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“[IIntuition comes to us much earlier and with much less outside
influence than formal arguments which we cannot really understand

unless we have reached a relatively high level of logical experience and
sophistication.

“In the first place, the beginner must be convinced that proofs deserve
to be studied, that they have a purpose, that they are interesting.

George Polya (1887-1985)

See also: D.Robson, “Old schooled: You never stop learning like a child,” New Scientist, 24-5-2013
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In addition to advancing yesearch and discaveri Ik pure and
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Improve the situation The groups will Be charged Wwith developing guides To currert Best practices andsor white
papers on desivable advances.
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Lonely Planet's top 10 cities
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10 images in this story

Travel experts Lonely Planet
have named the top 10 cities
for 2011 in their annual travel
bible, Best in Travel 2011. The
top-listed cities win points for
their local cultures, value for
money, and overall va-va-
voom. So which cities make
the cut? Find out here, from 10
to1...

What do you think of the list?
Tell us here!

Related links: Lonely
Planet destination videos

A weekend in Newcastle
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ABSTRACT

Jonathan M. Borwein

Abstract: The mathematical research community is facing a great challenge
to re-evaluate the role of proof in light of the growing power of current
computer systems, of modern mathematical computing packages, and of the
growing capacity to data-mine on the Internet. Add to that the enormous
complexity of many modern capstone results such as the Poincarée
conjecture, Fermat's last theorem, and the Classification of finite simple
groups. As the need and prospects for inductive mathematics blossom, the
requirement to ensure the role of proof is properly founded remains
undiminished. | shall look at the philosophical context with examples and
then offer some of five bench-marking examples of the opportunities and
challenges we face. (Related paper )

“The object of mathematical rigor is to sanction and legitimize the conquests of intuition,
and there was never any other object for it.” — Jacques Hadamard (1865-1963)



http://www.ams.org/notices/201110/rtx111001410p.pdf

OUTLINE

|. Working Definitions and Examples of:

Discovery

Proof (and of Mathematics)
Digital-Assistance

Experimentation (in Maths and in Science)
Reproducibility and Simplification

Il. (Some few of) Five Numbers:

p(n)

Pi
tau(n)
zeta(3)
1/Pi

“Keynes distrusted intellectual rigour of the Ricardian
type as likely to get in the way of original thinking and
saw that it was not uncommon to hit on a valid
conclusion before finding a logical path to it.”

- Sir Alec Cairncross, 1996

l1l. A Cautionary Finale

IVV. Making Some Tacit Conclusions Explicit

“Mathematical proofs like diamonds should be hard
and clear, and will be touched with nothing but strict
reasoning.” - John Locke
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PART |I. PHILOSOPHY, PSYCHOLOGY, ETC

“This is the essence of science. Even though | do not
understand quantum mechanics or the nerve cell
membrane, | trust those who do. Most scientists are quite
ignorant about most sciences but all use a shared
grammar that allows them to recognize their craft when

they see it.

The motto of the Royal Society of London is 'Nullius in verba' : trust
not in words. Observation and experiment are what count, not
opinion and introspection. Few working scientists have much respect
for those who try to interpret nature in metaphysical terms. For most
wearers of white coats, philosophy is to science as pornography is to
sex: it is cheaper, easier, and some people seem, bafflingly, to prefer
it. Outside of psychology it plays almost no part in the functions of the
research machine.” - Steve Jones

e From his 1997 NYT BR review of Steve Pinker’s How the Mind Works.



WHAT is a DISCOVERY?

“discovering a truth has three components. First, there is
the independence requirement, which is just that one
comes to believe the proposition concerned by one’s own
lights, without reading it or being told. Secondly, there is the
requirement that one comes to believe it in a reliable way.
Finally, there is the requirement that one’s coming to
believe it involves no violation of one’s epistemic state. ...

In short, discovering a truth is coming to believe it in an
independent, reliable, and rational way.”

Marcus Giaquinto, Visual Thinking in Mathematics.
An Epistemological Study, p. 50, OUP 2007

“All truths are easy to understand once they are discovered; the point is
to discover them.” — Galileo Galilei




Galileo was not alone in this view

“I will send you the proofs of the theorems in this book. Since, as |
said, | know that you are diligent, an excellent teacher of
philosophy, and greatly interested in any mathematical
investigations that may come your way, | thought it might be
appropriate to write down and set forth for you in this same book
a certain special method, by means of which you will be enabled
to recognize certain mathematical questions with the aid of
mechanics. | am convinced that this is no less useful for finding
proofs of these same theorems.

For some things, which first became clear to me by the mechanical
method, were afterwards proved geometrically, because their
investigation by the said method does not furnish an actual
demonstration. For it is easier to supply the proof when we have
previously acquired, by the method, some knowledge of the
questions than it is to find it without any previous knowledge.” -
Archimedes (287-212 BCE)

Archimedes to Eratosthenes in the introduction to The Method in

Mario Livio’s, Is God a Mathematician? Simon and Schuster, 2009




la. A Recent Discovery (July 2009 - 2012)

(“independent, reliable and rational”) W(s)

The n-dimensional integral

S
1 r1
Whn(s) :=/O /O /O Z ek dxq dxo - - - dan

in the plane.
Wn(1) is the expected distance moved after n

|
]
!

occurs in the study of uniform random walks W \ NI B TR

steps. Wqi(1) = 1 W2(1):i Pearson (1906)
s
» 3213 1\  2722/3 /2
W3(1) = 16 24 r (3)+T—7r4 r (3) (1)

(1) was checked to 175 places on 256 cores in
about 15 minutes. It orginated with our dis-
cover (later proof JMB-Nuyens-Straub-Wan)
that for k=0,1,2,3,.

W3(2k) = 3F2(2’ P JIcl‘*) and W3( Q= BesF (_’

We proved the formula for 2k (counts abelian
1000 3 step walks squares) and numerically saw it was half-true
at k=1/2




WHAT is MATHEMATICS?

MATHEMATICS, n. a group of related subjects, including algebra,
geometry, trigonometry and calculus, concerned with the study of
number, quantity, shape, and space, and their inter-relationships,
applications, generalizations and abstractions.

