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Abstract We discuss Lagrange multiplier rules from a variational perspective. This allows us
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can be applied.
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1 Introduction

The Lagrange multiplier method is fundamental in dealing with constrained optimization prob-
lems and is also related to many other important results. There are many different routes to
reaching the fundamental result. The variational approach used in [1] provides a deep under-
standing of the nature of the Lagrange multiplier rule and is the focus of this survey.

David Gale’s seminal paper [2] provides a penetrating explanation of the economic meaning
of the Lagrange multiplier in the convex case. Consider maximizing the output of an economy
with resource constraints. Then the optimal output is a function of the level of resources. It
turns out the derivative of this function, if exists, is exactly the Lagrange multiplier for the
constrained optimization problem. A Lagrange multiplier, then, reflects the marginal gain of the
output function with respect to the vector of resource constraints. Following this observation,
if we penalize the resource utilization with a (vector) Lagrange multiplier then the constrained
optimization problem can be converted to an unconstrained one. One cannot emphasize enough
the importance of this insight.

In general, however, an optimal value function for a constrained optimization problem is nei-
ther convex nor smooth. This explains why this view was not prevalent before the systematic
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development of nonsmooth and variational analysis. This systematic development of convex and
nonsmooth analysis during the 1950s through 1970s, respectively, provided suitable tools for the
proper analysis of Lagrange multipliers. Gale himself provided a rigorous proof of the fact that
for well behaved convex problems the subdifferential of the optimal value function exactly charac-
terizes the set of all Lagrange multipliers. Subsequently, many researchers have derived versions
of Lagrange multiplier theorems with different ranges of applicability using other generalized
derivative concepts (see, e.g., [1]).

While rigorous justification of the variational view of the Lagrange multiplier only appeared
in the 1970s, the basic idea can be traced back to early developments of the calculus of variations
and is associated with the names of Euler, Hamilton, Lagrange, Legendre and many others
(see [3–5]). Besides the explicit use of a Lagrange multiplier in calculus of variations problems
involving isoperimetric or similar constraints, also very influential are the ideas of (i) imbedding
an optimization problem in a related class of problems, of (ii) using optimal value functions and
of (iii) decoupling. Using this team in combination with the so called principle of least action1 in
Newtonian or quantum mechanics is a very powerful classical approach (see, e.g., [6]).

Despite an extensive literature on various Lagrange multiplier rules, we now list several finer
points which are, in our opinion, still worthy of further attention.

1. First, Lagrange multipliers are intrinsically related to the derivative or to derivative-like
properties of the optimal value function. This is already well explained from the economic
explanation of the Lagrange multiplier rule in David Gale’s paper [2]. Gale’s paper focuses
on the convex case but the essential relationship extends to Lagrange multiplier rules that
rely on other generalized derivatives.

2. Second, in a Lagrange multiplier rule a complementary slackness condition holds when the
optimal solution exists. Nonetheless, without the a priori existence of an optimal solution,
a Lagrange multiplier rule involving only the optimal value function still holds and is often
useful (see, e.g., [7,8] and below).

3. Third, the form of a Lagrange multiplier rule is dictated by the properties of the optimal
value function and by the choice of generalized derivative. In many developments, sufficient
conditions for ensuring the existence of such generalized derivatives are not always clearly
disentangled from what was necessary to derive the Lagrange multiplier rule itself.

4. Finally, computing Lagrange multipliers often relies on decoupling information in terms of
each individual constraint. Sufficient conditions are often needed for this purpose and they
are also not always clearly limned.

The goal of this relatively short survey is to provide a reasonably concise discussion of the
variational approach to Lagrange multiplier rules. Our goal is to illustrate the more subtle points
alluded to above, rather than to be comprehensive. For this purpose, we shall showcase two
versions of the Lagrange multiplier rule: global using the (convex) subdifferential and local using
rather the Fréchet subdifferential. The (convex) subdifferential provides a complete characteriza-
tion of all the Lagrange multipliers. It also naturally relates to convex duality theory and allows
the luxury of studying the underlying constrained optimization problem by way of its compan-
ion dual problem. The limitation of this version of Lagrange multiplier rule is that the general
sufficient condition (note that it is not necessary) to ensure its applicability is convexity of both
the cost and the constraint functions—which is a relatively restrictive condition.

