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1 Introduction

Our modern system of positional decimal notation with zero, together with ef-
ficient algorithms for computation, which were discovered in India some time
prior to 500 CE, certainly must rank among the most significant achievements
of all time. As Pierre-Simon Laplace explained:

It is [in India] that the ingenious manner of expressing all numbers in
ten characters originated, by assigning to them at once an absolute and
a local [positional] value, a subtle and important conception, of which
the simplicity is such that we can [only] with difficulty, appreciate its
merit. But this very simplicity and the great facility with which we are
enabled to perform our arithmetical computations place it in the very
first rank of useful inventions; the difficulty of inventing it will be better
appreciated if we consider that it escaped the genius of Archimedes and
Apollonius, two of the greatest men of antiquity. [17, pg. 222–223]

In a similar vein, Tobias Dantzig (father of George Dantzig of simplex
fame), adds the following:
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When viewed in this light, the achievement of the unknown Hindu who
some time in the first centuries of our era discovered the principle of
position assumes the proportions of a world-event. Not only did this
principle constitute a radical departure in method, but we know now
that without it no progress in arithmetic was possible. [5, pg. 29–30]

The Mayans came close, with a system that featured positional notation
with zero. However, in their system successive positions represented the
mixed sequence (1, 20, 360, 7200, 144000, · · ·), i.e., 18 · 20n−2 for n ≥ 3, rather
than the purely vigesimal (base-20) sequence (1, 20, 400, 8000, 160000, · · ·),
i.e., 20n−1 for n ≥ 1. This choice precluded any possibility that their numerals
could be used as part of a highly efficient arithmetic system [14, pg. 311].

2 The discovery of positional arithmetic

So who exactly discovered the Indian system? Sadly, there is no record of
this individual or individuals, who would surely rank among the greatest
mathematicians of all time.

The earliest known piece of physical evidence of positional decimal no-
tation using single-character Brahmi numerals (which are the ancestors of
our modern digits) is an inscription of the date 346 on a copper plate, which
corresponds to 595 CE. No physical artifacts are known earlier than this date
[3, pg. 196]. But there are numerous passages of more ancient texts that
strongly suggest that both the concept and the practice of positional decimal
numeration was known much earlier [20, pg. 122].

For example, a fifth century text includes the passage “Just as a line in the
hundreds place [means] a hundred, in the tens place ten, and one in the ones
place, so one and the same woman is called mother, daughter, and sister [by
different people]” [20, pg. 46]. Similarly, in 499 CE the Indian mathematician
Aryabhata wrote, “The numbers one, ten, hundred, thousand, ten thousand,
hundred thousand, million, ten million, hundred million, and billion are from
place to place each ten times the preceding” [4, pg. 21].

These early texts did not use Brahmi numerals, but instead used the
Sanskrit words for the digits one through nine and zero, or, when needed to
match the meter of the verse, used one of a set of literary words (known as
“word-symbols”) associated with digits. For example, the medieval Indian
manuscript Surya Siddhanta included the verse, “The apsids of the moon in
a cosmic cycle are: fire; vacuum; horsemen; vast; serpent; ocean.” Here the
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last six words are word-symbols for 3, 0, 2, 8, 8, 4, respectively (meaning the
decimal number 488,203, since the order is reversed) [14, pg. 411].

One issue some have raised is that most ancient Indian documents are
more recent copies, so that we cannot be absolutely certain of their ancient
authenticity. But one manuscript whose ancient authenticity cannot be de-
nied is the Lokavibhaga (“Parts of the Universe”) [18]. This has numerous
large numbers in positional decimal notation (using Sanskrit names or word-
symbols for the digits), such as 14236713, 13107200000 and 70500000000000000,
and detailed calculations [18, pg. 70, 79, 131]. Near the end of the Lokavib-
haga, the author provides some astronomical observations that enable mod-
ern scholars to determine, in two independent ways, that this text was written
on 25 August 458 CE (Julian calendar). The text also mentions that it was
written in the 22nd year of the reign of Simhavarman, which also confirms
the 458 CE date. Thus its ancient date is beyond question [14, pg. 417].

