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We are all familiar with the uses and misuses of calculators in the
classroom and may take it for granted that they require mathematics
as input and typically give numbers as output. | wish to show the
power of calculators that invert this process: numbers go in and
mathematics comes out. | shall demonstrate the Inverse Symbolic
Calculator, at http://ddrive.cs.dal.ca/~isc, and its implementation
inside Maple as the identify function and will illustrate their use in
teaching and research as tools of discovery.

"The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it." — Jacques Hadamard
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THE COMPUTER AS CRUCIBLE

AN INTRODUCTION TO EXPERIMENTAL MATHEMATICS

Jonathan Borwein
Keith Deviin

with illustrations by Karl H. Hofmann
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For a long time, pencil and paper were considered the only tools
needed by a mathematician (some might add the waste basket). As
in many other areas, uters play an increasingly important role
in mathematics and have vastly expanded and legitimized the role
of experimentation in mathematics. How can a mathematician use
a computer as a tool? What about as more than just a tool, but as a
collaborator?
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Francois Vieta (1540-1603)

[magnitudes by irrational [numbers]. If someone measures
magnitudes with numbers and by his calculation get them different
from what they really are, it is not the reckoning’s fault but the
reckoner's.

Rather, says Proclus, ARITHMETIC IS MORE EXACT THAN GEOMETRY.
To an accurate calculator, if the diameter is set to one unit, the
circumference of the inscribed dodecagon will be the side of the
binomial [i.e. square root of the difference 72 — /38388. Whoever
declares any other result, will be mistaken, either the geometer in
his measurements or the calculator in his numbers.

 The inventor of 'x'and 'y’



OUTLINE

Cardiod
Part Il. Integer Relations |
— What they are
— What they do
* Elementary examples
e Advanced examples A Scatterplot Discovery

“The new availability of huge amounts of data, along with the statistical tools
to crunch these numbers, offers a whole new way of understanding the
world. Correlation supersedes causation, and science can advance even
without coherent models, unified theories, or really any mechanistic
explanation at all. There's no reason to cling to our old ways. It's time to ask:
What can science learn from Google?” - Wired, 2008




BACKGROUND

Knowing the answer is more-than-half the battle

What is that number? /

“Who was that masked man’7 ;//’ ” 1

—The Lone Ranger ¢ 4@ '
1950s tv western series

"And yet since truth will sooner come out of error than from confusion.”
- Francis Bacon, 1561-1626




CHRONLOGY of ISC and FRIENDS

Sloane’s

o DdNE NCVCIoDadedia C
— with Plouffe (5,000 entries)
1990 Handbook of Real Numbers (100,000:16Mb)

1995 The Inverse Symbolic Calculator (I1SC)
— binscripts/JAVA (10Gb: wanted by GNU)

1995 The Colour Calculator
1996 Sloane’s Online Encyclopaedia (OEIS) (150,000)
1999 “Identify” added to Maple

2007 1SC2.0 (Python + Cherry Pie) multi-threaded
— less lookup, more preprocessing and computing




1988-90 A DICTIONARY of REAL NUMBERS

8 pages of preface and 424 of numbers in [0,1]
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COLOR and INVERSE
CALCULATORS (1995)

C

intelligent preprocessing ;.n"éeds micro-parallelism
= |t faces the “curse o’t.ékponentiality”
= Implemented as jdentify in Maple

.

JNVERSE SYMBOLIC CALCULATOR

Please enter a number or a Maple expression:

Run | 3 | él b'zbél '5 ( Clear

= ROWS: coLs:  mop: DIGIT:
oggle 35\’ 35 , T 7 ~
s 3.1415926535&9793238#62643ﬂ /
r | O SimpJ€ Lookup and Browser for any number.

0899862848253
11706798;
1 — e

O Spart Looku for any number.

Generalized Expansions for real numbers of at least 16 digits.

O Integer Relation Algorithms for any number.

1«

kg9 X A
o ] v ' Nl
BLE LIST: o
vi L ° ®
. . — L'i -
Expressions that are not numeric like In(Pi*sqrt(2)) are evaluated in Maple in symbolic

form first, followed by a floating point evaluation followed by a lookup.