¢ This definition, from my Collins Dictionary has no mention of proof, nor the
means of reasoning to be allowed (vidé Giaquinto). Webster's contrasts:

INDUCTION, n. any form of reasoning in which the conclusion, though
supported by the premises, does not follow from them necessarily.

and

DEDUCTION, n. a. a process of reasoning in which a conclusion follows
necessarily from the premises presented, so that the conclusion
cannot be false if the premises are true.

b. a conclusion reached by this process.

“If mathematics describes an objective world just like physics, there is no reason
why inductive methods should not be applied in mathematics just the same as in
physics.” - Kurt Godel (in his 1951 Gibbs Lecture) echoes of Quine




WHAT is a PROOF?

“*PROOF, n. a sequence of statements, each of which is either
validly derived from those preceding it or is an axiom or
assumption, and the final member of which, the conclusion , is
the statement of which the truth is thereby established. A direct
proof proceeds linearly from premises to conclusion; an indirect
proof (also called reductio ad absurdum) assumes the falsehood
of the desired conclusion and shows that to be impossible. See
also induction, deduction, valid.”

Borowski & JB, Collins Dictionary of Mathematics

INDUCTION, n. 3. ( Logic) a process of reasoning in which a general conclusion is drawn from a
set of particular premises, often drawn from experience or from experimental evidence. The
conclusion goes beyond the information contained in the premises and does not follow
necessarily from them. Thus an inductive argument may be highly probable yet lead to a
false conclusion; for example, large numbers of sightings at widely varying times and
places provide very strong grounds for the falsehood that all swans are white.

“No. | have been teaching it all my life, and | do not want to have my ideas
upset.” - Isaac Todhunter (1820-1884) recording Maxwell’'s response when asked
whether he would like to see an experimental demonstration of conical refraction.
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WHAT is DIGITAL ASSISTANCE?

¢ Use of Modern Mathematical Computer Packages
=  Symbolic, Numeric, Geometric, Graphical, ...

¢ Use of More Specialist Packages or General Purpose Languages
=  Fortran, C++, CPLEX, GAP, PARI, MAGMA, Cinderella ...

¢ Use of Web Applications

= Sloane’s Encyclopedia, Inverse Symbolic Calculator, Fractal Explorer,
Euclid in Java, Weeks’ Topological Games, Polymath (Sci. Amer.), ...

¢ Use of Web Databases

= Google, MathSciNet, ArXiv, JSTOR, Wikipedia, MathWorld, Planet Math,
DLMF, MacTutor, Amazon, ..., Kindle Reader, Wolfram Alpha (??)

¢ All entail data-mining [“exploratory experimentation” and “widening
technology” as in pharmacology, astrophysics, biotech, ... (Franklin)]

= Clearly the boundaries are blurred and getting blurrier
= Judgments of a given source’s quality vary and are context dependent

“Knowing things is very 20th century. You just need to be able to find things.”-

Danny Hillis on how Google has already changed how we think in Achenblog, July 1 2008
- changing cognitive styles



http://blog.washingtonpost.com/achenblog/?hpid=opinionsbox1

Exploratory Experimentation

Franklin argues that Steinle's “exploratory experimentation” facilitated
by “widening technology”, as in pharmacology, astrophysics,
medicine, and biotechnology, is leading to a reassessment of what
legitimates experiment; in that a “local model" is not now
prerequisite.

Hendrik Sgrenson (2011) cogently makes the case that experimental
mathematics (as ‘defined’ below) is following similar tracks:

“These aspects of exploratory experimentation and wide
instrumentation originate from the philosophy of (natural) science
and have not been much developed in the context of experimental
mathematics. However, | claim that e.q. the importance of wide
instrumentation for an exploratory approach to experiments that
includes concept formation is also pertinent to mathematics.”

In consequence, boundaries between mathematics and the natural
sciences and between inductive and deductive reasoning are blurred
and getting more so.



Changing User Experience and Expectations

What is attention? (Stroop test, 1935)

1. Say the color represented
by the word.

2. Say the color represented
by the font color.

High (young) multitaskers perform
#2 very easily. They are great at
suppressing information.

http://www.snre.umich.edu/eplab/demos/st0/stroop program/stroopgraphicnonshockwave.qif
Acknowledgements: Cliff Nass, CHIME lab, Stanford (interference and twitter?)



http://www.snre.umich.edu/eplab/demos/st0/stroop_program/stroopgraphicnonshockwave.gif
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Gaining insight and intuition
Discovering new relationships
Visualizing math principles

Testing and especially falsifying
conjectures

Exploring a possible result to see
If it merits formal proof

Suggesting approaches for
formal proof

Computing replacing lengthy
hand derivations

Confirming analytically derived
results

MATH LAB

Computer experiments are transforming mathematies

BY ERICA KLARREICH
I PR

any people regard mathernatics as the crown
jewel of the seiences. Yet math has histori-
cally lacked one of the defining trappings
ofseience: laboratory equipment, Fhysicists
have their particle accelerators; biologists,
their electron microscopes; and astronomers, their tel-
escopes. Mathematics, by eontrast, concerns not the

physical landseape but an idealized, abstract world, For explor-
ing that world, mathematicians have traditionally had only their
intuition,

Now, computers are starting to give mathematicians the lab
instrument that they have been
missing, Sophisticated software is
enabling researchers to travel fur-
ther and deeper into the mathe-
miatical universe, They're cale
lating the pnumber pi with
mind-boggling precision, for
inztance, or discovering patterns
in the contours of beawtiful, infi-
mite chains of spheres that arise
out of the geometry of knots.

Experiments in the computer lab
are leading mathematicians to dis-
coveries and insights that they might
never have reached by traditional
means, “Frety much cvery [math-
ematieal] field has been transtormed
k save Richard Crandall, s math-
ernatician at Reed College in Port-
lond, Ore, “Instead of just being &
mumber-crunching tool, the com-
puter is beeoming more like a gar-
den shovel that tums over recks, ond
vou find things underneath,”

At the same time, the new work
is paising unsetling questions about
howe to rezard experimental results

accouni for s many lsatures.

producad this plol of all the solitions 1o & coliection of
simple aqualions In 2001, Mathematitians are sU8 Lryingto

“I have some of the excitemnent that Leonardo of Pisa must have
felt when he encountered Arabie svithmetic. It suddenly made cer-
tain calculations flabbergastingly aasy” Borwein saye. "That's what
I think iz happening with computer experimentation today”

EXPERIMENTERS OF OLD In one sense, math experiments
are nothing new: Despite thedr field's reputation as a purely dedue-
tive seience, the great mathematicians over the centuries have
never limited themsehves to formal reasoning and proof.