By contrast, the Fréchet subdifferential belongs to the class of viscosity subdifferentials [9]
whose existence requires only quite minimal conditions. These subdifferentials are also known to

1 Explicitly named only in the last century by Feynman and others, the principle states that the path taken
in a mechanical system will be the one which is stationary with respect to the action (which of course must be
specified) [3,5].
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approximate various other generalized derivative concepts [10]. Lagrange multiplier rules in terms
of the Fréchet subdifferential provide very natural ways of capturing local solutions of constrained
optimization problems (or at least of finding necessary conditions and critical points).

To focus adequately on the variational approach — and yet still to be brief — we have opted
to leave out many other perspectives such as the geometric derivation often used in calculus
textbooks. This views the constrained optimization problem as an optimization problem on the
manifold defined by the constraints [11]. Another influential perspective is to treat the Lagrange
multiplier rule as a contraposition of the sufficient condition for open covering [12]. One can
also take the related view of image space analysis as discussed in detail in the recent monograph
[13]. For detailed discussions on various different perspectives in finite dimensions we recommend
Rockafellar’s 1993 comprehensive survey [14]. In infinite dimensions we direct the reader also to
the work of Tikhomirov and his collaborators [15–17].

The remainder of the paper is organized as follows. In Section 2.1 we discuss the general
issue. Then in Section 2.2 we turn to the convex case. In Section 2.3 we likewise consider local
multiplier rules, while in Section 3 we relate the convex theory to more general convex duality
theory. Then in Section 4 we collect up some other less standard examples. We end in Section 5
with a few further observations.

2 Lagrange Multiplier Rules

To understand the variational approach to Lagrange multiplier rules heuristically, we take real
functions f and g := (g1, g2, . . . gN ), and consider the simple constrained optimization problem
v(y) := min{f(x) : g(x) = y}. If xy is a (local) solution to this problem. Then the function
x 7→ f(x)− v(g(x)) attains an (unconstrained) minimum at xy. Assuming all functions involved
are smooth, we then have

f ′(xy)−Dv(g(xy))g′(xy) = 0,

revealing λy = −Dv(g(xy)) as a Lagrange multiplier. This gives us an idea as to why we might
expect a Lagrange multiplier to exist. Much of our discussion below is about how to make this
heuristic rigorous especially when v is not differentiable. Let us set the stage:

2.1 A General Overview

Let X,Y and Z be Banach spaces, and let ≤K be the linear partial order in Y induced by a
closed, nonempty, convex cone K in Y : y1 ≤K y2 iff y2 − y1 ∈ K. We denote the polar cone
of K by K+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0,∀y ∈ K}. Consider the following class of constrained
optimization problems, for (y, z) ∈ Y × Z,

P (y, z) : min f(x) s.t. g(x) ≤K y, h(x) = z, x ∈ C, (1)

where C is a closed subset of X, f : X → IR is lower semicontinuous, g : X → Y is lower
semicontinuous with respect to ≤K and h : X → Z is continuous. We shall use
v(y, z) := inf{f(x) : f(x) ≤K y, h(x) = z, x ∈ C} to represent the optimal value function, which
may take values ±∞ (in infeasible or unbounded below cases), and S(y, z) the (possibly empty)
solution set of problem P (y, z). In general, when not given explicitly our terminology is consistent
with that in [1,18] and [19].
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2.2 Use of the (Convex) Subdifferential

Recall the following definition.

Definition 2.1 (Subdifferential) The subdifferential of a lower semicontinuous function φ at
x ∈ dom φ is defined by

∂φ(x) := {x∗ ∈ X∗ : φ(y)− φ(x) ≥ 〈x∗, y − x〉,∀y ∈ X}.