MATHEMATICS and BEAUTY 2006

142857142857142857
1428571428571428571
285714285714285714
285714285714285714
57142857 14280714280571428571428571428

“This is an exceptionally important book.. .. It could be the starting point
for many cognitive, social, and educational benefits.”
—From the Foreword by William Higginson,
Queen’s University, Canada

= “In a time of much sterile math teaching and grimly utilitarian school re-
form, this elegant and beautiful book brings to life a whole new vision. . ..
Nathalie Sinclair makes a brilliant case for rethinking math instruction
so that an aesthetically rich learning environment becomes the path to

meaning, intellectual journeys, and—dare we say the word?—pleasure.”
—Joseph Featherstone,
Michigan State University

a n d % ea u In this innovative book, Nathalie Sinclair makes a compelling case for the
inclusion of the aesthetic in the teaching and learning of mathematics.

Using a provocative set of philosophical, psychological, mathematical,
technological, and educational insights, she illuminates how the materials
and approaches we use in the mathematics classroom can be enriched
for the benefit of all learners. While ranging in scope from the young
learner to the professional mathematician, there is a particular focus on
middle school, where negative feelings toward mathematics frequently
begin. Offering specific recommendations to help teachers evoke and
nurture their students’ aesthetic abilities, this book:

Aesthetic Approaches
to Teaching Children

¢ Features powerful episodes from the classroom that show stu-
dents in the act of developing a sense of mathematical aesthetics. i

* Analyzes how aesthetic sensibilities to qualities such as con-
nectedness, fruitfulness, apparent simplicity, visual appeal, and

. surprise are fundamental to mathematical inquiry.

" ¢ Includes examples of mathematical inquiry in computer-based

learning environments, revealing some of the roles they play in

supporting students’ aesthetic inclinations.

Nathalie Sinclair is an assistant professor in the Department of
Mathematics at Michigan State University.

ALSO OF INTEREST—
Improving Access to Mathematics: Diversity and Equity in the Classroom
Na'ilah Suad Nasir and Paul Cobb, Editors

2007/Paper and cloth
Photo of fern by John Spavin
Photo of nautilus by Peter Werner
- - - Background photo of cabbage by Piero Marsiaj
Nathalie Sinclair
— = Teachers Col!ege . 90000>
Foreword by William Higginson Columbia University
New York, NY 10027
7808077747223

www.tcpress.com




Knuthasked : Y77, {k’f:k — \/2177_]6} —7?

‘Simple Lookup’ fails.
‘Smart Lookup’ gives:

INVERSE SYMBOL

Results of the search:

Maple output:

.8406950872765600e-1

< .084069508727656D

Value to be looked up: .8406950872}656006-1 o K IBOL'C nLCULnTOR
/ e ———————— C—

| ) /

Performing, aénart lookup on .8406950872765600e-1:

esult |Precision lMatches
y -
K-2/3 I 825971579390106666666666 |16 ll

\.
—

579390106 was probably generated by one
s or found in one of the given tables.
" — answers are given from shortest to longest description

S
[ — y .
|59259?15793901W= Zeta(l,f‘2},/sr(2)fsr(l?i)| C(]./Q)

" —
Browse around .5825971579390106. \/ 271

l\.




HE Tnvel oo DYiiguue

Calculator [ISC] uses a
combination of lookup

tables and integer
relation algorithms in
order to associate
with a user-defined,
truncated decimal
expansion
(represented as a
floating point
expression] a closed
form representation
for the real number,

NSERC

@Drive CRSNG

Maplesoft

1SCEinvsrin sasas

otandard lookup results for 12.587886229548403854

exp(1)+i"2

ISC The original ISC

The Dev Team: Nathan Singer , Andrew Shouldice , Lingyun Ye,
Tomas Daske, Peter Dobcsanyi, Dante Manna, O-Yeat Chan, Jon Borwein

3.146264370

FHE 1o P Toi L
accepts either floating
point expressions or
correct Maple syntax
as input. However, for
Maple syntax requiring
too |l'll'|  far

ey dlU-it]Llrl, a timeout
has been
implemented,

Yisit

Jon Borwein's
Webpage

David Bailey's
Webpage

Math Resources Portal

19.99909998
ISC The original ISC

* ISC+ runs on Glooscap

* Less lookup & more
algorithms than 1995

The Dev Team: Mathan Singer, Andrew Shouldice , Lingyun Ye,

Tomas Daske , Peter Dobcsanyi. Dante Manna, O-Yeat Chan, Jon Borwein



IDENTIFY and

ISC does more

ISC IN ACTION

for a naive user

identify does more for an experienced user

Advanced lookup results for 19.999099979

1999909997913947

exp(Pi}-Pi
Pi-exp(Fi)