Forinstance, in 1656, sheereuriogity and love of numbers lad Tsase
Newton to calenbate directly the first 16 digits of the number pi,
later writing, “T am ashamed to tell you to how many figares I car-
ried these computations, having no other business st the time”

«Carl Friedrich Gauss, one of the towering figures of 19th-cen-
mury mathematics, habitually dis-
covered new mathematical resalts
by experimenting with numbers and
looking for patterns. When Gauss
was & teenager, for instance, his
experiments led him o one of the
maost important conjectures in the
history of number theory: that the
mumber of prirme numbers less than
& number & is roughly equal to o
divided by the logarithm of &

Gauss often diseovered results
experimertally lomp bediore he could
prove them formalby, Oneee, he com-
plained, “T have the cesalt, but I do
not et know howr to get "

In the ease of the prime number
theorem, Gauss later refined his
eomjecture but never did tigure out
how to prowe it, It teok more thana
centary for mathemirtiviens to came
up with & proot

Like today’s mathematicians,
math experimenters in the late 19th
cemtury nsed eompaters bt in
; * those days, the ward ceferred to peo-
ple with a speial faulity for caley

Comparing —y2In(y) (red) to

y-y? and y*-y*



Reproducibility and Simplification

A recent result (BCC) is that all "box inte-
grals’ for integer n, and dimensions 1,2,3,4,5
are hyperclosed. Five-dimensional box inte-
grals have been especially difficult, depending
on knowledge of a hyperclosed form for a single
definite integral J(3), where

dy. (1)

J(t) ;:/[ 0g(t+a? +¢?)

a;. ) -
O’ 1] 2 ( 1 + xz) ( 1 —I— y2) "The computer is claiming its intelligence

is real, and ours is artificial."

For instance, Mathematica helped us obtain
a 100,000 character ‘“closed form” for (1).
When ¢t = 2, I hand-simplified this to

2

7 11 ™ 29 5
I =""1og2— ey, (TN 22 1, (27
(2) =g 1092 - =C3) + o, 2(6) 4" 2(6 !

Here Cla(0) := 3 ,>1sin(nd)/n? (simplest non-
elementary Fourier series).



Reproducibility and Simplification

e Automating such reductions will require a
sophisticated simplification scheme with a
very large and extensible knowledge base.

With Research Assistant, Alex Kaiser, we
have started to design PSLQ-based soft-
ware to refine and automate this process,

http://www.carma.newcastle.edu.au/jon/auto.pdf.

Also semi-automated integrity checking be-

l\\\f‘}\{(m( comes pressing when—as for J(2) or J(3)
. —verifiable output from a symbolic ma-

nipulation can be the length of a Salinger
"7x8=52, 9-3=5... things like that."  novella (10° characters or more).

¢ We now have code that does quite well at
that: finding 20 errors in 200 formulae and
autocorrecting 17.

See JMB and REC, “Closed Forms: what they are”, Notices, Jan 2013.



A Teraflop on a MacPro

“As of early 2011 one will be able to order an Apple
desktop machine with appropriate graphics (GPU)
cards and software, to achieve on certain problems
a teraflop.

Moreover, double-precision floats on GPUs will
finally be available. So, again on certain problems,
this will be 1000x or so faster than

we desk-denizens are. REC”

~

HE'S GONNA URGRADE M)

2012: 17 hex digits of pi at 10>
position computed by Ed Karrel “in
at NVIDIA (too hard for Blue Gene) [Y] *




1. What is that number? (1995-2009)

In 1995 or so Andrew Granville emailed me the number
o = 1.433127426722312. ..

and challenged me to identify it (our inverse calculator was new in
those days).

Changing representations, | asked for its continued fraction? It was

[1,2,3,4,5,6,7,8,9,10,11,...] (1)
| reached for a good book on continued fractions and found the answer
o — 1o(2)
I,(2)

where |, and |, are Bessel functions of the first kind. (Actually | knew
that all arithmetic continued fractions arise in such fashion).

In 2010 there are at least three other strategies:
» Given (1), type “arithmetic progression”, “continued fraction” into Google
* Type “1,4,3,3,1,2,7,4,2" into Sloane’s Encyclopaedia of Integer Sequences

| illustrate the outcomes on the next few slides:




“arithmetic progression”, “continued fraction”
In Google on October 15 2008 the first three hits were

Continued Fraction Constant -- from Wolfram MathWorld
- 3 visits - 14/09/07Perron (1954-57) discusses continued fractions having
terms even more general than the arithmetic progression and relates

them to various special functions. ...
mathworld.wolfram.com/ContinuedFractionConstant.nhtml - 31k

HAKMEM -- CONTINUED FRACTIONS -- DRAFT, NOT YET PROOFED

The value of a continued fraction with partial quotients increasing in
arithmetic progression is | (2/D) A/D [A+D, A+2D, A+3D, . ...
www.inwap.com/pdpl0/nhbaker/hakmem/cf.ntml - 25k -

On simple continued fractions with partial guotients in arithmetic ...

0. This means that the sequence of partial quotients of the continued
fractions under. investigation consists of finitely many arithmetic

progressions (with ...
www.springerlink.com/index/COVXH713662G1815.pdf - by P Bundschuh

— 1998

Iyn(3)

Moreover the MathWorld entry includes [A+D,A+2D,A+3D, .| =

Iiap | 5)

(Schroeppel 1972) forreal A and ) + ().



http://www.google.com.au/url?sa=t&source=web&ct=res&cd=1&url=http://mathworld.wolfram.com/ContinuedFractionConstant.html&ei=pSf3SNfcJ6CmtQOdlqiYDA&usg=AFQjCNHdVHW3WHPEkPiQQKQwpvHD0nybxw&sig2=HEHFxJUgDIdIZ8QM4ZEjpw
http://www.inwap.com/pdp10/hbaker/hakmem/cf.html
http://www.springerlink.com/index/C0VXH713662G1815.pdf

In the Integer Sequence Data Base
AT&Tl Enfeagr 5&{/uehrx}€ researcn

| 1|IIIJJJ

Greetings from The On-Line Encyclopedia of Inteqer Sequences!