This globally-defined subdifferential is introduced as a replacement for the possibly nonex-
istent derivative of a convex function. It has many applications. While it arises naturally for
convex functions the definition works equally well, at least formally, for nonconvex functions. As
we shall see from the two versions of Lagrange multiplier rules given below, the subdifferential
of the optimal value function completely characterizes the set of Lagrange multipliers (denoted
λ in these theorems).

Theorem 2.1 (Lagrange Multiplier without Existence of Optimal Solution) Let v(y, z) be the
optimal value function of the constrained optimization problem P (y, z). Then −λ ∈ ∂v(0, 0) if
and only if

(i) (non-negativity) λ ∈ K+ × Z∗; and
(ii) (unconstrained optimum) for any x ∈ C,

f(x) + 〈λ, (g(x), h(x))〉 ≥ v(0, 0).

Proof. (a) The “only if” part. Suppose that −λ ∈ ∂v(0, 0). It is easy to see that v(y, 0) is
non-increasing with respect to the partial order ≤K . Thus, for any y ∈ K,

0 ≥ v(y, 0)− v(0, 0) ≥ 〈−λ, (y, 0)〉

so that λ ∈ K+ × Z∗. Conclusion (ii) follows from, the fact that for all x ∈ C,

f(x) + 〈λ, (g(x), h(x))〉 ≥ v(g(x), h(x)) + 〈λ, (g(x), h(x))〉 ≥ v(0, 0). (2)

(b) The “if” part. Suppose λ satisfies conditions (i) and (ii). Then we have, for any x ∈ C,
g(x) ≤K y and h(x) = z,

f(x) + 〈λ, (y, z)〉 ≥ f(x) + 〈λ, (g(x), h(x))〉 ≥ v(0, 0). (3)

Taking the infimum of the leftmost term under the constraints x ∈ C, g(x) ≤K y and h(x) = z,
we arrive at

v(y, z) + 〈λ, (y, z)〉 ≥ v(0, 0). (4)

Therefore, −λ ∈ ∂v(0, 0). �
If we denote by Λ(y, z) the multipliers satisfying (i) and (ii) of Theorem 2.1 then we may

write the useful set equality
Λ(0, 0) = −∂v(0, 0).

The next corollary is now immediate. It is often a useful variant since h may well be affine.

Corollary 2.1 (Lagrange Multiplier without Existence of Optimal Solution) Let v(y, z) be the
optimal value function of the constrained optimization problem P (y, z). Then −λ ∈ ∂v(0, 0) if
and only if

(i) (non-negativity) λ ∈ K+ × Z∗; and
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(ii) (unconstrained optimum) for any x ∈ C, satisfying g(x) ≤K y and h(x) = z,

f(x) + 〈λ, (y, z)〉 ≥ v(0, 0).

When an optimal solution for the problem P (0, 0) exists, we can also derive a so called
complementary slackness condition.

Theorem 2.2 (Lagrange Multiplier when Optimal Solution Exists) Let v(y, z) be the optimal
value function of the constrained optimization problem P (y, z). Then the pair (x̄, λ) satisfies
−λ ∈ ∂v(0, 0) and x̄ ∈ S(0, 0) if and only if both the following hold:

(i) (non-negativity) λ ∈ K+ × Z∗;
(ii) (unconstrained optimum) the function

x 7→ f(x) + 〈λ, (g(x), h(x))〉

attains its minimum over C at x̄;
(iii) (complementary slackness) 〈λ, (g(x̄), h(x̄))〉 = 0.