The original ISC

0

11

n=2

n2

= (0.2720290549821332...

n? +1

Advanced lookup results for 0.2720290549821332

Searched for Description
.13601452749106660000000000  [eHENWIERIEGI{EI

Transform (K=0.2720290549821332)
K*1/2

o0

11

n=2

,n3

1 0.6666666666666667
n

1
/ 7% + 1| do = 1.273239544735163
0

223

> identify(3.140845070422535) = =

> identify(1.273239544735163) = =

4.599873743272336

> pslq(4.599873743272336, [1,Pi"2,Pi"4]);
[-360, 0, 0, - 17], "Error is", -4.730194857 107>,

checking to", 26, places

_ 17 4
4.599873743272336 = 360 ©




A HOMEWORK CHALLENGE

and

=1

Y — = 0.5822405264650125059... 7

— 2"n,

The answers are
log(2m) — 1 — v
and .
= > log(2)?,
Here

—logn = 0.5772156649015328...

| =

v := lim z”:
k=1

is Euler’s mysterious (irrational?) constant.
How about 0.438017879485942412114 ... 7
Hint: first find 0.63092975357145743710... (Answer by email)
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Greetings from Ihg_Qn_ng_Ensy_clgp_edla_qf_IntgggLS_egugns_es'
[1.1,4.9.2564169 | [ e | tinss

Search: 1, 1, 4,9, 25, 64, 169
Displaying 1-1 of 1 results found.

page 1

Format: long | short | internal | text Sort: relevance | references | humber Highlight: on | off
AQ07598 F(n)~2, where F() = Fibonacci numbers A000045. +20
(Formerly M3364) 4

0, 1, 1, 4, 9, 25, 64, 169, 441, 1156, 3025, 7921, 20736, 54289, 142129, 372100, 974169,
2550409, 6677056, 17480761, 45765225, 119814916, 3135679521, 821223649, 2145991424,
5628750625, 14736260449, 38580030724 (list; graph; listen)

OFFSET 0,4

COMMENT a(n)*(-1y"~(n+l) = (2*(1-T(n,-3/2))/5), n>=0, with Chebyshev's pclynocmials

T(n,x) of the first kind, is the r=-1 member of the r-family of sequences
S r(n) defined in A092184 where more information can be found. W. Lang
(wolfdieter.lang AT physik DOT uni-karlsruhe DOT de), Oct 18 2004

Contribution from Giorgio Balzarotti (greenblue(AT)tiscali.it), Mar 11
2009: (Start)

Determinant of power series with alternate signs of gamma matrix with
determinant 1!

a(n) = Determinant( A-A"2+ A"3-A"4+ A~5-... A"n

where A is the submatrix A(l1..2,1..2)= of the matrix with factcrial
determinant

A= [[1,1,21,1,1,1,...],01,2,1,2,1, 2,...] [

(1,2,3,4,1,2,...1,01,2,3,4,5,1,...1,1[1,2,

note: Determinant A(l..n,l‘.n): (n 1!

a(n) is even with respect to signs of power of A.

See A15H8039...2158050 for sequence with matrix 2!, 3!... (End)

Contribution from Gary W. Adamson (gntmpkt (AT)vahoo.com), Apr 27 2009:
(Start)

Fquals the INVERT transfcrm cof (1, 3, 2, 2, 2,...). Example: a(7) = 169

1,23123 .1,
I A D

= (1, 1, 4, 9, 25, 64) dot (2, 2, 2, 2, 3, 1) = (2 + 2 + 8 + 18 + 75 + 6€4)
169. (End)

T. Benjamin and J. J. Quinn, Prcofs that really count: the art of
combinatorial proocf, M.A.A. 2003, id. 8.

Honsberger, Mathematical Gems IIT, M.A.A., 1985, p. 130.
P. Stanley, Enumerative Combinatorics I, Example 4.7.14, p. 251.
LINKS T. D. Noe, Table of n, atn) for n=0..200
Index entries for two-way infinite sequences
Index entries for sequences related to linear recurrences with constant
coefficients
D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux,
T. Mansour, A note on sum of k-th power of Horadam's sequence
T. Mansour, Sguaring the terms cof an ell-th order linear recurrence
P. Stanica, Generating functions, weighted and non-weighted sums of

