic behavior: sinφ ∼ 1− c1/N,; and with experimental
estimate c1 = 0.605443657 . . .. We derived the exact value of this
“QRS constant’:
c1 is the unique zero of the Hurwitz zeta ζ(1/2, z/2) for z ∈ (0, 2).

• We were able to prove the conjectured behavior. Moreover,
we sketched the higher-order asymptotic behavior; something
that would have been impossible without discovery of an
analytic formula.

J.M. Borwein Meetings with Special Functions



2. Introduction and Three Elementary Examples
35. Three Intermediate Examples

54. More Advanced Examples
68. Current Research and Conclusions

56. What is that probability?
62. What is that limit, II?
67. What is that transition value?
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remains constant, except for slight fluctuations due to
finite-size effects. Thus, this chimera is stable and statisti-
cally stationary. However, if we increase � (the coupling
within a population) relative to � (the coupling between
populations), the stationary state can lose stability. Now the
order parameter pulsates, and the chimera starts to breathe
[Fig. 2(b)]. The breathing cycle lengthens as we increase
the disparity A � �� � between the couplings [Fig. 2(c)].
At a critical disparity, the breathing period becomes infi-
nite. Beyond that, the chimera disappears and the synchro-
nized state becomes a global attractor.

To explain these results, we analyze Eq. (1) in the
continuum limit where N� ! 1 for � � 1, 2. Then
Eq. (1) gives rise to the continuity equations
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where f���; t� is the probability density of oscillators in
population �, and v���; t� is their velocity, given by
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(Note that we dropped the superscripts on � to ease the
notation. Thus, � means �� and �0 means ��
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.) If we define
a complex order parameter
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then v���� simplifies to
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i�ei��; (5)

where the � denotes complex conjugate.
Following Ott and Antonsen [11], we now consider a

special class of density functions f� that have the form of a
Poisson kernel. The remarkable fact that Ott and Antonsen
discovered is that such kernels satisfy the governing equa-
tions exactly, if a certain low-dimensional system of ordi-
nary differential equations is satisfied. In other words, for
this family of densities, the dynamics reduce from infinite
dimensional to finite (and low) dimensional. (Numerical
evidence suggests that all attractors lie in this family, but
proving this remains an open problem.) Specifically, let

 f���; t� �
1

2�
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�X1
n�1

�a��t�ei��n � c:c:
��
: (6)

What is special here is that we use the same function a��t�
in all the Fourier harmonics, except that a� is raised to the
nth power in the nth harmonic. Inserting this f� into the
governing equations, one finds that this is an exact solution,
as long as

 _a � � i!a� �
1
2�a

2
�z�e�i� � z��ei�� � 0: (7)

Instead of infinitely many amplitude equations, we have
just one. (It is the same equation for all n.)

To close the system, we express the complex order
parameter z� in terms of a�. Inserting the Poisson kernel
(6) into Eq. (4), and performing the integrations, yields
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K��0a
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�0 �t�; (8)
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FIG. 2 (color online). Order parameter r versus time. In all
three panels, N1 � N2 � 128 and � � 0:1. (a) A � 0:2: stable
chimera; (b) A � 0:28: breathing chimera; (c) A � 0:35: long-
period breather. Numerical integration began from an initial
condition close to the chimera state, and plots shown begin after
allowing a transient time of 2000 units.
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FIG. 1 (color online). Snapshot of a chimera state, obtained by
numerical integration of (1) with � � 0:1, A � 0:2, and N1 �
N2 � 1024. (a) Synchronized population. (b) Desynchronized
population. (c) Density of desynchronized phases predicted by
Eqs. (6) and (12) (smooth curve) agrees with observed histo-
gram.

PRL 101, 084103 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2008

084103-2

• Does this deserve to be called a closed form?
• Resoundingly ‘yes’, unless all inverse functions such as that in

Bornemann’s probability are to be eschewed.
• Such QRS constants are especially interesting in light of recent work

by Strogatz, Lang et al on chimera — coupled systems which
self-organize in part and remain disorganized elsewhere.

• Now numerical limits still need a closed form.

• Often, the need for high accuracy computation drives
development of effective analytic expressions which in turn
shed substantial light on the subject being studied.
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FIG. 1 (color online). Snapshot of a chimera state, obtained by
numerical integration of (1) with � � 0:1, A � 0:2, and N1 �
N2 � 1024. (a) Synchronized population. (b) Desynchronized
population. (c) Density of desynchronized phases predicted by
Eqs. (6) and (12) (smooth curve) agrees with observed histo-
gram.
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• Does this deserve to be called a closed form?
• Resoundingly ‘yes’, unless all inverse functions such as that in

Bornemann’s probability are to be eschewed.
• Such QRS constants are especially interesting in light of recent work

by Strogatz, Lang et al on chimera — coupled systems which
self-organize in part and remain disorganized elsewhere.

• Now numerical limits still need a closed form.

• Often, the need for high accuracy computation drives
development of effective analytic expressions which in turn
shed substantial light on the subject being studied.
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numerical integration of (1) with � � 0:1, A � 0:2, and N1 �
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Eqs. (6) and (12) (smooth curve) agrees with observed histo-
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numerical integration of (1) with � � 0:1, A � 0:2, and N1 �
N2 � 1024. (a) Synchronized population. (b) Desynchronized
population. (c) Density of desynchronized phases predicted by
Eqs. (6) and (12) (smooth curve) agrees with observed histo-
gram.