14,3,3,1,2,7,4,2 | _
e | Exs The Inverse Calculator
Search: 1,4, 3,3, 1,2, 7, 4,2 retu I’nS
Cisplaying 1-1 of 1 results found. page |
Format: long | short | internal | text  Sort:relevance | references | number  Highlight: on | off .
ADEDSST Cedmal representation of continued fraction 1, 2, 3, 4,5, 8, 7, ... +4 BeSt gueSS
x}
e A A Besl(0,2)/Besl(1,2)
3, 4, 4, 2, 8, 6, 3, 6, 3,9, 4, 3,0, 9,1, 8, 3, 2, 5, 4,1, 7, 2, 9,0, 0, 1, 3,
&, 5, 0, 3, 7, Z, &, 4, 3, 5, 7,8, 6, 1, 1, 4, &, 5, 9, 5, 0lst; cons; graph; listen
OFFSET 1,2
COMMEMT The walue of this continued fraction is the ratio of two Bessel
functions: BesselI(0,2)/BesselI(l,2) = AO070910/a096783. oOr, ° We ShOW the |SC on
equivalently, to the ratio of the sums: sum_{n=0..inf} 1/i{n'n'} and
zum_{n=0..inf} n/in'n'l. - Mark Hudson (mrmarkhudson(AT) hotmail.
sun (270, anf) »/ another number next
FORMUL & 14052110, . .
EXAMPLE c=1.433127426722311756317183455775 ... e Most func“ona“ty Of
MATHEMATICA Realligits[ FrowmContinuedFraction[ Range[ 44]], 10, 110] [[1]] . . . “ . ”
[* Or *) Realbigits[ BesselI[0, 2] / BesselI[l, 2], 10, 1107 [[1]] f)/
(* or *) RealDigits[ Sum[1/(n!n!y, {n, 0, Infinity}] / Sum[n/(n'n!), ISC IS bUIIt Into Identl
{n, 0, Infinity}], 10, 110] [[1]] 1
ROSSREFS cf. ADSZ119, A001053. In Maple.
Adjacent sequences: ADB0934 A060395 AQG0996 this sequence AQGO0OOE
A080999 aA061000 ° !
Sequence in context: AO016699 ADB0373 2090250 this sequence A129624 There S alSO WOIfram
A019975 A073871 @

KE¥WORD Cons,easy, honn
ATHOR Robert &. Wilson v (rgwv (AT)egwy.com)( May 14 2001

“The price of metaphor is eternal vigilance.” - Arturo Rosenblueth & Norbert Wiener
guoted by R. C. Leowontin, Science p.1264, Feb 16, 2001 [ .



PHE THYEN 2L S THLDULL . & T HE 12 P oY
Calculator [ISC) uses a @DTIUE Qgggﬁ Hﬂl]lESth accepts either floating
cambination of lookup point expressions ar
tables and integer correct Maple syntax
relation algorithms in as input. However, for
order to associate ® daple syntax requiring
with a user-defined, 1SCO . = _HT too long far

truncated decimal 5} Sf,iﬁ Jlf' W evaluation, a timeout
expansion has been

(represented as a implemented,

iloasing pajit Standard lookup results for 12.587886229548403854

expression] a closed

form representation
for the real number,

exp ("2 Vst

ISC The original I5C Jon Barwein's

Webpage

The Dev Team: Mathan Singer, Andrew Shouldice , Lingyun Ye,

Tomas Daske , Peter Dobcsanyi, Dante Manna, (-Yeat Chan, Jon Borwein : S
David Bailey's

Webpage

tath FResources Portal

3146264370

1599909955 ¢ |ISC+ now runs at CARMA
* Less lookup & more
ISC The original I5C algorithms than 1995

The Dev Team: Mathan Singer , Andrew Shouldice , Lingyun Ye,
Tomas Daske, Peter Dobcsanyt, Dante Manna, O-Yeat Chan, Jon Borwein



1b. A Colour and an Inverse

Calculator (1995 & )

Inverse Symbolic Computation

Archimedes: 223/71 <1 < 22/’7

Inferring mathematical structure from numerical data

= Mixes large table lookup, integer relation methods and intelligent
preprocessing — needs micro-parallelism. In Python since 2007

It faces the “curse of exponentiality
INVERSE S YMBOLIC CALCULATOR

= Implemented as identify since Maple 9.5
Please enter a number or a Maple expression:
][ 3.146437
/

] Simp)ékup and Browser for any number.
@) art Lookup for any number.
Generalized Expansions for real numbers of at least 16 digits.

O Integer Relation Algorithms for any numb

| | Clear I

ROWS: coLs:  mop; , m GIT:

\J\L\u

5807 93238462643 PY|
182531211705 798; [

I«

8,

Expressions that are not numeric like In(Pi*sqrt(2)) are evaluated in Maple in symbolic

®?

Or}ﬁﬁ@roo

. ‘ “ ) : ’
VARIABLE NAME: VARIABL
’ ELIST:

form first, followed by a floating point evaluation followed by a lookup.


http://ddrive.cs.dal.ca/~isc

Mathematics and Beauty (2006)

1857142857142857142857142857
1571428571428571428571428571

/14285714285714285714285714
142857142857142857142857142

19
428 g2 a8 428 425

“This is an exceptionally important book. ... It could be the starting point
for many cognitive, social, and educational benefits.”
—From the Foreword by William Higginson,
Queen’s University, Canada

=]
“In a time of much sterile math teaching and grimly utilitarian school re-
form, this elegant and beautiful book brings to life a whole new vision. ...
Nathalie Sinclair makes a brilliant case for rethinking math instruction
so that an aesthetically rich learning environment becomes the path to

meaning, intellectual journeys, and—dare we say the word?—pleasure.”
—dJoseph Featherstone,

Michigan State University
a n e a u [ : In this innovative book, Nathalie Sinclair makes a compelling case for the
. inclusion of the aesthetic in the teaching and learning of mathematics.
P ]
Rt =

Using a provocative set of philosophical, psychological, mathematical,
technological, and educational insights, she illuminates how the materials
and approaches we use in the mathematics classroom can be enriched
for the benefit of all learners. While ranging in scope from the young
learner to the professional mathematician, there is a particular focus on
middle school, where negative feelings toward mathematics frequently
begin. Offering specific recommendations to help teachers evoke and
nurture their students’ aesthetic abilities, this book:

7" Aesthetic Approache
' to Teaching Children

* Features powerful episodes from the classroom that show stu-
dents in the act of developing a sense of mathematical aesthetics.

