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ABSTRACT I will argue that the mathematical community (appropriately 
defined) is facing a great challenge to re-evaluate the role of proof in light of 
the power of current computer systems, of modern mathematical computing 
packages and of the growing capacity to data-mine on the internet.  With great 
challenges come great opportunities.   I intend to illustrate the current 
challenges and opportunities for the learning and doing of mathematics.  As the 
prospects for inductive mathematics blossom, the need to make sure that the role 
of proof is properly founded remains undiminished.  
 
INTRODUCTION 
In this section I make some preliminary observations many of which have been 
fleshed out in (Borwein and Devlin, 2008), (Borwein and Bailey, 2008), and 
(Bailey et al, 2007). The core of my paper focuses on the changing nature of 
mathematical knowledge and in consequence asks the questions “Why do we 
wish to prove things?” and “How do we teach what and why to students?”  
I am attracted to various notions of embodied cognition: 

“the large human brain evolved over the past 1.7 million years to allow 
individuals to negotiate the growing complexities posed by human social 
living.”  (Small, 2008, p. 113) 

In consequence we find various modes of argument more palatable than others, 
and are more prone to make certain kinds of errors than others. Likewise, Steve 
Pinker’s observation about language as founded on 

 “…the ethereal notions of space, time, causation, possession, and goals 
that appear to make up a language of thought.” (Pinker, 2007, p. 83) 

remain equally potent within mathematics.  
To begin with let me briefly reprise what I mean by discovery, and by proof.  
The following attractive definition of discovery has the satisfactory consequence 
that a student can certainly discovery results known to the teacher: “In short, 
discovering a truth is coming to believe it in an independent, reliable, and 
rational way.” (Giaquinto, 2007, p. 50) 
A standard definition of proof from the Collin’s Dictionary of Mathematics 
follows.  

PROOF, n. a sequence of statements, each of which is either validly 
derived from those preceding it or is an axiom or assumption, and the 



 

                                          

final member of which, the conclusion, is the statement of which the truth 
is thereby established. 

As a working definition of the field I offer  
Mathematics, n. a group of subjects, including algebra, geometry, trig-
onometry and calculus, concerned with number, quantity, shape, and 
space, and their inter-relationships, applications, generalizations and 
abstractions. 

We typically take for granted the distinction between induction and deduction 
and rarely discuss their roles with our students --- let alone the linguistically 
confusing fact that a proof by induction is a deduction.  

Induction, n. any form of reasoning in which the conclusion, though 
supported by the premises, does not follow from them necessarily.  
Deduction, n. a process of reasoning in which a conclusion follows 
necessarily from the premises presented, so the conclusion cannot be false 
if the premises are true.   

Despite the convention identification of Mathematics with deductive reasoning 
Kurt Gödel  in his 1951 Gibbs Lecture said 

“If mathematics describes an objective world just like physics, there is no 
reason why inductive methods should not be applied in mathematics just 
the same as in physics.” 

And this has been echoed or amplified by logicians as different as Quine and 
Chaitin. 
Armed with these terms it remains to say what I connote by digital-assistance. I 
intend such as  

 The use of Modern Mathematical Computer Packages (be they Symbolic, 
Numeric, Geometric,  or Graphical) 

 The use of More Specialist Packages or General Purpose Languages such 
as Fortran, C++, CPLEX, GAP, PARI, MAGMA, … 

 The use of Web Applications such as: Sloane’s Encyclopedia of Integer 
Sequences, the Inverse Symbolic Calculator, Fractal Explorer, Euclid in 
Java.1 

 The use of Web Databases including Google, MathSciNet, ArXiv, 
JSTOR, Wikipedia, MathWorld, Planet Math, DLMF, MacTutor, 
Amazon, and many more that are not always viewed as part of the palette. 

All entail data-mining in various forms. As Franklin (Franklin 2005) argues 
that what Steinle has termed “exploratory experimentation” facilitated by 
“widening technology” as in pharmacology, astrophysics, biotechnology is 

 
1 All are available through the collection preserved at  http://ddrive.cs.dal.ca/~isc/portal.  
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leading to a reassessment of what is viewed as a legitimate experiment in which 
a “local model” is not a prerequisite.  Hendrik Sørenson cogently makes the case 
that experimental mathematics is following many of the same tracks.  