One even earlier source of positional word-symbols is the mid-third-century
CE text Yavana-jataka. Its final verse reads, “There was a wise king named
Sphujidhvaja who made this [work] with four thousand [verses] in the In-
dravajra meter, appearing in the year Visnu; hook-sign; moon.” The three
word-symbols mean 1, 9 and 1, signifying year 191 of the Saka era, which
corresponds to 270 CE [20, pg. 47].

The earliest record of zero may be in the Chandah-sutra, dated to the
second or third century BCE. Here we see the solution to a mathematical
problem relating to the set of all possible meters for multi-syllable verse,
which involves the expression of integers using a form of binary notation [20,
pg. 55]. The very earliest origin of the notion of positional decimal notation
and arithmetic, however, is still obscure; it may be connected to the ancient
Chinese “rod calculus” [20, pg. 48].

Additional details on the origin, proliferation and significance of posi-
tional decimal arithmetic are given in [1].

3 Aryabhata’s square root and cube root

One person who deserves at least some credit for the proliferation of decimal
arithmetic calculation is the Indian mathematician Aryabhata, mentioned
above (see Figure 1). His ingenious digit-by-digit algorithms for computing
square roots and cube roots, based on terse statements in his 499 CE work
Aryabhatiya [4, pg. 24–26]), are illustrated by examples (due to the present
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authors) shown in Figure 2. These schemes were used, with only minor
variations, by Indian mathematicians such as Siddhasena Gani (∼550 CE),
Bhaskara I (∼600 CE), Sridhara (∼750 CE) and Bhaskara II (∼1150 CE),
as well as by numerous later Arabic and European mathematicians [7, vol.
I, pg. 170–175].

Figure 1: Statue of Aryabhata on the grounds of IUCAA, Pune, India (no
one knows what Aryabhata actually looked like) [courtesy Wikimedia]

4 The Bakhshali manuscript

Another ancient source that clearly exhibits considerable familiarity with
decimal arithmetic in general and square roots in particular is the Bakhshali
manuscript. This document, an ancient mathematical treatise, was found
in 1881 in the village of Bakhshali, approximately 80 kilometers northeast
of Peshawar (then in India, now in Pakistan). Among the topics covered in
this document, at least in the fragments that have been recovered, are solu-
tions of systems of linear equations, indeterminate (Diophantine) equations
of the second degree, arithmetic progressions of various types, and rational
approximations of square roots.

The manuscript appears to be a copy of an even earlier work. As Japanese
scholar Takao Hayashi has noted, the manuscript includes the statement
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Tableau Result Notes

4 5 4 6 8 0 4 9 6 b
√

45c = 6
3 6 62 = 36

9 4 6 7 b94/(2 · 6)c = 7
8 4 7 · (2 · 6) = 84
1 0 6

4 9 72 = 49
5 7 8 6 7 4 b578/(2 · 67)c = 4
5 3 6 4 · (2 · 67) = 536

4 2 0
1 6 42 = 16

4 0 4 4 6 7 4 3 b4044/(2 · 674)c = 3
4 0 4 4 3 · (2 · 674) = 4044

0 9
9 32 = 9
0 Finished; result = 6743

Tableau Result Notes

7 7 8 5 4 4 8 3 4 b 3
√

77c = 4
6 4 43 = 64
1 3 8 4 2 b138/(3 · 42)c = 2

9 6 2 · (3 · 42) = 96
4 2 5

4 8 3 · 22 · 4 = 48
3 7 7 4

8 23 = 8
3 7 6 6 4 4 2 7 b37664/(3 · 422)c = 7
3 7 0 4 4 7 · (3 · 422) = 37044

6 2 0 8
6 1 7 4 3 · 72 · 42 = 6174

3 4 3
3 4 3 73 = 343

0 Finished; result = 427

Figure 2: Illustration of Aryabhata’s digit-by-digit algorithms for computing√
45468049 = 6743 (top) and 3

√
77854483 = 427 (bottom).
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“sutra bhrantim asti” (“there is a corruption in the numbering of this sutra”),
indicating that the work is a commentary on an earlier work [12, pg. 86, 148].