Proof. (a) The “only if” part. Suppose that x̄ ∈ S(0, 0) and −λ ∈ ∂v(0, 0). By Theorem 2.1 we
have λ ∈ K+×Z∗. By the definition of the subdifferential and the fact that v(g(x̄), h(x̄)) = v(0, 0),
we have

0 = v(g(x̄), h(x̄))− v(0, 0) ≥ 〈−λ, (g(x̄), h(x̄))〉 ≥ 0,

so that the complementary slackness condition 〈λ, (g(x̄), h(x̄))〉 = 0 holds.
Observing that v(0, 0) = f(x̄) + 〈λ, (g(x̄), h(x̄))〉, the strengthened unconstrained optimum

condition follows directly from that of Theorem 2.1.
(b) The “if” part. Let λ, x̄ satisfy conditions (i), (ii) and (iii). Then, for any x ∈ C satisfying

g(x) ≤K 0 and h(x) = 0,

f(x) ≥ f(x) + 〈λ, (g(x), h(x))〉 ≥ f(x̄) + 〈λ, (g(x̄), h(x̄))〉 = f(x̄). (5)

That is to say x̄ ∈ S(0, 0).
Moreover, for any g(x) ≤K y, h(x) = z, f(x) + 〈λ, (y, z)〉 ≥ f(x) + 〈λ, (g(x), h(x))〉. Since

v(0, 0) = f(x̄), by (5) we have

f(x) + 〈λ, (y, z)〉 ≥ f(x̄) = v(0, 0). (6)

Taking the infimum on the left-hand side of (6) yields

v(y, z) + 〈λ, (y, z)〉 ≥ v(0, 0),

which is to say, −λ ∈ ∂v(0, 0). �
We can deduce from Theorems 2.1 and 2.2 that ∂v(0, 0) completely characterizes the set

of Lagrange multipliers. Thus, sufficient conditions to ensure the non-emptiness of ∂v(0, 0) are
important in analyzing Lagrange multipliers. When v is a lower semicontinuous convex function
it is well known that in Banach space (0, 0) ∈ core dom (v) ensures ∂v(0, 0) 6= ∅. By contrast,
ensuring the convexity of v needs strong conditions. The following is a sufficient — if far from
necessary — condition. Recall that a function g : C ⊆ X → Y is convex with respect to a convex
cone K ⊆ Y (K-convex ) if {(x, y) : g(x) ≤K y, x ∈ C} is convex.

Lemma 2.1 (Convexity of the Value Function) Assume that f is a convex function, C is a
closed convex set, g is K-convex and h is affine. Then the optimal value function v is a convex
extended real-valued function.
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Proof. We consider only the interesting case when b1 = (y1, z1), b2 = (y2, z2) ∈ dom v and ti ∈
[0, 1] with t1 + t2 = 1. For any ε > 0, we can find xε1, x

ε
2 such that g(xεi ) ≤ yi, h(xεi ) = zi, i = 1, 2,

and
f(xεi ) ≤ v(bi) + ε, i = 1, 2.

Since g is K-convex we have

g(t1x
ε
1 + t2x

ε
2) ≤ t1g(xε1) + t2g(xε2) ≤ t1y1 + t2y2,

and
h(t1x

ε
1 + t2x

ε
2) = t1h(xε1) + t2h(xε2) = t1z1 + t2z2,

Now using the convexity of f we have

v(t1b1 + t2b2) ≤ f(t1x
ε
1 + t2x

ε
2) ≤ t1f(xε1) + t2f(xε2) ≤ t1v(b1) + t2v(b2) + ε.

Letting ε→ 0 we derive the convexity of v. �

Remark 2.1 While the subdifferential provides a clear economic interpretation for the Lagrange
multiplier, it is not a convenient way of calculating the Lagrange multiplier. This is because
finding the Lagrange multiplier this way requires us to solve the original optimization problem
for parameters at least in a neighbourhood of (0, 0), which is usually more difficult than the
original task. ♦

Remark 2.2 In practice one usually uncovers a Lagrange multiplier by using its properties. To
use this method we need to know that (1) the Lagrange multiplier exists, and (2) a convenient
calculus for the subdifferential so that condition (ii) can be represented as an inclusion in terms
of the subdifferentials of the individual constraint functions.