“These aspects of exploratory experimentation and wide instrumentation 
originate from the philosophy of (natural) science and have not been 
much developed in the context of experimental mathematics. However, I 
claim that e.g. the importance of wide instrumentation for an exploratory 
approach to experiments that includes concept formation also pertain to 
mathematics.” (Sørenson, 2008) 

 In consequence the boundaries between mathematics and the natural sciences 
and between inductive and deductive reasoning are blurred and getting blurrier 
(Avigad 2008). 

With these prefatory remarks made I turn to the three mathematical examples 
which form the heart of my paper.  I leave it to the reader to decide in each case 
how much credence to put in the process I describe. 
 

THREE EXAMPLES 
 
A.  DATA MINING: What’s that number? (1995 to 2008) 
In 1995 or so Andrew Granville emailed me the number  

: 1.433127426722312α = … 
and challenged me to identify it (our online Inverse calculator was new in those 
days). I asked Maple for its continued fraction? It was 

(*)    [1,2,3,4,5,6,7,8,9,10,11,...] 
I reached for a good book on continued fractions and found the answer 
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1

(2)
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α =  

where I0 and I1 are Bessel functions of the first kind. (Actually I knew that all 
arithmetic continued fractions arise in such fashion, but as we shall see one now 
does not need to this).  
In 2008 there are at least two or three other strategies:  

• Given (*), type “arithmetic progression”, “continued fraction” into 
Google   

 

• Type 1,4,3,3,1,2,7,4,2 into Sloane’s Encyclopaedia of Integer 
Sequences 

 



 
I illustrate the results of each.  
On October 15, 2008, on typing “arithmetic progression”, “continued fraction” 
into Google, the first three hits were   

 
 
 
 

 

 

 

 

 

 

 

 

 

Continued Fraction Constant -- from Wolfram MathWorld 

 - 3 visits - 14/09/07Perron (1954-57) discusses continued fractions having terms even 
more general than the arithmetic progression and relates them to various special 
functions. ... 
mathworld.wolfram.com/ContinuedFractionConstant.html - 31k  

HAKMEM -- CONTINUED FRACTIONS -- DRAFT, NOT YET PROOFED 

    The value of a continued fraction with partial quotients increasing in arithmetic 
progression is I (2/D) A/D [A+D, A+2D, A+3D, . ... 
www.inwap.com/pdp10/hbaker/hakmem/cf.html - 25k -  

On simple continued fractions with partial quotients in arithmetic ... 

     0. This means that the sequence of partial quotients of the continued fractions under 
investigation consists of finitely many arithmetic progressions (with ... 
www.springerlink.com/index/C0VXH713662G1815.pdf - by P Bundschuh – 1998 

Moreover the MathWorld entry tells us that any arithmetic continued fraction is 
of a ratio of Bessel functions and refers to the second hit above.   
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Correspondingly – since May 2001 – Sloane’s wonderful integer sequence data 
base at http://www.research.att.com/~njas/sequences/ responds splendidly: with 
links, code, and references as well as a definition of the requisite Bessel 
functions. 

 

Since the mid-nineties the Inverse Symbolic Calculator at 
http://ddrive.cs.dal.ca/~isc has returned  

Best guess: BesI(0,2)/BesI(1,2) 
Most of the functionality of ISC has been built into the “identify” function in 
Maple in versions since 9.5. 
 
B. INSTRUMENTAL COMPUTING: Pi and 22/7 (Year do through 2008) 
The following integral was made popular through a 1971 Eureka (a Cambridge 
undergraduate journal) article  

http://www.research.att.com/%7Enjas/sequences/
http://ddrive.cs.dal.ca/%7Eisc
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Set on a 1960 Sydney honours final, and as a Monthly Problem after that, it 
perhaps originated in 1941 with Dalziel (author of the 1971 article who did not 
reference himself)! 
Why should we trust the evaluation? Well both Maple and Mathematica can 
‘do it’. 
A better approach is to ask Maple to evaluate the indefinite integral 
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and now differentiation – either by hand or computer – and the Fundamental 
theorem of calculus proves the result. More details are given in Chapter three of 
Borwein and Bailey 2008. This is perhaps not a conventional proof but it is a 
totally rigorous one: and provides an ‘instrumental use’ of the computer.  In 
general, students should be encouraged to see if a computer algebra system can 
evaluate indefinite sums and integrals whenever it has successfully evaluate a 
definite version. 
 