Ever since its discovery in 1881, scholars have debated its age. Some,
like British scholar G. R. Kaye, assigned the manuscript to the 12th century,
in part because he believed that its mathematical content was derivative
from Greek sources. In contrast, Rudolf Hoernle assigned the underlying
manuscript to the “3rd or 4th century CE” [13, pg. 9]. Similarly, Bib-
hutibhusan Datta concluded that the older document was dated “towards
the beginning of the Christian era” [6]. Gurjar placed it between the second
century BCE and the second century CE [10].

In the most recent and arguably the most thorough analysis of the Bakhshali
manuscript, Japanese scholar Takao Hayashi assigned the commentary to the
seventh century, with the underlying original not much older [12, pg. 149].

4.1 The Bakhshali square root

One particularly intriguing item in the Bakhshali manuscript is the following
algorithm for computing square roots:

[1:] In the case of a non-square [number], subtract the nearest square
number; divide the remainder by twice [the root of that number]. [2:]
Half the square of that [that is, the fraction just obtained] is divided by
the sum of the root and the fraction and subtract [from the sum]. [3:]
[The non-square number is] less [than the square of the approxima-
tion] by the square [of the last term]. (Translation is due to B. Datta
[6], except last sentence is due to Hayashi [12, pg. 431]. Sentence
numbering is by present authors.)

4.2 The Bakhshali square root in modern notation

In modern notation, this algorithm is as follows. To obtain the square root
of a number q, start with an approximation x0 and then calculate, for n ≥ 0,

an =
q − x2n

2xn
(sentence #1 above)

xn+1 = xn + an −
a2n

2 (xn + an)
(sentence #2 above)

q = x2n+1 −
[

a2n
2 (xn + an)

]2
. (sentence #3) above)
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The last line is merely a check; it is not an essential part of the calculation.
In the examples presented in the Bakhshali manuscript, this algorithm is used
to obtain rational approximations to square roots only for integer arguments
q, only for integer-valued starting values x0, and is only applied once in each
case (i.e., it is not iterated). But from a modern perspective, the scheme
clearly can be repeated, and in fact converges very rapidly to

√
q, as we shall

see in the next section.
Here is one application in the Bakhshali manuscript [12, pg. 232–233]:

Problem 1 Find an accurate rational approximation to the solution of

3x2/4 + 3x/4 = 7000 (1)

(which arises from the manuscript’s analysis of some additive series).

Answer: x = (
√

336009−3)/6. To calculate an accurate value for
√

336009,
start with the approximation x0 = 579. Note that q = 336009 = 5792 + 768.
Then calculate as follows (using modern notation):

a0 =
q − x20

2x0
=

768

1158
, x0 + a0 = 579 +

768

1158
,

a20
2(x0 + a0)

=
294912

777307500
. (2)

Thus the refined root

x1 = x0 + a0 −
a20

2 (x0 + a0)
= 579 +

515225088

777307500
=

450576267588

777307500
. (3)

(Note: This is 579.66283303325903841 . . ., which agrees with
√

336009 =
579.66283303313487498 . . . to 12-significant-digit accuracy.)

The manuscript then performs a calculation to check that the original
quadratic equation is satisfied. It obtains, for the left-hand side of (1):

50753383762746743271936

7250483394675000000
, (4)

which, after subtracting the correction

21743271936

7250483394675000000
, (5)
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Figure 3: Fragment of Bakhshali manuscript with a portion of the square root
calculation mentioned in Problem 1. For example, the large right-middle sec-
tion corresponds to the fraction 50753383762746743271936

7250483394675000000
in Formula (4). Graphic

from [12, pg. 574].

gives:

50753383762725000000000

7250483394675000000
= 7000. (6)

Each of the integers and fractions shown in the above calculation (except
the denominator of (5), which is implied) actually appears in the Bakhshali
manuscript, although some of the individual digits are missing at the edges —
see Figure 3. The digits are written left-to-right, and fractions are written as
one integer directly over another (although there is no division bar). Zeroes
are denoted by large dots. Other digits may be recognized by those familiar
with ancient Indian languages.