Requirement (1) amounts to determining that ∂v(0, 0) 6= ∅. When v is convex, sufficient
conditions that ensure this are often called constraint qualifications. When the equality constraint
h(x) = 0 is absent, a rather common but somewhat restrictive condition is the Slater condition:
there exists x̂ ∈ X such that g(x̂) <K 0 (i.e, the value lies in the topological interior of the cone
−K.2 Under this condition dom v contains an open neighborhood of 0. By a well-known theorem
essentially due to Moreau, Rockafellar and Pshenichnyi this implies that ∂v(0) 6= ∅ (see e.g. [1,
Theorem 4.2.8]).

Requirement (2) is also not automatic. For example, again assume the equality constraints
are absent and consider the case when g(x) = (g1(x), . . . , gN (x)) and that all the components of
g and f are convex. A well known condition is (see [1, Theorem 4.3.3])

dom f ∩Nn=1 cont gn 6= ∅, (7)

where cont g signifies the set of continuous point of function g. Under condition (7), item (ii) in
Theorem 2.2 becomes

0 ∈ ∂f(x̄) +

N∑
n=1

λn∂gn(x̄). (8)

We see that the nature of Lagrange multipliers is to ensure that we can use them as ‘shadow
price’ to penalize the constraints so as to convert the original constrained optimization problem
to an unconstrained one. Whether the unconstrained optimization problem leads to a first-order
necessary condition in the form of (8), while important for using the Lagrange multiplier to assist
us in solving the original problem (1), is a separate issue. ♦

2 We are assuming that f is everywhere finite, if not we must also require that f(x̂) < +∞ .
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Remark 2.3 Adding convexity requirements on the constraints and the cost function will ensure
that the optimal value function is also convex. This is convenient for establishing the existence
of Lagrange multipliers; and allows decomposition of the first-order necessary conditions in a
fashion that helps in calculating them. ♦

We again emphasize, however, that these convexity conditions are not intrinsically related to
the existence of (local) Lagrange multipliers, as the following example illustrates.

Example 2.1 (Global Lagrange Multiplier for a Nonconvex Problem) Consider

v(z) := min |x|+ | sin(πx)| s.t. x = z. (9)

Clearly, v(z) = |z|+ | sin(πz)| so that ∂v(0) = [−1, 1] and S(0) = {0}. Although the problem is
not convex, every λ ∈ [−1, 1] is a Lagrange multiplier globally: for all x ∈ R,

|x|+ | sin(πx)|+ λx ≥ 0.

Thus, convexity is not essential. ♦

It is possible to give useful conditions on the data in nonlinear settings that still imply v is
convex. Indeed, we only need the argument of v to reside in a linear space [20].

Remark 2.4 (The Linear Conic Problem) The following linear conic problem can be considered
the simplest form of problem (1): C = X, f(x) = 〈c, x〉, g(x) = −x, h(x) = Ax− b where A is a
linear operator from X to Z. For this problem P (0, 0) is

min〈c, x〉 s.t. Ax = b, x ∈ K. (10)

When K is polyhedral and b ∈ Z with dimZ < +∞ this problem is indeed simple (see Examples
3.4 and 3.5 below). However, even for this simplest form, it turns out that characterizing the
existence of a Lagrange multiplier in general is nontrivial [21,22]. ♦

2.3 Use of the Fréchet Subdifferential

Lagrange multipliers as discussed in Section 2.2 help to convert a constrained optimization prob-
lem to a globally unconstrained problem. Success, of course, is desirable but rare. Most of the
time for nonlinear nonconvex problems one can only hope for a local solution. For these problems
we need subdifferentials that are more suitable for capturing local behavior. The development of
nonsmooth analysis in the past several decades has led to many such subdifferentials (see [18,
23,24]).