REFERENCES

jre ool

powers. ..
FORMULA al0y = 0, a(ly = 1; a(n)y = a(n-1) + Sum(a(n-1)) + k, 0 <= 1 <« n where k =
1 when n is odd, or k = -1 when n is even. E.g. a(2) =1 1+ (1 + 1 +
0) -1, at3) =4 =1+ (1L + 1 +0) + 1, atd)y = 9 =4+ (4 +1 + 1+ 0y -
| 1, a(5) =25 =9 + (9 + 4 +1 + 1 + 0) + 1., - Sadrul Hakil Chowdhursy


http://www.research.att.com/~njas/sequences/Seis.html

“Nature laughs at the difficulty of Integration” - Lagrange

"A heavy warning used to be given [by lecturers] that pictures are not rigorous; this
has never had its bluff called and has permanently frightened its victims into playing
for safety. Some pictures, of course, are not rigorous, but | should say most are (and |
use them whenever possible myself).” - J. E. Littlewood, 1885-1977




End of Part |

Some More Scenes from a Scientist's Life ...
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“At this point we notice that this equation is
beautifully simplified if we assume that
space—time has 92 dimensions.”



http://www.carma.newcastle.edu.au/

PSLQ: INTEGER RELATION ALGORITHMS:
WHAT THEY ARE

Let (x,) be a vector of real numbers. An integer relation
algorithm finds integers (a,) such that

a1x1 + arxo + -+ anxn = O

or provides an exclusion bound

— i.e., testing linear independence over Q

* At present, the PSLQ algorithm of mathematician-
sculptor Helaman Ferguson is the best known integer
relation algorithm.

* High precision arithmetic software is required: at least
d x n digits, where d is the size (in digits) of the largest of
the integers a,.



INTEGER RELATION ALGORITHMS:
HOW THEY WORK

Let (x,) be a vector of real numbers. An integer relation
algorithm finds integers (a,) such that

or provides an exclusion bound.

PSL () operates by developing, iteratively, an integer matrix A that successively
reduces the maximum absolute value of the entries of the vector y = Ax, until
one of the entries of y is either zero or within roughly 1077 of zero, where p is
the numeric precision used.

Any integer relation detection scheme needs data to at least nd-digit precision:
via a simple pigeonhole analysis. Assume the x vector does not satisfy an integer
relation, with |x;| < 1. Suppose all a; satisfy |a;| < 10%. Then D 1<j<n G5 T;
will assume one of 2710"? values in [—-n109,n10%], depending on a. The average
distance between these values is 2277104~ "¢. Thus, an interval of size 10~P
around zero is likely to contain a spurious “relation” unless p is significantly
larger than nd — d.




INTEGER RELATION ALGORITHMS:
HOW THEY WORK

PSLQ is a combinatorial optimization algorithm designed
for (pure) mathematics

llllllll

llllllll

\

I "
250 V

The method is “self-diagnosing”---- the error drops
precipitously when an identity is found. And basis
coefficients are “small”.



TOP TEN ALGORITHMS

» Integer Relation Detection was recently ranked
among "“the 10 algorithms with the greatest influ-
ence on the development and practice of science
and engineering in the 20th century.” J. Dongarra,

F. Sullivan, Computing in Science & Engineering 2
(2000), 22-23.

Also: Monte Carlo, Simplex, Krylov Subspace, QR
Decomposition, Quicksort, ..., FFT, Fast Multipole
Method.

* integer relation detection (PSLQ, 1997) was the most
recent of the top ten



HELAMAN FERGUSON

SCULPTOR and MATHEMATICIAN

PROFILE: HELAMAN FERGUSON

Carving His Own Unique Niche,
In Symbols and Stone

By refusing to choose between mathematics and art, a self-described “misfit” has
found the place where parallel careers meet

BALTIMORE, MARYLAND—Helaman
Ferguson’s sculpture studio is set back
from the road, hidden behind a construc-
tion site. Inside, pieces of art line shelves
and cover tabletops. Ferguson, clad in a
yellow plastic apron and a black T-shirt,
serenely makes his way through the
room. The 66-year-old is tall and white-
haired, his bare arms revealing a strength
requisite for his avocation.

The most striking work in the studio is a
more than 2-meter-tall, 5-ton chunk of gran-
ite. When it is finished, it will stand in the
entry to the science building at Macalester
College in St. Paul, Minnesota. Right now; it
is a mass of curving surfaces sloping in dif-
ferent directions, its surface still jagged
with the rough grains left by the diamond-
toothed chainsaw Ferguson uses to carve
through the stone.