It is thrilling to see, in a very ancient document such as this, a sophis-
ticated calculation of this scope recorded digit by digit. And we are not
aware, in the Western tradition, of a fourth-order convergent formula being
used until well after the Enlightenment of the 1700s.
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5 Convergence of the Bakhshali square root

Note, in the above example, that starting with the 3-digit approximation
579, one obtains, after a single application of (4.2), a value for

√
336009

that is correct to 12 significant digits. From a modern perspective, this hap-
pens because the Bakhshali square root algorithm is quartically convergent
— each iteration approximately quadruples the number of correct digits in
the result, provided that either exact rational arithmetic or sufficiently high
precision floating-point arithmetic is used (although, as noted above, there
is no indication of the algorithm being iterated in the Bakhshali manuscript
itself). For example, with q = 336009 and x0 = 579, successive iterations are
as shown in Table 1.

Iteration Value Relative error
0 579.000000000000000000000000000000. . . 1.143× 10−3

1 579.662833033259038411439488233421. . . 2.142× 10−13

2 579.662833033134874975589542464552. . . 2.631× 10−52

3 579.662833033134874975589542464552. . . 5.993× 10−208

4 579.662833033134874975589542464552. . . 1.612× 10−830

5 579.662833033134874975589542464552. . . 8.449× 10−3321

6 579.662833033134874975589542464552. . . 6.371× 10−13282

7 579.662833033134874975589542464552. . . 2.060× 10−53126

Table 1: Successive iterations of the Bakhshali square root scheme for q =
336009 and x0 = 579.

The proof that iterates of the Bakhshali square root formula are quarti-
cally convergent is relatively straightforward:

Theorem 1 The Bakhshali square root algorithm, as defined above in (4.2),
is quartically convergent.

Proof. It suffices to demonstrate that the scheme is mathematically equiv-
alent to performing two consecutive iterations of the Newton-Raphson iter-
ation [2, pg. 226–229] for finding the root of f(x) = x2 − q = 0:

xn+1 = xn +
q − x2n

2xn
(7)
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xn+2 = xn+1 +
q − x2n+1

2xn+1

. (8)

Expanding the expression for xn+2, one obtains

xn+2 = xn +
q − x2n

2xn
+
q −

(
xn + q−x2

n

2xn

)2
2
(
xn + q−x2

n

2xn

) (9)

= xn +
q − x2n

2xn
+
q − x2n − 2xn

(
q−x2

n

2xn

)
−
(
q−x2

n

2xn

)2
2
(
xn + q−x2

n

2xn

) (10)

= xn +
q − x2n

2xn
−

(
q−x2

n

2xn

)2
2
(
xn + q−x2

n

2xn

) , (11)

which is the form of a single Bakhshali square root iteration. Since a single
Newton-Raphson iteration (7) for the square root (which is often referred
to as the Heron formula, after Heron of Alexandria ∼70 CE), is well-known
to be quadratically convergent, two consecutive iterations (and thus a single
Bakhshali iteration) are quartically convergent.

For completeness, we include a proof that the Newton-Raphson-Heron
iteration, which is equivalently written xn+1 = (xn+q/xn)/2, is quadratically
convergent: Note that

xn+1 − xn =
q/xn − xn

2
=

q − x2n
2xn

(12)

x2n+1 − q =

(
xn + q/xn

2

)2

− q =

(
x2n − q

2xn

)2

. (13)

By (13), xn ≥
√
q for all n ≥ 1, and by (12), xn is monotonically decreasing

for n ≥ 1. Then xn must converge to some limit r, and again by (12), r =
√
q.

Finally, (13) implies that

∣∣∣x2n+1 − q
∣∣∣ ≤ |x2n − q|

2

4q
, (14)

which establishes quadratic convergence, so that once the right-hand side is
sufficiently small, the number of correct digits approximately doubles with
each iteration.
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The fact that the Bakhshali square root scheme is quartically convergent
when iterated has not been clearly recognized in the literature, to our knowl-
edge. G. R. Kaye, for instance, evidently presumed that the Bakhshali square
root is equivalent to and derived from Heron’s formula. He also claimed that
the Bakhshali square root scheme was extended to “second approximations”
in some instances, but this is not true—it was always implemented as stated
in the manuscript (see translation above). Also, Kaye erred in his arithmetic,
since the numerical value he gave for the

√
336009 result is only correct to

four digits instead of 12 digits [16, pg. 30–31]. Similarly, Srinivasiengar
stated that the Bakhshali square root is “identical” to Heron’s formula, even
though he presented a mathematically correct statement of the Bakhshali
formula that is clearly distinct from Heron [21, pg. 35]. Hayashi and Plofker
correctly observed that the Bakhshali scheme can be mathematically derived
by twice iterating the Newton-Raphson-Heron formula, although neither of
them discussed convergence rates when the scheme is iterated [12, pg. 431]
[19, pg. 440].

