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1. Exploratory Experimentation

Our community (appropriately defined) is facing a great challenge to re-
evaluate the role of proof in light of the growing power of current computer
systems, of modern mathematical computing packages and of the growing
capacity to data-mine on the internet. Add to that the enormous complex-
ity of many modern mathematical results such as the Poincaré conjecture,
Fermat’s last theorem, and the classification of finite simple groups. As the
need and prospects for inductive mathematics blossom, the need to ensure
the role of proof is properly founded remains undiminished. I share with
Polya the view that

“[I]ntuition comes to us much earlier and with much less outside
influence than formal arguments· · · Therefore, I think that in teach-
ing (high school age youngsters we should emphasize intuitive in-
sight more than, and long before, deductive reasoning.” — George
Polya (1887-1985) [15, 2 p. 128]

He goes on to reaffirm, nonetheless, that proof should certainly be taught
in school. I continue with some observations many of which have been
fleshed out in my recent books The Computer as Crucible [7], Mathematics
by Experiment [6], and Experimental Mathematics in Action [3]. My musings
focus on the changing nature of mathematical knowledge and in consequence
asks the questions such as “How do we come to believe and trust pieces of
mathematics?”, “Why do we wish to prove things?” and “How do we teach
what and why to students?” I am persuaded by various notions of embodied
cognition. Smail [16, p. 113] writes: “[T]he large human brain evolved
over the past 1.7 million years to allow individuals to negotiate the growing
complexities posed by human social living.” In consequence we find various
modes of argument more palatable than others, and are more prone to make
certain kinds of errors than others. Likewise, Steve Pinker’s observation
about language [14, p. 83] as founded on “. . . the ethereal notions of space,
time, causation, possession, and goals that appear to make up a language of
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thought.” remain equally potent within mathematics. The computer offers to
provide scaffolding both to enhance mathematical reasoning and to restrain
mathematical error.

To begin with let me briefly reprise what I mean by discovery, and by
proof. The following attractive notion of discovery has the satisfactory con-
sequence that a student can certainly discovery results whether known to
the teacher or not. Nor is it necessary to demand that each dissertation
be original (only independently discovered):“In short, discovering a truth is
coming to believe it in an independent, reliable, and rational way”—Marcus
Giaquinto [10, p. 50]. Next I shall take:

PROOF,1 n. a sequence of statements, each of which is either
validly derived from those preceding it or is an axiom or assumption,
and the final member of which, the conclusion, is the statement of
which the truth is thereby established.

As for mathematics itself, I offer the following in which the term proof does
not enter. Nor should it; mathematics is much more than proof alone:

MATHEMATICS, n. a group of subjects, including algebra, ge-
ometry, trigonometry and calculus, concerned with number, quan-
tity, shape, and space, and their inter-relationships, applications,
generalizations and abstractions.
DEDUCTION, n. the process of reasoning typical of mathemat-
ics and logic, in which a conclusion follows necessarily from given
premises so that it cannot be false when the premises are true.
INDUCTION, n. ( Logic) a process of reasoning in which a gen-
eral conclusion is drawn from a set of particular premises, often
drawn from experience or from experimental evidence. The con-
clusion goes beyond the information contained in the premises and
does not follow necessarily from them. · · · for example, large num-
bers of sightings at widely varying times and places provide very
strong grounds for the falsehood that all swans are white.

It awaited the discovery of Australia to confound the seemingly compelling
inductive conclusion that all swans are white. I observe that we typically
take for granted the distinction between induction and deduction and rarely
discuss their roles with either our colleagues or our students.

Despite the conventional identification of Mathematics with deductive
reasoning, in his 1951 Gibbs Lecture Kurt Gödel (1906-1978) said: “If math-
ematics describes an objective world just like physics, there is no reason why
inductive methods should not be applied in mathematics just the same as
in physics.” He held this view until the end of his life despite the epochal

1All definitions are taken from the Collin’s Dictionary of Mathematics which I co-
authored. It is freely available within the MAA’s digital mathematics library and com-
mercially with Maple inside it at:
www.mathresources.com/products/mathresource/index.html
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deductive achievement of his incompleteness results. Moreover, one dis-
covers a substantial number of great mathematicians from Archimedes and
Galileo—who apparently said “All truths are easy to understand once they
are discovered; the point is to discover them.”—to Poincaré and Carleson
have emphasized how much it helps to “know” the answer. Over two millen-
nia ago Archimedes wrote to Eratosthenes in the introduction to his long-lost
and recently re-constituted Method of Mechanical Theorems [12]

“For some things, which first became clear to me by the mechanical
method, were afterwards proved geometrically, because their inves-
tigation by the said method does not furnish an actual demonstra-
tion. For it is easier to supply the proof when we have previously
acquired, by the method, some knowledge of the questions than it
is to find it without any previous knowledge.”