* Analyzes how aesthetic sensibilities to qualities such as con-
nectedness, fruitfulness, apparent simplicity, visual appeal, and
surprise are fundamental to mathematical inquiry.

¢ |ncludes examples of mathematical inquiry in computer-based
learning environments, revealing some of the roles they play in
supporting students’ aesthetic inclinations.

Nathalie Sinclair is an assistant professor in the Department of
Mathematics at Michigan State University.

ALSO OF INTEREST—
Improving Access to Mathematics: Diversity and Equity in the Classroom
Na'ilah Suad Nasir and Paul Cobb, Editors
2007/Paper and cloth
Photo of fern by John Spavin
Photo of nautilus by Peter Werner
Background photo of cabbage by Piero Marsiaj

Nathalie Sinclair

Foreword by William Higginson

ISBN-10 0-8077-4722-X

Teachers College || 90000>
=

DAV TAni

Columbia University
New York, NY 10027
www.tcpress.com




1c. Exploring Combinatorial Matrices (1993-2008)

In the course of studying multiple zeta values we needed to obtain the closed
form partial fraction decomposition for

1

x5(1 — x)t

This was known to Euler but is eaS|Iy discovered in Maple.
We needed also to show that M=A+B-C is invertible where the n by n matrices
A, B, C respectively had entries

=y =

>033

st st

+Z (l—x)J

s,t

a;

Fi—j -1
RIS

|(—1)k+1 (

2n — 3
2n —k/’

(~nk+ (2T

kE—1

)

(—1)kt1 (é: 1_)|

Thus, A and C are triangular and B is full.

After messing with many cases | thought to ask for M’'s minimal polynomial

: — : _ P

> linalg[minpoly](M(12),t);, —241¢+t (1 —22 110 —330 660 —924
. .. - . 3 0 —10 55 —-165 330 —-462

> linalg[minpoly](B(20),t); —1-+¢ v |0 7 36 93 162 210
- . : : 2 |0 -5 25 -56 78 -84

> [inalg[minpoly](A(20),t); —1 + ¢ 0 a3 1t a1 a3s o

> linalg[minpoly](C(20),t); —1 4+ ¢2 |0 -1 5 -10 10 -6 |




The Matrices Conquered

Once this was discovered proving that for all n >2
A°=1, BC=A, C?=1, CA=B?
IS a nice combinatorial exercise (by hand or computer). Clearly then

B3=B -B?=B(CA) = (BO)A= A’ =1

and the formula

M_l_M—I—I

2

IS again a fun exercise in formal algebra; as is confirming that we have
discovered an amusing presentation of the symmetric group  53.

 characteristic and minimal polynomials --- which were rather abstract for me
as a student --- now become members of a rapidly growing box of symbolic
tools, as do many matrix decompositions, etc ...

« a typical matrix has a full degree minimal polynomial

“Why should | refuse a good dinner simply because | don't understand the
digestive processes involved?” - Oliver Heaviside (1850-1925)




2. Phase Reconstruction

Projectors and Reflectors: P,(x) is the metric projection or nearest
point and R,(x) reflects in the tangent: x is red

FheLe ¢y of b Lis, Comil R Bilios (FRa, Gpymiha ® Gl vty

Veit Elser, Ph.D.

2007 Elser solving Sudoku
with reflectors

projection (hlacly) and reflection (blue) of point (red) on
boundary (blue) of ellipse (rellow)

"All physicists and a good
many quite respectable
mathematicians are
contemptuous about proof."
G. H. Hardy (1877-1947)

2008 Finding exoplanet
Fomalhaut in Piscis
with projectors




Interactive exploration in CINDERELLA

The simplest case is of a line A of height h and the unit circle B. With

zn = (zn,yn) the iteration becomes

Tp41 = COSOn,Yp41 = yn + h —Sin by,

(On = argzy)

A Cinderella picture of two steps from (4.2,-0.51) follows:

Showe Canstruction

¥=(4.2]-0.51}



http://www.carma.newcastle.edu.au/~jb616/reflection.html

Computer Algebra + Interactive Geometry
=“Visual Theorems™: The Grief is m the GUl

Divide ~and-Concur SN IS 2] =l IDLJ*@IE
before and after accessing numerical &+ |c. o8 o m e alia &A=
output from Maple

TheInteractive
Geometry Software

Miowe free plemers by dragsng Lhe mouse



http://users.cs.dal.ca/~jborwein/expansion.html

The number of ENIACS
needed to store the 20Mb TIF
file the Smithsonian sold me
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PART [l MATHEMATICS

“The question of the ultimate foundations and the
ultimate meaning of mathematics remains open:
we do not know in what direction it will find its final
solution or even whether a final objective answer
can be expected at all. 'Mathematizing' may well be
a creative activity of man, like language or music, of
primary originality, whose historical decisions defy
complete objective rationalisation.” - Hermann

Weyl

In “Obituary: David Hilbert 1862 — 1943,” RSBIOS, 4, 1944, pp. 547-553;
and American Philosophical Society Year Book, 1944, pp. 387-395, p. 392.



lla. The Partition Function (1991-2009)

Consider the number of additive partitions, p(n), of n. Now
5=4+1 =342 =3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1
so p(5)=7. The ordinary generating function discovered by Euler is

oo oo 1
d p)gt = [ (-4 . (1)
(Use the geometric formula for 1/(1-g¥) and observe how powers of g" occur.)

The famous computation by MacMahon of p(200)=3972999029388 done
symbolically and entirely naively using (1) on an Apple laptop took 20 min
In 1991, and about 0.17 seconds in 2009. Now it took 2 min for

P(2000) = 4720819175619413888601432406799959512200344166

In 2008, Crandall found p(10°) in 3 seconds on a laptop, using the Hardy-
Ramanujan-Rademacher ‘finite’ series for p(n) with FFT methods.

Such fast partition-number evaluation let Crandall find probable primes
P(1000046356) and p(1000007396). Each has roughly 35,000 digits.