We might add that Heron’s formula was known to the Babylonians [9],
although, as with the Bakhshali formula, it is not clear that the Babylonians
ever iterated the process. As to the source of the Bakhshali scheme, Hayashi
argues that it may be based either on the Aryabhata square root scheme
or on an ancient Heron-like geometric scheme described in the Sulba-sutras
(between 600 BCE and 200 CE) [12, pg. 105-106].

6 An even more ancient square root

There are instances of highly accurate square roots in Indian sources that are
even more ancient than the Bakhshali manuscript. For example, Srinivasien-
gar noted that the ancient Jain work Jambudvipa-prajnapti (∼300 BCE),
after erroneously assuming that π =

√
10, asserts that the “circumference”

of a circle of diameter 100,000 yojana is 316227 yojana + 3 gavyuti + 128
dhanu + 13 1/2 angula, “and a little over” [21, pg. 21–22]. Datta added that
this statement is also seen in the Jibahigama-sutra (∼200 BCE) [6, pg. 43].
Joseph noted that it also seen in the Anuyogadvara-sutra (∼0 CE) and the
Triloko-sara (∼0 CE) [15, pg. 356].

According to one commonly used ancient convention these units are: 1
yojana = 14 kilometers (approximately); 4 gavyuti = 1 yojana; 2000 dhanu
= 1 gavyuti; and 96 angula = 1 dhanu [15, pg. 356]. Converting these units
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to yojana, we conclude that the “circumference” is 316227.766017578125 . . .
yojana. This agrees with 100000

√
10 = 316227.766016837933 . . . to 12-

significant-digit accuracy!
What algorithm did these ancient scholars employ to compute square

roots? Here we offer some analysis, which might be termed an exercise in
“forensic paleo-mathematics”:

First, note that the exact value of 100000
√

10 is actually slightly less than
the above, even though the ancient writers added the phrase “and a little
over” to the listed value that ends in 13 1/2. Also, we can justifiably infer that
the underlying target value (most likely a fraction) was less than the given
value with 13 3/4 at the end, or presumably it would be listed with 14 instead
of 13 1/2. Thus, a reasonable assumption is to take a slightly larger value, say
13 5/8 (the average of 13 1/2 and 13 3/4) at the end, as a closer approximation
of the underlying fractional value. Now let us compare the corresponding
decimal values, together with the results of a Newton-Raphson-Heron iter-
ation (starting with 316227), a Bakhshali iteration (starting with 316227),
and the exact result:

Manuscript value, with 13 1/2 316227.76601757812500 . . .
Manuscript value, except with 13 5/8 316227.76601774088541 . . .
One Heron iteration (316227) 316227.76601776571892 . . .
One Bakhshali iteration (316227) 316227.76601683793319 . . .

Exact value of 100000
√

10 316227.76601683793319 . . .

Comparing these values, it is clear that the manuscript value, with 13 5/8
at the end, is very close to the result of one Newton-Raphson-Heron iteration,
but is 36 times more distant from the result of either Bakhshali iteration or
the exact value. (Note that the value of the Bakhshali iteration, starting
with 316227, is identical to the exact result, to 20-significant-digit accuracy.)
Thus the most reasonable conclusion is that the Indian mathematician(s)
did some preliminary computation to obtain the approximation 316227, then
used one Newton-Raphson-Heron iteration to compute an approximate frac-
tional value, and then converted the final result to the length units above.
Evidently the Bakhshali formula had not yet been developed.