Think of the Method as an ur-precursor to today’s interactive geometry
software—with the caveat that, for example, Cinderella actually does pro-
vide certificates for much Euclidean geometry.

As 2006 Abel Prize winner Leonard Carleson describes in his 1966 ICM
speech on his positive resolution of Luzin’s 1913 conjecture, about the point-
wise convergence of Fourier series for square-summable functions, after many
years of seeking a counter-example he decided none could exist. The impor-
tance of this confidence is expressed as follows: “The most important aspect
in solving a mathematical problem is the conviction of what is the true re-
sult. Then it took 2 or 3 years using the techniques that had been developed
during the past 20 years or so.”

I will now assume that all proofs discussed are “non-trivial” in some
fashion—since the issue of using inductive methods is really only of interest
with this caveat. Armed with these terms, it remains to say that by digital
assistance I intend the use of such artefacts as:
1. Modern Mathematical Computer Packages—be they Symbolic, Numeric,
Geometric, or Graphical. I would classify all of these as “modern hybrid
workspaces”. One might also envisage much more use of stereo visualization,
haptic, and auditory devices.
2. More Specialist Packages or General Purpose Languages such as Fortran,
C++, CPLEX, GAP, PARI, SnapPea, Graffiti, and MAGMA.
3. Web Applications such as: Sloane’s Online Encyclopedia of Integer
Sequences, the Inverse Symbolic Calculator, Fractal Explorer, Jeff Weeks’
Topological Games, or Euclid in Java.2

4 Web Databases including Google, MathSciNet, ArXiv, Wikipedia, JS-
TOR, MathWorld, Planet Math, Digital Library of Mathematical Functions
or (DLMF), MacTutor, Amazon, and many more sources that are not always
viewed as part of the palette.

2A cross-section of such resources are available through
http://ddrive.cs.dal.ca/∼isc/portal/.
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All entail data-mining in various forms. Franklin [9] argues that what
Steinle calls “exploratory experimentation” facilitated by “widening tech-
nology” as in pharmacology, astrophysics, biotechnology is leading to a re-
assessment of what is viewed as a legitimate experiment; in that a “local
model” is not a prerequisite for a legitimate experiment. Hendrik Sørenson
[17] cogently makes the case that experimental mathematics—as ‘defined’
below—is following similar tracks.

“These aspects of exploratory experimentation and wide instrumen-
tation originate from the philosophy of (natural) science and have
not been much developed in the context of experimental mathemat-
ics. However, I claim that e.g. the importance of wide instru-
mentation for an exploratory approach to experiments that includes
concept formation also pertain to mathematics.”

Danny Hillis is quoted as saying recently that: “Knowing things is very
20th century. You just need to be able to find things.” on how Google has
already changed how we think.3 This is clearly not yet true and will never
be, yet it catches something of the changing nature of cognitive style in the
21st century. In consequence, the boundaries between mathematics and the
natural sciences and between inductive and deductive reasoning are blurred
and getting blurrier. This is discussed at some length by Jeremy Avigad [1].

1.1. Experimental Mathodology. We started [7] with Justice Potter Stew-
art’s famous 1964 comment on pornography “I know it when I see it.” I
now reprise from [6] what we mean a bit less informally by experimental
mathematics. Gaining insight and intuition; Discovering new relationships;
Visualizing math principles; Testing and especially falsifying conjectures;
Exploring a possible result to see if it merits formal proof; Suggesting ap-
proaches for formal proof; Computing replacing lengthy hand derivations;
Confirming analytically derived results. Of these the first five play a central
role and the sixth plays a significant one but refers to computer-assisted or
computer-directed proof and is quite far from Formal Proof as the topic of
a special issue of the Notices of the AMS in December 2008.

2. Mathematical Examples

I continue with various explicit examples. I leave it to the reader to decide
how much frequently he or she wishes to exploit the processes I advertise.

2.1. Example I: What Did the Computer Do? In my own work com-
puter experimentation and digitally-mediate research now invariably play
a crucial part. (Even in seemingly non-computational areas of functional
analysis and the like, there is frequently a computable consequence whose
verification provides confidence in the result under development.) In a re-
cent study of expectation or “box integrals” [4] we were able to evaluate a

3In Achenblog http://blog.washingtonpost.com/achenblog/ of July 1 2008.
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quantity, which had defeated us for years, namely

K1 :=
∫ 4

3

arcsec (x)√
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dx
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where Cl2(θ) :=
∑∞

n=1 sin(nθ)/n2 is the Clausen function, and

3 θ := arctan

(
16− 3

√
15

11

)
+ π.