C.  CONCRETIZATION: Some matrices conquered 
In the course of proving conjectures about multiple zeta values (Borwein and 
Bailey 2008) I needed to obtain the closed form partial fraction decomposition 
for  
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The closed form for a is 
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 (with a symmetric form for b) as was known to Euler, but is easily discovered  
by looking at the first few cases in Maple and, if the pattern is still not clear, by 
asking Sloane’s Encyclopedia. Once discovered a conventional proof by 
induction is easy. We needed also to show that M=A+B-C was invertible where 
the n by n matrices A, B, C respectively had entries  
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Thus, A and C are triangular and B is full. For example in 6 dimensions 
 

 

 

 

 

 

 

After messing around with lots of cases it occurred to me to ask Maple for the 
minimal polynomial of M.  

>linalg[minpoly](M(12),t);  returns 22 t t− + +  
Emboldened I tried  

> linalg[minpoly](B(20),t);  
> linalg[minpoly](A(20),t);  
> linalg[minpoly](C(20),t);  

and was rewarded with . Since a typical matrix has a full 
degree minimal polynomial, we are assured that A, B, C really are roots of unity.  
Armed with this discovery we are lead to try to prove  

3 21 , 1 , 1t t− + − + − + 2t

22 2, , ,A I BC A C I CA B= = = =  

which is a nice combinatorial exercise (by hand or computer). Clearly then we 
obtain also  
 3 2 2· ( ) ( )B B B B CA BC A A I= = = = =  
and the requisite formula  

 1

2
M IM − +

=  

follows with a little algebraic manipulation of the prior identities.. Characteristic 
or minimal polynomials (rather abstract for me when I was a student) now 
become members of a rapidly growing box of concrete symbolic tools, as do 
many matrix decompositions, Groebner bases, etc … 
 
CONCLUSION 
The students of 2010 live in an information-rich, judgement-poor world in 
which the explosion of information, and of tools, is not going to diminish. So we 



 

                                          

have to teach judgement (not just obsessive concern with plagiarism) when it 
comes to using what is already possible digitally. This means mastering the sorts 
of tools I have illustrated.  
Additionally, it seems to me critical that we mesh our software design -- and our 
teaching style more generally -- with our growing understanding of our 
cognitive strengths and limitations as a species (as touched upon in the 
introduction) . Moreover, there is some body of evidence  from Cliff Nass’s 
CHIME lab at Stanford that cognitive styles are changing for the “born digital” 
as illustrated by measurement of the Stroop effect (which measures cognitive 
interference) for proficient multi-taskers.2  
We also have to acknowledge that most of our classes will contain a very broad 
variety of skills and interests (and relatively few future mathematicians). 
Properly balanced, discovery and proof, assisted by good software, can live side-
by-side and allow for the mediocre and the talented to flourish in their own 
fashion. 
Impediments to the assimilation of the tools I have illustrated are myriad as I 
am only too aware from recent my own teaching experiences. These 
impediments include our own inertia and organizational and technical 
bottlenecks (this is often from poor IT design - not so much from too few 
dollars). The impediments certainly include under-prepared or mis-prepared 
colleagues and the dearth of good material from which to teach a modern 
syllabus. 
Finally, it will never be the case that quasi-inductive mathematics supplants 
proof. We need to find a new equilibrium. Consider the following empirically-
discovered identity  
 sinc( / 2)sinc( / 3) sinc( / 5) sinc( / 23)sinc( / 29)  

n
n n n n n

∞

=−∞
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sinc( / 2)sinc( / 3)sinc( / 5) sinc( / 23)sinc( / 29)x x x x x

∞

−∞
= ∫ dx 

where the denumerators range over the primes. Provably, the following is true. 
The analogous ‘sum equals integral’ identity remains valid for more than the 
first 10176 primes but stops holding after some larger prime, and thereafter the 
error is positive but less than one part in a googolplex. It is hard to imagine that 
inductive mathematics alone will ever be able to handle such behaviour (Baillie 
et al, 2008). 
That said, we are only beginning to scratch the surface of a very exciting set of 
tools for the enrichment of mathematics, not to mention the growing power of 

 
2 See www.snre.umich.edu/eplab/demos/st0/stroop_program/stroopgraphicnonshockwave.gif  
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formal proof engines.  I conclude with one of my favourite quotes from George 
Polya and Jacques Hadamard  

“This "quasi-experimental" approach to proof can help to de-emphasis a 
focus on rigor and formality for its own sake, and to instead support the 
view expressed by Hadamard when he stated "The object of mathematical 
rigor is to sanction and legitimize the conquests of intuition, and there was 
never any other object for it.”3 
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