When does easy access to computation discourages innovation: would Hardy
and Ramanujan have still discovered their marvellous formula for p(n)?




u'- Q’ : ~
«-..-'. o
“You cAN'T IMAGINE WOW TIGHT OUR BUPKET 15,
WE AN ONLY WORK WITH SINGLE-DIGIT ANUMBERS.™




lIb. The computation of Pi (1986-2011)

1— &/1— 4
1— 4Tk

BB4: Pito 5 o e = a1 (4 ) =2 (14 vt 40
I 1_4/1_ 4

O Yya= Y yas = 0z (1+y3)* —27ys (1 +ys +43”)

Tl 1 — gyt

trillion places

In 21 steps These equ
Y&
1/m ~ Ao
T
y6=1+¥71;4—7%=a5k1+ys) =2 ys {(I+yst+vs’)
— YE
1— 417 4
yr = HL /13 6_47a7:ae(1+y7)4—215yv (L+yr+u’)
— Y8
1_ 41_ 4
= %z% =ar(14+ys)* —2"ys (1 +ys +35°)
— Yy
s 417 4
— Y5

_ 1714/17@;94
TN

Set ag = 6 — 42 and yg = V2 — 1. Iterate
1—(1—yHl/*
14 (1—yhHt/4
ap(1 + ypa1)?

yaww=as(l+ ?410)4 = 2213/10 (1 + yi0+ y102)

and

Y41

41
2283y (14 ypr1 + yi41)-

Then 1/a; converges quartically to =«

ations specify an al

Y11 = M ay; = ap(l+ ?/11)4 = 228?/11 (1 + Y11 +?/112)
14 \4/1*3;104]

1— Y1 —yu:t
Yz = ——F——, 101

1+ \4/1*1,‘1147
1— \4/1—],'124
e

Y= —

2 =ai1(1+ y12)4 — 2%y, (1 + y12 + y122)

—pandl Lo N 027, 1 4+ g +y132)

gebraic number:

—yis{l+yis+ y152)

Yi6 = M as = ais(1+ y16)4 = 288?}16 (1 + yie + y162)
14 YT—yist’
e
Yir = H/%, arr = ags (1 4+ y1o)* — 2%y (1 + v + 9172)
— Yis
1T
Y18 = 1-*—\4/%] ais = aty (14 y1a)4 — 237']/18 (1 + yis + y182)
— Y17
T ooy
Yip = H{‘/fii: ap = as (14 ?/19)4 — 289?/19 (1 + te + ?/192)
— ¥

1— 1 — yio*
y = —
= 1+ &1 — et

,az0 = ap (14 920)4 e 241!/20 (1 + y20 + yZOZ) :

A random walk on a
million digits of Pi



Moore’ s Law Marches On

1986: It took Bailey 28 hours to compute 29.36 million digits
on 1 cpu of the then new CRAY-2 at NASA Ames using (BB4).
Confirmation using another BB quadratic algorithm took 40
hours. This uncovered hardware+software errors on the CRAY.

2009 Takahashi on 1024 cores of a 2592 core Appro Xtreme -
X3 system 1.649 trillion digits via (Salamin-Brent) took 64
hours 14 minutes with 6732 GB of main memory, and (BB4)
took 73 hours 28 minutes with 6348 GB of main memory.

¥  The 2 computations differed only in last 139 places.

Fabrice Bellard (Dec 2009) 2.7 trillion places on a 4 core
desktop in 133 days after 2.59 trillion by Takahashi (April).
2010/11: Yee-Ohno 5/10 trillion digits (my Lecture Life of Pi)

“The most important aspect in solving a mathematical problem is the conviction
of what is the true result. Then it took 2 or 3 years using the techniques that had
been developed during the past 20 years or so.” - Leonard Carleson (Lusin’s
problem on p.w. convergence of Fourier series in Hilbert space)


http://www.carma.newcastle.edu.au/jon/piday.pdf

Projected Performance

Projected Performance Development

10EFlop=
1 EFlops +
T00PFlops + - #
10 PFlops #500
-= Sum
1 PFlops + — #1 Trend
o Line
(]
& 100 TFlops 4 ok — #500 Trend
E N Line
=
10 TFlops — Sum Trend
E ,/, Line

I

1 TFlops "

100 GFlops 5 el

-

10 GFlops - &
o>

1GFI|:|F:|3—55.,'

100 MFlepz —1F-——""-"—"7""""T""T"T"T"T"T"T"T T T T T T T T T T T T
o= 0 Dk 00 MmO — 4 0= 0000 0O — 00 = u 0k 00O
o M Mmoo Mmoo oo o000 00000 00— = = = = 5= = = — v [
oM @M Mmoo oo oo oo oo oo oo oo cooococog
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Il c. Guiga and Lehmer (1932-2012)

As another measure of what changes over time and what doesn't,
consider two conjectures regarding Euler’s totient, ¢(n), which
counts positive numbers less than and relatively prime to n.

Giuga's conjecture (1950) nis prime if and only if

n—1
Gn 1= > k" 1= (n—-1)modn,
k=1

Counterexamples are Carmichael numbers (rare birds only
proven infinite in 1994) and more: if a number n=p;--- p,

with m>1 prime factors p; is a counterexample to Giuga's
conjecture then the primes are distinct and satisfy

UL |

—>1
Zé:l 1%
and they form a normal sequence: p; #1 mod p;

(3 rules out 7, 13, 19,31,... and 5rules out 11, 31, 41,...)




Guiga’s Conjecture (1951-2012)

1995.With predictive experimentally-discovered heuristics, we
built an efficient algorithm to show (in several months) that any
counterexample had 3459 prime factors and so exceeded 1013886

¢ — 10%1%in a 5 day desktop 2002 computation.
¢ Method falls after 8135 primes -- aim to exhaust it err | die.

2009. Almost as good a bound of 3050 primes in under 110
minutes on my Notebook and 3486 primes in 14 hours:

¢ Not as before C++ which being compiled is faster but in which coding
was much more arduous.

¢ Using one core of eight-core MacPro got 3592 primes and 16673 digits
In 13.5 hrs in Maple. (Now on 8 cores in 1 min of C++.)
2012. 4771 prime factors, and excludes 19908 digits.

¢ Used C++, multithreaded on 8 cores of 17 core iMac. Took about a week
but with 46 gigabyte output file.

¢+ Time and especially file size now show massive exponential growth.