“I'm in my negative-Gaussian-curvature
phase,” Ferguson says. “Say we're going to
shake hands, but we don’t quite touch. OK,
see the space between the two hands?” That
saddle-shaped void, he explains, is a perfect
example of negative Gaussian curvature.
Our bodies contain many others, he adds:
the line between the first finger’s knuckle
and the wrist, for instance, and where the
neck meets the shoulders.

The topological jargon is no surprise:
Ferguson spent 17 years as a mathematics
professor at Brigham Young University

(BYU) in Provo, Utah. What is unusual is
how successfully he has pursued a dual
career as mathematician and artist and the
ease with which he blurs the categories.
Math inspires and figures in almost all of
Ferguson’s artistic works. Through
them, he has helped some mathe-
maticians appreciate the
artist’s craft and aesthetic.
And he’s persuaded per-
haps even more artists
that math may not be
as frighteningly elu-
sive as they believe,
or even if it is out of
their reach, it’s as
beautiful as any
work of art they
might imagine. “The
way he has brought
together the worlds
of science and the
arts—this is an admirable
thing,” says Harvey
Bricker, Ferguson's former
college roommate.

Twin callings

Ferguson himself finds it hard to say which
calling came first. As a teenager in upstate
New York, he learned stone carving as an
informal apprentice to his adopted father, a
stonemason. Artistically, however, he was

more drawn to painting. After finishing
high school in 1958, he wanted to study art
as well as math. He chose Hamilton Col-
lege, a liberal arts school in upstate New
York near where he had spent most of his
childhood, where he could do both.

After getting his math degree, he
enrolled in a doctoral program in math at the
University of Wisconsin, Madison. He paid
for some of his living expenses by selling
paintings. He also met and began dating an
undergraduate art student, Claire. The cou-
ple married in 1963 and had their first child
(of an eventual seven) in 1964. Ferguson
dropped out of school for a couple of years
to work as a computer programmer, then
resumed his math studies. He obtained his
master’s degree in mathematics at BYU and
a doctorate in group representations—a
broad area of math that involves algebra,
geometry, topology, and analysis—at the
University of Washington, Seattle. In 1971,
he accepted an appointment as assistant
professor at BYU.

As a mathematician, Ferguson is perhaps
best known for the algorithm he developed
with BYU colleague Rodney Forcade. The
algorithm, called PSLQ, finds mathemati-
cal relations among seemingly unrelated
real numbers. Among many other applica-

tions, PSLQ provided an efficient way of

computing isolated digits within pi and
blazed a path for modeling hard-to-calculate

particle interactions in quantum physics.
In 2000, the journal Computing
in Science and Engineering
named it one of the top

Function-al form. The
Fibonacci Fountain at
the Maryland Science
and Technalogy Center
was inspired by the
“golden ratio.”

the 20th century.
Meanwhile,
Ferguson’s artistic
career also developed
apace. When he married
Claire, a painter, the two
struck a deal: “I get the
floors, she gets the walls,” he
says. He began focusing more on
sculpture. The art department at BYU
allotted him some studio space, and he
turned out a regular stream of work. He’s
done commissions for the Maryland Sci-
ence and Technology Center, the University

of California, Berkeley, the University of
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St. Thomas in St. Paul, and many other insti-
tutions. He has also designed small sculp-
tures for awards presented by the Clay Math-
ematics Institute in Cambridge, Massachu-
setts, the Canadian Mathematical Society in
Ontario, and the Association for Computing
Machinery in New York City.

He has worked to keep a foot in each of
the “two cultures.” While at BY U, he taught
a course each year for honors students
called Qualitative Mathematics and Its
Aesthetics. Both art students and math stu-
dents enrolled: the artists looking for a
palatable way to take in a math require-
ment, and the math students lured by the
promise of higher level mathematics. Fer-
guson delivered on both ends. He taught
concepts mathematicians don’t normally
encounter until graduate school, such as
braid theory. Artists could relate to braids
as physical objects, rope or hair that can be
woven into a specific form. But students
were also asked to write down an algebra to
go along with how the braid was formed—
a noncommutative algebra.

“Some of these folks were in there
because they were either afraid of or hated
math ys Ferguson. At the end of the
semester, however, “quite a few art students
wanted a follow-on semester—
more math, more art.”