Along the way to the evaluation above, there were several stages of sym-
bolic computation, including an expression for K1 with over 28, 000 charac-
ters (perhaps 25 standard novel pages). It may well be that the closed form
in (2.1) can be further simplified. In any event, the very satisfying process
of distilling the computer’s 28, 000 character discovery, required a mixture
of art and technology and I would be hard pressed to assert categorically
whether it constituted a conventional proof. Nonetheless, it is correct and
has been checked numerically to over a thousand-digit decimal precision. �

I turn to an example I hope will reinforce my assertion that there is already
an enormous amount to be mined on the internet. And this is before any
mathematical character recognition tools have been made generally available
and when it is still very hard to search mathematics on the web.

2.2. Example II: What is That Number? In 1995 or so Andrew Granville
emailed me the number

α := 1.4331274267223 . . . (2.2)

and challenged me to identify it; I think this was a test I could have failed. I
asked Maple for its continued fraction. In the conventional concise notation
I was rewarded with

α = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...]. (2.3)

Even if you are unfamiliar with continued fractions, you will agree that the
changed representation in (2.3) has exposed structure not apparent from
(2.2)! I reached for a good book on continued fractions and found the
answer α = I1(2)/I0(2) where I0 and I1 are Bessel functions of the first
kind. Actually I remembered that all arithmetic continued fractions arise in
such fashion, but as we shall see one now does not need to. In 2009 there are
at least three “zero-knowledge” strategies: 1. Given (2.3), type “arithmetic
progression”, “continued fraction” into Google; 2. Type “1,4,3,3,1,2,7,4,2”
into Sloane’s Encyclopaedia of Integer Sequences;4 3. Type the decimal

4See http://www.research.att.com/∼njas/sequences/.
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digits of α into the Inverse Symbolic Calculator.5 I illustrate the results of
each strategy.
1. The first three hits on typing “arithmetic progression”, “continued frac-
tion” into Google on Oct 15, 2008, are shown in Figure 1. Moreover, the
MathWorld entry tells us that any arithmetic continued fraction is of a ratio
of Bessel functions, as shown in the inset to Figure 1 which points to the
second hit in Figure 1. The reader may wish to find which other search
terms uncover the answer—perhaps in the newly unveiled Wolfram Alpha.
2. Typing the first few digits into Australian expat Sloane’s interface yields

Figure 1. What Google and MathWorld offer.

Figure 2. In this case we are even told what the series representations of the
requisite Bessel functions are, we are given sample code (in this case in Math-
ematica), and we are lead to many links and references. Moreover, the site
is carefully moderated and continues to grow. This strategy became viable
after May 14th 2008 when the sequence was added to the database—now
with over 158, 000 entries.
3. If one types the decimal for α into the Inverse Symbolic Calculator (ISC)
it returns Best guess: BesI(0,2)/BesI(1,2). �

Most of the functionality of the ISC is built into the “identify” function
Maple starting with version 9.5. For example, identify(4.45033263602792)
returns

√
3+e. As always, the experienced will extract more than the novice.

5The online Inverse Symbolic Calculator http://ddrive.cs.dal.ca/∼isc was newly
web-accessible in 1995.
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Figure 2. What Sloane’s Encyclopaedia offers.

2.3. Example III: From Discovery to Proof. The following was popu-
larized in Eureka6 in 1971.

0 <
∫ 1

0

(1− x)4x4

1 + x2
dx =

22
7
− π (2.4)

as described in [6]. The integrand is positive on (0, 1) so the integral yields
an area and π < 22/7. Set on a 1960 Sydney honours maths final exam7 (2.4)
perhaps originated in 1941 with the author of the 1971 article—Dalzeil who
chose not reference his earlier self! Why should we trust this discovery?
Well Maple and Mathematica both ‘do it’. But this is proof by appeal to
authority [11] and a better answer is to ask Maple for the indefinite integral∫ t

0

(1− x)4x4

1 + x2
dx = ?

The computer algebra system (CAS) will return∫ t

0

x4 (1− x)4

1 + x2
dx =

1
7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) . (2.5)

Finish by differentiating and using the Fundamental theorem of calculus. �

6Eureka was an undergraduate Cambridge University journal.
7Alf van der Poorten recalls being shown this by Kurt Mahler in the mid-sixties.
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This is probably not the proof one would find by hand, but it is rigorous,
and represents an “instrumental use” of the computer. That a CAS will
often be able to evaluate an indefinite integral or a finite sum whenever it
can evaluate the corresponding definite integral or infinite sum frequently
allows one to provide a certificate for such a discovery. In the case of a sum
the certificate often takes the form of a mathematical induction. Another
interesting feature of Example III is that it appears to be irrelevant that 22/7
is the most famous continued-fraction approximation to π, as described by
an expat Australian [13]. Not every discovery is part of a hoped-for pattern.