Lehmer’s Conjecture (1932-2012)

Much tougher and related is
Lehmer's conjecture (1932) nis prime if and only if
$()[(n— 1)
He called this “as hard as the existence of odd perfect numbers.”

¢ Again, prime factors of counterexamples form a normal
sequence, but now there is little extra structure.

In a 1997 SFU M.Sc. Erick Wong verified this for 14 primes,
using normality and a mix of PARI, C++ and Maple to press the
bounds of the ‘curse of exponentiality.’

The related equation ¢ I(n+1)is has 8 solutions with at most 7 factors (6 factors

IS due to Lehmer).

¢ Recall Fn::22”+1 the Fermat primes. The solutions are 2, 3, 3.5, 3.5.17,
3.5.17.257, 3.5.17.257.65537 and a rogue pair: 4919055 and
6992962672132095, but 8 factors seems out of sight.

¢ 6992962672132097= 73.95794009207289.
9 s+ and n+2 prime => N:=n(N+2), ¢(N)[(N +1)



"Vacuums, black holes, antimatter - it's the elusive
and intangible which appeals to me."




Il d. Apéry-Like Summations

The following formulas for £(n) have been known for many decades:

(@) @) = 321%2#),
< (_1\k+1 The RH in Maple
® @ =3 (k;()gkk) |
(&) @) = f—j; . E%f)'
These results have led many to speculate that
% = (/T (k;()%l

might be some nice rational or algebraic value.
Sadly, PSLQ calculations have established that if Q. satisfies a polynomial
with degree at most 25, then at least one coefficient has 380 digits.

"He (Gauss) is like the fox, who effaces his tracks in the sand with
his tail.“ - Niels Abel (1802-1829)




Two more things about Zeta(5)

— (—1)FH
Y e = 2(5) — $L° + §L%C(2) + 4L((3)

03 (G~ e #”

Here p := \/52_1 and L :=1ogp

(JMB-Broadhurst-Kamnitzer, 2000).
Also, there is a simpler Ramanujan series for

((4n + 1). In particular:

0

1 9 72 >
5 .
C( ) 294 Jr 35 Z; (1 + e%w )'{5 35 ; e%:rr

and ¢(5) — 7°/294 = —0.0039555. . ..




Nothing New under the Sun

Margo Kondratieva found a formula of Markov in 1890:

- 1 1 (=1)" (n)°
;(n+a)3 B Z (2n 4+ 1)!
(5 (n—l—l) —|—6(a—1)(n—|—1)+2(a—1))
Hk 0(a+k)

Note: Maple establishes this identity as

Hence

m—1 m—1
¢(4) = Z ( 1) 3 Z - l)zm L= lk

m=1 (m)m3

¢ The case a=0 above is Apéry’s formula for (3) !

Andrei Andreyevich Markov
(1856-1922)



Two Discoveries: 1995 and 2005

¢ Two computer-discovered generating functions
= (1) was ‘intuited’ by Paul Erdds (1913-1996) '
¢ and (2) was a designed experiment
= was proved by the computer (Wilf-Zeilberger)
= and then by people (Wilf included)
=  What about 4k+1?

- 5 — 1)k+1 g, 1+ 424 /m?

x=0 gives (b) and (a) respectively
k—1

S 2k -~ 1—4332/77?,2 |
];)C(ZkJrQ)x — 321@ xQ/k2)H(1_x2/m2) (2)

k=1




1. via PSLQ to 2 4
5,000 digits (2) = ’C( )=
(120 terms)

- 2k - 1
_ . C(2k +2)x<" = —
Bailey, Bradley kz::o nzzzl n? — 2
& JMB discovered and 1 —7mzxcot(nx) 2 reduced
proved - in 3Ms - three — 902 { as hoped
equivalent binomial
identities QZEL | —ng_w’f;’; 1 1
2k > 2\ ~ [(2n) (3n
k=n+1 (k)(k —n) (n) (n)

()
()

3n,n+1,—n 1
3F2 2=
n+1,n+1/2 4

3.
(now 2 human proofs)






' BOOK -POST
FIRST DAY COV.

\Y COVER
BY AIR MAIL
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Il e2 Ramanujan-Like ldentities

Q11 2v2 =2 (4k)1 (1103 + 26390k)

%= |Each term of (1) adds 8 correct digits. Gosper

117 million digits of the c.f. for w in 1985—

Truly novel series for 1/m, based on elliptic in-

tegrals, were discovered by Ramanujan around
1910. One is:

— . 1
| 9801 , =, (k1)43964k (1)

used (1) by the computation of a then-record

completing the first proof of (1).

A little later David and Gregory Chudnovsky
found the following variant, which lies in Q(1/—163)
rather than Q(+/58):

1

T

_ 15 i (—1)% (6k)! (13591409 + 545140134k)
k=0

: 2
(3k)! (k)3 6403203k+3/2 (2)

Each term of (2) adds 14 correct digits.
e Used for current 10 trillion w-record.

They used (2) several times --- culminating in a 1994 calculation to over four billion decimal digits. Their
remarkable story was told in a Pulitzer-winning New Yorker article.




New Ramanujan-Like ldentities

Guillera has recently found Ramanujan-like identities, including:

128 >0 1\2n
= = (—1)"r(n)°(13 4 180n + 820n2) [ —
72 ngo 2(32)
3 - — n 5 2 1 "
5 = nz::O(—l) r(n)>(1 4+ 8n + 20n )(2)
? 0 2n
% = Y r(n)"(1+ 14n + 76n° + 168n°) (%) .
@ n=0
where
n) — (1/2)n _ 1/2-3/2-----(2n—-1)/2 _ T(n+1/2)
n! n! Val(n+1)

Guillera proved the first two using the Wilf-Zeilberger algorithm. He
ascribed the third to Gourevich, who found it using integer relation methods.
It is true but has no proof.

As far as we can tell there are no higher-order analogues!