Bridging

Ferguson, who left BYU in 1988,
now devotes most of his time to
his art. For his large-scale or
complicated pieces, he uses
computer programs such as
Mathematica to form and refine
the shape he wants the finished
piece to take. “With sculpture,
you want a piece to be a unit so it
has direct impact as a form,” he
says. “Sculptures are compli-
cated enough already.” With
computer programs, he says,
before even putting hand to stone
“you can walk around [the piece]
and see a different view; you can
touch it and reshape it to make it
simpler and more direct.”

Once the design is in place,
Ferguson turns to the task of
carving the stone. He works
alone, without assistants, using
both chisels and assorted power
tools. Finally comes a lengthy
smoothing process, going from
20-grit sandpaper to as fine as
500-grit. Ferguson has to work
wet” much of the time, using

water to wash down the fine parti-
cles of stone that could otherwise
become deposited in his lungs. For
some of the work, he dons gloves
made of woven stainless steel and
a positive-pressure facemask.
A large sculpture can take sev-
eral months to complete,
working flat-out.

Granite is Ferguson's
favorite medium. “Math-
ematics is kind of time-
less,” he says, “so incor-
porating mathematical
themes and ideas into geo-
logically old stone—that’s
something that has great aesthetic
appeal to me.” He also likes the idea that his
sculptures will be around for millions or
even billions of years.

The fimshed sculptures vary widely in
appearance. Some are delicate, with
looped projections or intricate imprints,
and are small enough to hold in one’s hand.
Others are massive, meant to be touched,
even climbed on (as many children have
discovered). As a rule, they also contain
much more detail than meets the eye. “My
work generally involves a circle of ideas,”

Tough medium. A diamond-teothed chainsaw helps Ferguson
carve through granite rocks that are up to a billion years old.

Twisted. Braids and
knots turn up in many
of Ferguson’s works,
including these small
metal sculptures

says Ferguson.
People he interacts
with, new information
he obtains, mathematics
he has had on his mind—
all of these become “part of
the design consideration.”

As an example, he cites
an architectural-scale
sculpture recently installed

outside his alma mater Hamilton
College’s new science building. The work,
made of 10-centimeter-thick granite, cen-
ters on a pair of massive disks representing
the planets Mars and Venus. “Venus” is
exactly 161 centimeters in diameter—the
height of the average female Hamilton stu-
dent, taken from the records of one of the
college’s psychology professors. “Mars” is
174 centimeters in diameter—the average
male student’s height. The disks are inlaid
with tiles in a pattern defined by the
Poincaré and Beltrami-Klein models of
plane hyperbolic geometry.

Ferguson’s admirers say his artwork goes
far beyond academic exercises. David
Broadhurst, a physicist at the Open Univer-
sity in Milton Keynes, UK., learned about
Ferguson’s sculpture after using the PSLQ
algorithm in his research in quantum
mechanics. He compares Ferguson’s artistic
renderings of math to Fournier playing the
Bach cello suites, “giving expression to
abstract forms, whose beauty is preexistent
to the interpretation, yet recreated in a
widely accessible medium.”

For his part, Ferguson says his lifelong
project to embody mathematics in mass and
form is very much in the spirit of the times
and he credits technology with making it all
possible. “We're living in the golden age of
art, we really are. But it’s also the golden age
of science.” he says. “Today, young people
have seen more art and science in, say, their
first 25 years of life than anyone in the years
before that.” With the collaborations between
computer scientists and artists, and tools for
art being used as tools for scientific explo-
ration and invention, Ferguson suggests we
may be in the midst of a second Renaissance.
“It’s a great time to be alive,” says Ferguson,
“because there are more places for misfits
like myselfto survive”

—KATHERINE UNGER
Katherine Unger is a writer in Washington, D.C.
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Peter Borwein
in front of
Helaman Ferguson’s
work

CMS Meeting
December 2003
SFU Harbour Centre

Ferguson uses high
tech tools and micro
engineering at NIST
to build monumental
math sculptures




MADELUNG’s CONSTANT
David Borwein CMS Career Award

This polished solid silicon bronze sculpture is inspired by the work of David
Borwein, his sons and colleagues, on the conditional series above for salt,
Madelung's constant. This series can be summed to uncountably many
constants; one is Madelung's constant for electro-chemical stability of
sodium chloride.