PRL 101, 084103 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2008

084103-2

• Does this deserve to be called a closed form?
• Resoundingly ‘yes’, unless all inverse functions such as that in

Bornemann’s probability are to be eschewed.
• Such QRS constants are especially interesting in light of recent work

by Strogatz, Lang et al on chimera — coupled systems which
self-organize in part and remain disorganized elsewhere.

• Now numerical limits still need a closed form.

• Often, the need for high accuracy computation drives
development of effective analytic expressions which in turn
shed substantial light on the subject being studied.
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10. What is that Expectation? Box integrals toc

• There is much recent research on calculation of expected
distances of points inside a hypercube to the hypercube

– or expected distances between points in a hypercube, etc.

• Some expectations 〈|~r|〉 for random ~r ∈ [0, 1]n are

Example

n = 2
√
2
3 + 1

3 log
(
1 +
√

2
)
.

n = 3 1
4

√
3− 1

24π + 1
2 log

(
2 +
√

3
)
.

n = 4 2
5 −

G
10 + 3

10 Ti2
(
3− 2

√
2
)

+ log 3− 7
√
2

10 arctan
(

1√
8

)
.

• Box integrals are not just a mathematician’s curiosity — they are

being used to assess randomness of (rat) brain synapses positioned

within a parallelepiped. But now we (B-Crandall-Rose) wish to use

Cantor Boxes.
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What is that Expectation?

Figure : B(2, C2(1)) (top-left) average squared distance of a carpet point
from origin; ∆(2, C1(1)) (top-right) expected squared separation of two
carpet points. Below corresponding quantities over unit square. As
distance increases, colour shifts to violet end of visible spectrum)
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What is that Dimension? Hyperclosure, 1.

A very recent result is that every box integral 〈|~r|n〉 for integer n,
and dimensions 1, 2, 3, 4, 5 are “hyperclosed”.

• Five-dimensional box integrals have been especially difficult,
depending on knowledge of a hyperclosed form for a single
definite integral J(3), where

J(t) :=

∫
[0,1]2

log(t+ x2 + y2)

(1 + x2)(1 + y2)
dx dy. (20)

• BCC (2011) proved hyperclosure of J(t) for algebraic t ≥ 0.
Thus 〈|~r|−2〉 for ~r ∈ [0, 1]5 can be written in explicit form
involving a 105-character symbolic J(3).

• We reduced the 5-dim box value to “only” 104 characters.
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What is that Dimension? Hyperclosure, 2.

A companion integral J(2) also starts out with about 105

characters but reduces stunningly to a only a few dozen characters:

J(2) =
π2

8
log 2− 7

48
ζ(3) +

11

24
πCl2

(π
6

)
− 29

24
πCl2

(
5π

6

)
, (21)

— Cl2(θ) :=
∑

n≥1 sin(nθ)/n2 a simple non-elementary Fourier
series).

Thomas Clausen (1801-1885) learned to read at 12.

He computed π to 247 places in 1847 using a Machin formula.

• Automating such reductions requires a sophisticated simplification
scheme plus a very large and extensible knowledge base.

• With Alex Kaiser we are designing software to automate this process
and to use before submission of any equation-rich paper:
http://www.carma.newcastle.edu.au/jon/auto.pdf
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11. What is that Density? toc

Current work with Straub, Wan and Zudilin looks at classical short
uniform random walks in the plane:
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• Radial densities pn of a random planar walk.
– especially p3, p4, p5 (as above with p6).

• Expectations and moments Wn(s).

This led Straub and JMB to make detailed study of:

• Mahler Measures µ(P ) and logsin integrals

– µ(1 + x1 + · · ·xn−1) = W
′

n(0) is known for n = 3, 4, 5, 6.

• Multiple Mahler measures like µn(1 + x+ y) and QFT.

• The next presentation describes what we know. Hidden below the
surface is much use of Meijer-G functions.
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• The next presentation describes what we know. Hidden below the
surface is much use of Meijer-G functions.
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Visualising Three Step Walks
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Moments of a Four Step Walk
Theorem (Meijer-G form for W4)

For Re s > −2 and s not an odd integer

W4(s) =
2s
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G22
44
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1
2 −

s
2 ,−

s
2 ,−

s
2

∣∣∣∣1
)
. (22)

W4 with phase colored continuously (L) and by quadrant (R)
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Part II (as time permits) and Conclusions toc

Part II Hypergeometric evaluations of the densities of short
random walks
http://carma.newcastle.edu.au/jon/densities-as.pdf

Conclusions

1 We still lack a complete accounting of µn(1 + x+ y) and are
trying to resolve “the crisis of the 6th root in QFT.”

2 Our log-sine and MZV algorithms uncovered many, many
errors in the literature — old and new.

3 We are also filling gaps such as:
• Euler sum values like ζ(2n+ 1, 1) in terms of Ls

(2n−3)
2n (π).

4 Automated simplification, validation and correction tools are
more and more important.

5 As are projects like the DDMF (INRIA’s dynamic dictionary).
6 Thank you!
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