Example of Use of Wilf-Zeilberger, |

The first two recent experimentally-discovered identities are

oo [(4n) (2n 4
Z (2n2)1(6771;) (120n2+34n—|—3) _ o<

n=0 7T

o (—~1)n(2)”

2 128
2_:0 ~50n (82007 +180n 4 13) = —
Guillera cunningly started by defining
_ 1)k 2n\4 (2k\3 (4n—2k
G(n,k) = 2(167}2)4/% (1207@2 + 84nk + 34n + 10k 4 3) ( n ) ( k ) ( 2n—k )

BIEH)
T
He then used the EKHAD software package to obtain the companion
4 3/ 4n—
k) — (—1)F512 3 (an) (Qkk) (42nn_2kk)
’ 216024k 4y — 2k — 1 (2;) (n+k)2
mn




Wilf-Zeilberger, Il

When we define
H(n,k) = F(hn+1,n+k)+Gn,n+k)

Zeilberger's theorem gives the identity

.0 oo

Z G(n,0) = Z H(n,0)

n=0 n=0

http://ddrive.cs.dal.ca/~isc/portal

which when written out is

20\ (4n 2n—+2 4 o0\ 3 on+4
el n X (=1)" (n+ 1)3 o . !
nZ::O ( 2)16(“2 ) (120n2 + 34n + 3) = nZ::O 20T gn 3 ( —(|_21n 12() (2)7;_;11)32)

o0 n o (_1\n(2n 5
+ 3 O (0a2 4 agn +3) (1) = 1 52 D

(82071,2 + 1800 + 13)

A limit argument and Carlson’s theorem completes the proof...


http://ddrive.cs.dal.ca/~isc/portal

Searches for Additional Formulas

We had no PSLQ over number fields so we searched for
additional formulas of either the following forms:

oo

wim = Y ()" (po+pin+ -+ pmn™)a®"
n=0

= 2 G ) (o +pin - pmn ™o
n=0

where c is some linear combination of
1 21/27 21/3’ 21/47 21/6’ 41/3’ 81/4, 321/67 31/2’ 31/3’ 31/4’ 31/6, 91/37
271/4, 2431/6, 51/2, 51/47 1251/4, 71/2, 131/2, 61/2, 61/3, 61/4, 61/6,
7,36%/3, 2161/4 77761/6, 121/4 108/4 101/2 101/4 151/2
where each of the coefficients p; is a linear combination of

1 21/2’ 31/2) 51/2’ 61/2, 71/2’ 101/27 131/2’ 141/2) 151/2’ 301/2
and where o Is chosen as one of the following:
1/2,1/4,1/8,1/16, 1/32, 1/64, 1/128, 1/256, /5 — 2, (2 — V/3)?,
5v13 — 18, (V5 — 1)4/128, (V5 — 2)%, (213 —1)4/2, 1/(2v2),
(V2-1)%, (vV5-2)% (V3 -vV2)*




Relations Found by PSLQ

- Including Guillera’s three we found all known series for r(n) and no more.
- There are others for other Pochhammer symbols (JMB, Dec 2012 Notices)

; = zjor(nﬁ(l + 6n) (%)2”
1: = zjor(n)‘?’(5+42n) (;)2”
12;/4 _ iojor(n)3(—15 + 9v/3 - 36n + 24+/3n) (2 - \/§>4n
3W—2 = Ejor(n)?’(—l + 55 + 30n + 42v/5n) ((\/512—81)4) 2n
%/4 = io""(")s(_‘BQS + 235v/5 — 1200n + 540v/5n) (V5 — Q)Bn
z\f = éo(—l)”?“(n)s‘(l + 6n) (2\15)2”'
% = io(—l)”r(n)?v(_S +4v2 - 12n412V2n) (V2 - 1)4n
% = io(l)”r(n)3(23 ~10v/5 + 60n — 24v/5n) (v/5 — 2)4n
% - %O(—l)nr(n)fﬂ(lTT — 72v/6 + 420n — 168V6n) (V3 - \/5)871
Baruah, Berndt, Chan, “Ramanujan Series for 1/%: A Survey.” Aug 09, MAA Monthly




"What I appreciate even more than its
remarkable speed and accuracy are the
words of understanding and compassion

I get from it."
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Ill. A Cautionary Example

These constants agree to 42 decimal digits accuracy, but
are NOT equal:

/OOO cos(2x) lo_o[ cos(xz/n)dxr =

n=0
0.39269908169872415480783042290993786052464543418723 ...

s

3
0.39269908169872415480783042290993786052464617492189. ..

Computing this integral is (or was) nontrivial, due largely to
difficulty in evaluating the integrand function to high
this happens when a

Fourier analysis explains

precision.
vz“ﬂ’rs hyperplane meets a t %

n
hypercube (LP) ... Y 1/k>2
k




V. Some Conclusions

¢

We like students of 2012 live in an information-rich, judgement-poor world

The explosion of information is not going to diminish
= noris the desire (need?) to collaborate remotely

So we have to learn and teach judgement (not obsession with plagiarism)
= that means mastering the sorts of tools | have illustrated

We also have to acknowledge that most of our classes will contain a very
broad variety of skills and interests (few future mathematicians)

= properly balanced, discovery and proof can live side-by-side and
allow for the ordinary and the talented to flourish in their own fashion

Impediments to the assimilation of the tools | have illustrated are myriad
= as | am only too aware from recent experiences

These impediments include our own inertia and

= organizational and technical bottlenecks (IT - not so much dollars)
= under-prepared or mis-prepared colleagues

= the dearth of good modern syllabus material and research tools

= the lack of a compelling business model (societal goods)

“The plural of 'anecdote' is not 'evidence'.”
- Alan L. Leshner (Science's publisher)




Further Conclusions

SECOND EDITION :‘-

New techniques now permit integrals, | (R B —_
infinite series sums and other entities [F ¢ ENTENEEE SN
to be evaluated to high precision |t
(hundreds or thousands of digits), thus L"HBE,']SE:'}?; bl
permitting PSLQ-based schemes to /

discover new identities.

These methods typically do not
suggest proofs, but often it is much
easier to find a proof (say via W2Z) .
when one “knows” the answer is right. WWM

Pravstece Reasoning in the 2151 Century

o

23
M-
ey =p
Do
Q@

e
)
3 -
o -
= Q
-0

Full details of most examples are in Mathematics by Experiment or its
companion volume Experimentation in Mathematics written with Roland
Girgensohn. A “Reader’s Digest” version of these is available at
www.experimentalmath.info along with much other material.

“Anyone who is not shocked by quantum theory has not understood a
single word.” - Niels Bohr



http://www.experimentalmath.info/

(SOURCE: GrosLE: NGRAMS CoRPUS)
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