Along this line, R. C. Gupta analyzed the Triloya-pannatti, an Indian
document dating to the between the fifth and tenth century CE, which gives
the “circumference” above expressed in even finer units. Gupta concluded,
as we did, that the result was based on a calculation using the Newton-
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Raphson-Heron formula [11].
Note that just to perform one Newton-Raphson-Heron iteration, with

starting value 316227, one would need to perform at least the following rather
demanding calculation:

x1 =
1

2

(
x0 +

q

x0

)
=

1

2

(
316227 +

100000000000

316227

)
=

1

2

(
3162272 + 100000000000

316227

)
=

99999515529 + 100000000000

2 · 316227

=
199999515529

632454
= 316227 +

484471

632454
, (15)

followed by several additional steps to convert the result to the given units.
By any reasonable standard, this is a rather impressive computation, which
we were surprised to find evidence for in manuscripts of this ancient vintage
(200-300 BCE). Numerous other examples of prodigious computations in var-
ious ancient Indian sources are mentioned by Datta [7], Joseph [15], Plofker
[20] and Srinivasiengar [21]. Although some impressive calculations are also
seen in ancient Mesopotamia, Greece and China, as far as we are aware there
are more of these prodigious calculations in ancient Indian literature than
other ancient sources.

In any event, all of this analysis leads to the inescapable conclusion that
ancient Indian mathematicians, roughly contemporaneous with Greeks such
as Euclid and Archimedes, had command of a rather powerful system of
arithmetic, possibly some variation of the Chinese “rod calculus,” or perhaps
even some primitive version of decimal arithmetic. We can only hope that
further study of ancient Indian mathematics will shed light on this intriguing
question.

7 Conclusion

We entirely agree with Laplace, Tobias Dantzig, Georges Ifrah and others
that the discovery of positional decimal arithmetic with zero, together with
efficient algorithms for computation, by Indian mathematicians (who likely
will never be identified), certainly by 500 CE and probably several centuries
earlier, is a mathematical development of the first magnitude. The fact that
the system is now taught and mastered in grade schools worldwide, and is im-
plemented (in binary) in every computer chip ever manufactured, should only
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enhance its historical significance. Indeed, these facts emphasize the enor-
mous advance that this system represents, both in simplicity and efficiency,
as well as the huge importance of this discovery in modern civilization.

It should be noted that these ancient Indian mathematicians missed some
key points. For one thing, the notion of decimal fraction notation eluded
them and everyone else until the tenth century, when a rudimentary form
was seen in the writings of the Arabic mathematician al-Uqlidisi, and the
twelfth century, when al-Samawal illustrated its use in division and root
extraction [15, pg. 468]. Also, as mentioned above, there is no indication
that Indian mathematicians iterated algorithms for finding roots.

Aside from historical interest, does any of this matter? As historian Kim
Plofker notes, in ancient Indian mathematics, “True perception, reasoning,
and authority were expected to harmonize with one another, and each had
a part in supporting the truth of mathematics.” [20, pg. 12]. As she neatly
puts it, mathematics was not “an epistemologically privileged subject.” Sim-
ilarly, mathematical historian George G. Joseph writes:

A Eurocentric approach to the history of mathematics is intimately
connected with the dominant view of mathematics, both as a socio-
historical practice and as an intellectual activity. Despite evidence to
the contrary, a number of earlier histories viewed mathematics as a
deductive system, ideally proceeding from axiomatic foundations and
revealing, by the necessary unfolding of its pure abstract forms, the
eternal/universal laws of the “mind.”

The concept of mathematics found outside the Graeco-European praxis
was very different. The aim was not to build an imposing edifice on a
few self-evident axioms but to validate a result by any suitable method.
Some of the most impressive work in Indian and Chinese mathemat-
ics..., such as the summations of mathematical series, or the use of
Pascal’s triangle in solving higher-order numerical equations or the
derivations of infinite series, or “proofs” of the so-called Pythagorean
theorem, involve computations and visual demonstrations that were
not formulated with reference to any formal deductive system. [15, pg.
xiii]

So this is why it matters: The Greek heritage that underlies much of
Western mathematics, as valuable as it is, may have unduly predisposed
many of us against experimental approaches that are now facilitated by the
availability of powerful computer technology [2]. In addition, more and more
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documents are now accessible for careful study — from Chinese, Babylonian,
Mayan and other sources as well. Thus a renewed exposure to non-Western
traditions may lead to new insights and results, and may clarify the age-old
issue of the relationship between mathematics as a language of science and
technology, and mathematics as a supreme human intellectual discipline.
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