This constant is a period of an elliptic curve, a real surface in four dimensions.
There are uncountably many ways to imagine that surface in three
dimensions; one has negative gaussian curvature and is the tangible form of
this sculpture. (As described by the artist.)


../My Documents/JB616/My Documents/My Pictures/Family Canada Oz/Family/Parents/borweinSculptureLrg.jpg




INTEGER RELATION ALGORITHMS:
WHAT THEY DO: ELEMENTARY EXAMPLES

-ALGEBRAIC NUMBERSI

Compute «a to sufficiently high precision (O(n2))
and apply LLL to the vector

2 —1
(1’06,&’.”’&?1 )

e Solution integers a; are coefficients of a polyno-
mial likely satisfied by «a. /

An application was to determine explicitly
the 4t and 5t bifurcation points of the
logistics curve have degrees 256.




FINALIZING FORMULAE

» If we suspect an identity PSLQ is powerful.

e (Machin's Formula) We try PSLQ on

1 1
arctan(1), arctan(—), arctan(——
[ (1) (5) (239)]
and recover [1, -4, 1]. That is,
1 1
T 4 arctan(=) — arctan(—).
4 5 239

[Used on all serious computations of = from
1706 (100 digits) to 1973 (1 million).]

If we try with arctan(1/238) we obtain hugelintegers

e (Dase’s ‘'mental’ Formula) We try PSLQ on

1 1 1
[arctan(l),arctan(a),arctan(g),arctan(g)]
and recover [-1, 1, 1, 1]. That is,
7 1 1 1
— = arctan(= arctan(= arctan(=).
A () +arctan() +arctan(2)

[Used by Dase for 200 digits in 1844.] In hid head




INTEGER RELATIONS in MAPLE

> with(IntegerRelations) ;Digits:=25;
[LLL, LinearDependency, PSLQ]

L Digits =25 2)
> PSLQ([Pi,arctan(l/2),arctan(1l/5),arctan(1/8)1):
L [1, -4, -4, -4] 3)
> PSLQ([Pi,arctan(1l/2),arctan(1l/5),arctan(1/9)1]1);
[10129, 2473744, -4734091, -2207521] @

_>Pi, [arctan (1/2) ,arctan(1l/5) ,arctan(1/8)1);

[1, 4,4, 4], "Error is", -2. 10> "checking t0", 35, places

n=4arctan(%) +4arctan(%)+4arctan(%) 6))
_> a:=evalf (sgqrt (3)+sqrt(5)) ;identify(a);
a :=3.968118785068666989936620
V3 +V5 ©6)

| > ?identify

 Maple also implements the Wilf-Zeilberger algorithm
 Mathematica can only recognize algebraic numbers



INTEGER RELATION ALGORITHMS:
WHAT THEY DO: ADVANCED EXAMPLES

* THE BBP FORMULA FOR PI
* PHYSICAL INTEGRALS

—ISING AND QUANTUM FIELD THEORY
* APERY SUMS

—AND GENERATING FUNCTIONS
 RAMANUJAN SERIES FOR 1/7V




The BBP FORMULA for Pi

In 1996 Bailey, P. Borwein and Plouffe, using PSLQ for
months, discovered this formula for r:

> 1 4 2 1 1

ro= 3 k( _ _ _
16k \8k+1 8k+4 8k+5 8k+6

Indeed, this formula permits one to directly calculate
binary or hexadecimal (base-16) digits of ® beginning at
an arbitrary starting position n, without needing to
calculate any of the first n-1 digits.

A finalist for the Edge of Computation Prize, it has been
used in compilers, in a record web computation, and in
a trillion-digit computation of Pi.



PHYSICAL INTEGRALS (2006-2008)

The following integrals arise independently in mathematical
physics in Quantum Field Theory and in Ising Theory:

Cn = H/o /0 (

We first showed that this can be transformed to a 1-D integral:
2N oo

Cn = — tKy(t) dt
n! Jo

where K, is a modified Bessel function. We then (with care) computed 400-

digit numerical values (over-kill but who knew), from which we found with

PSLQ these (now proven) arithmetic results:

1 1
Cz3 = L_3(2) = Z {(3n+1)2(3n‘|‘2)2}

n>0
-
6

De 27

1 duq
L
¥ (uj + 1/u;))” "1

Ca

lim C4,
n—0Q




IDENTIFYING THE LIMIT WITH THE ISC (2.0)

We discovered the limit result as follows: We first calculated:
Cio24 = 0.630473503374386796122040192710878904354587...