2.4. Example IV: From Concrete to Abstract. While studying multi-
ple zeta values [6] we needed to show M := A+B−C invertible, where the
n× n matrices A,B,C respectively had entries

(−1)k+1

(
2n− j
2n− k

)
, (−1)k+1

(
2n− j
k − 1

)
, (−1)k+1

(
j − 1
k − 1

)
(2.6)

So A and C are triangular while B is full. In six dimensions M is:

1 −22 110 −330 660 −924

0 −10 55 −165 330 −462

0 −7 36 −93 162 −210

0 −5 25 −56 78 −84

0 −3 15 −31 35 −28

0 −1 5 −10 10 −6


After futilely peering at many cases i thought to ask Maple for the minimal

polynomial of M :
> linalg[minpoly](M(12),t);

returns −2 + t+ t2. Emboldened I tried
> linalg[minpoly](B(20),t); linalg[minpoly](A(20),t);

linalg[minpoly](C(20),t);

and was rewarded with −1 + t3,−1 + t2,−1 + t2. A typical matrix has a full
degree minimal polynomial, so we are assured that A,B,C really are roots
of unity. Armed with this we are lead to try to prove

A2 = I, BC = A, C2 = I, CA = B2 (2.7)

which is a nice combinatorial exercise (by hand or computer). Clearly then
we obtain also

B3 = B ·B2 = B(CA) = (BC)A = A2 = I (2.8)

and M−1 = M+I
2 is again a fun exercise in formal algebra; as is confirming

that we have discovered an amusing presentation of the symmetric group
S3. �

Characteristic or minimal polynomials, entirely abstract for me as a stu-
dent, now become members of a rapidly growing box of concrete symbolic
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tools, as do many matrix decomposition results, the use of Groebner bases,
Risch’s decision algorithm for when an elementary function has an elemen-
tary indefinite integral, and so on. Many algorithmic components of CAS
are extraordinarily effective when two decades ago they were more like ‘toys’.
This is equally true of extreme-precision calculation—a prerequisite for much
of my own work [2, 4] and others [5]—or in combinatorics. The number of ad-
ditive partitions of n, p(n), has ordinary generating function

∏∞
k=1(1−qk)−1.

On a reasonable laptop calculating p(200) = 3972999029388 naively from
the o.g.f. took 20 minutes in 1991. Today it takes about 0.17 secs while
p(2000) = 4720819175619413888601432406799959512200344166 takes two
minutes naively and about 0.2 seconds using the built-in Maple recursion.
Likewise, the record for computation of π has gone from under 30 million
decimal digits in 1986 to over 1.6 trillion places this year.

3. Concluding Remarks

We live in an information-rich, judgement-poor world and the explosion
of information and tools is not going to diminish. We have to learn and
teach judgement when it comes to using what is already possible digitally.
This means mastering the sorts of tools I have illustrated. But it will never
be the case that quasi-inductive mathematics supplants proof. We need to
find a new equilibrium. The following empirically-discovered identity

∞∑
n=−∞

sinc(n) sinc(n/3) sinc(n/5) · · · sinc(n/23) sinc(n/29) (3.1)

=
∫ ∞
−∞

sinc(x) sinc(x/3) sinc(x/5) · · · sinc(x/23) sinc(x/29) dx

where the denumerators range over the odd primes. Provably, the following
is true: The analogous “sum equals integral” identity remains valid for more
than the first 10, 176 primes but stops holding after some larger prime, and
thereafter the “sum less the integral” is positive but much less than one part
in a googolplex. A stronger estimate is possible assuming the GRH [2].

That said, we are only beginning to scratch the surface of a very exciting
set of tools for the enrichment of mathematics, not to mention the growing
power of formal proof engines. I conclude with one of my favourite quotes
from Jacques Hadamard [15]:

“The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.”

Never have we had such a cornucopia of fine tools to generate intuition. The
challenge is to learn how to harness them, how to develop and how to trans-
mit the necessary theory and practice. The new Newcastle Priority Research
Centre I direct, CARMA,8 hopes to play a lead role in this endeavour.

8Computer Assisted Research Mathematics and its Applications whose webpage is
being developed at www.newcastle.edu.au/research/centres/carmacentre.html.
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