We then used the Inverse Symbolic Calculator, the online numerical constant
recognition facility available at:
http://ddrive.cs.dal.ca/~isc/portal Boove © stz wano ot IR
Output: Mixed constants, 2 with elementary transforms. Inverse Symbolic Calculator
.6304735033743867 = sr(2)*2/exp(gamma)’2

Hewir wioul d you like to [nversely Calculate Today?

In other words,

—2
Cl 0 2 4 % 2 6 ,.Y IS me original isc

The Dev Team: Hathan Singer, Andrew Shouldice, Lingyun Ye,
Tomas Daske, Peter Dobcsanyi, Dante Manna, 0-Yeat Chan, Jon Borwein

References. Bailey, Borwein and Crandall, “Integrals of the Ising Class," J. Phys. A.,
39 (2006)

Bailey, Borwein, Broadhurst and Glasser, “Elliptic integral representation of Bessel
moments," J. Phys. A, 41 (2008) [loP Select]


http://ddrive.cs.dal.ca/~isc/portal

APERY-LIKE SUMMATIONS

The following formulas for {(s) have been known for many decades

for Re(s) > 1 | The RH in Maple

G ((s) := Ziozl ns
5 1
2= k2 (Qkk)
36 1
(4 = =
17 = k4 (%f)
These results have led many to speculate that
> (_1 k+1
'QS L= C(5)/ Z ( 5 )Qk
k=1 k (lg)

might be some nice rational or algebraic value.

Sadly (?), PSLQ calculations have established that if Qg satisfies a polynomial with

degree at most 25, then at least one coefficient has 380 digits. But positive results
exist.



APERY OGF’S (s) = §i8 oy 7o

1. via PSLQ to
5,000 digits
(120 terms)

w2
@@= ==

Z(z) 3 Z (%) L

> (k% - =

_ ok _ 1
. = Y @R+t = Y
2005 Bailey, Bradley & L—0 h_1 N =
JMB discovered and proved 1 — 7z cot(mx
- in 3Ms - three equivalent = 5 (r) { ﬁ redduced as
binomial identities 2T Op€
k—1 4 n?—m?
2n 1l=n+1 27 1 1

{ 3n2 k:%;rl (Qkk) (kg _ ng) — (2nn) - (3nn)

3n,n+1,—n 1
cla =] =
2n+1,n+1/2 4

2n
( n ) 3. was easily computer proven (Wilf-
(Sn) Zeilberger) (now 2 human proofs)




NEW RAMANUJAN-LIKE IDENTITIES

Guillera (around 2003) found Ramanujan-like identities, including:

1
32

i (—1)™r(n)°(13 + 180n 4+ 820n°) (
n=0

8 — . 1\ 5 2 l 2n
= = n:O( 1)(n)3(1 4 8n + 20n )(2)
32 2 & 7 2 3y (1)2"
3 = n;gfr‘(n) (14 14n+ 76n° + 168n )(8) :
where
) = D _ 1232 Gn=D/2 _ T+ 1/2)
n! n! ValT(n+1)

Guillera proved the first two using the Wilf-Zeilberger algorithm. He
ascribed the third to Gourevich, who found it using integer relation
methods. It is true but has no hint of a proof...

As far as we can tell there are no higher-order analogues!



Experiencing Experimental Mathematics
I { E F E I { E N C E S Experimental Mathematics in Action | Experiments in Mathematics (CD)

David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Jonathan M. Borwein, David H. Bailey, Roland Girgensohn
Girgensohn, D. Russell Luke, Victor H. Moll I

“David H. Bailey et al. have done In the short time since the first edition of Mathematics
SECOND EDITION a fantastic job to provide very | by Experiment: Plausible Reasoning in the 21st Century
comprehensive and fruitful ex- | and Experimentation in Mathematics: Computational

amples and demonstrations on Paths to Discovery, there has been
Experimenta] how experimental mathematics a noticeable upsurge in interest in MR GEINAE]
Mathematics acts in a very broad area of both | using computers to do real math- JEIESELENLS
in Action pure and applied mathematical ematics. The authors have updated
research, in both academic and | and enhanced the book files and
industry. Anyone who is interest- are now making them available in
ed in experimental mathematics | PDF format on a CD-ROM. This CD
a should, without any doubt, read provides several “smart” features,
m a I’ h B m a I‘ l c 8 this book!” | including hyperlinks for all num-
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