Each such subdifferential is accompanied by its own version(s) of Lagrange multiplier rules
with different strengths for different problems. An exhaustive survey is neither possible nor is it
our goal. Rather, we illustrate the derivation of suitable Lagrange multiplier rules by using the
very importsnt Fréchet subdifferential as an example. It reflects the key features of many results
of this kind.

First, we recall the definition of a Fréchet subdifferential and the corresponding concept of a
normal cone.
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Definition 2.2 (Fréchet Subdifferential and Normal Cone) The Fréchet subdifferential of a func-
tion φ at x ∈ dom φ ⊂ X is defined by

∂Fφ(x) := {x∗ ∈ X∗ : lim inf
‖y‖→0

φ(x+ y)− φ(x)− 〈x∗, y〉
‖y‖ ≥ 0}.

For a set C ⊂ X and x ∈ C, we define the Fréchet normal cone of C at x by

NF (C;x) := ∂ιC(x),

where ιC is the indicator function of set C that is equalsto 0 when x ∈ C and is +∞ otherwise.

Remark 2.5 (Viscosity Subdifferentials) When the Banach space X has an equivalent Fréchet
smooth norm [1], as holds in all reflexive spaces and in many others, something lovely happens:
x∗ ∈ ∂Fφ(x) if and only if there exists a concave function η ∈ C1 with η′(x) = 0 such that

y 7→ φ(y)− 〈x∗, y〉+ η(y) (11)

attains a local minimum at y = x (for details see [25,26]).

Thus, any subdifferential of f at x is actually the derivative of a minorizing concave function
g which osculates with f at x as in Figure 1. We call such an object a viscosity subdifferential
[1,25,26]. The use of viscosity subdifferentials frequently allows us to use smooth techniques in
nonsmooth analysis.

3.1 Fréchet Subdifferential 45

–1

1

2

–0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 3.2. Every Fréchet subdifferential is a “viscosity” subdifferential.

∗Exercise 3.1.16 Let X be a Fréchet smooth Banach space and let f : X →
R ∪ {+∞} be a lsc function. Prove that ∂V F f(x) = ∂F f(x). Reference: [99].

∗Exercise 3.1.17 Let X be a Banach space with a Fréchet smooth equivalent
norm and let f : X → R ∪ {+∞} be a lsc function. Prove that x∗ ∈ ∂F f(x)
if and only if there exists a concave C1 function g such that g′(x) = x∗ and
f − g attains a local minimum at x, as drawn in Figure 3.2. Reference: [70,
Remark 1.4].

Exercise 3.1.18 Prove Theorem 3.1.10.

Exercise 3.1.19 Construct two lsc functions on R with the identical Fréchet
subdifferential yet their difference is not a constant. Hint: Consider f =
1 − χ[0,1] and 2f where χS is the characteristic function of set S defined
by χS(x) = 1 for x ∈ S and χS(x) = 0 for x 6∈ S.

Exercise 3.1.20 Construct two continuous functions on R with the identical
Fréchet subdifferential yet their difference is not a constant. Hint: Consider
the Cantor function f and 2f (see [70] and also Exercise 3.5.5).

Exercise 3.1.21 Prove that if two Lipschitz functions on R have the identical
Fréchet subdifferential then they differ only by a constant.

∗Exercise 3.1.22 The conclusion in Exercise 3.1.21 fails if the Fréchet sub-
differential is replaced by the proximal subdifferential. Recall the proximal
subdifferential is defined as follows.

Fig. 1 A Viscosity Subdifferential

Theorem 2.3 (Local Lagrange Multiplier Rule) Let X be a Banach space and let Y,Z be Ba-
nach spaces with equivalent Fréchet smooth norms. Assume that in problem P (y, z), f, g are
lower semicontinuous and h is continuous on X. Let v(y, z) be the optimal value function of the
constrained local optimization problem P (y, z) and let x̄ ∈ S(0, 0). Suppose −λ ∈ ∂F v(0, 0). Then

(i) (non-negativity) λ ∈ K+ × Z∗;
(ii) (unconstrained optimum) there exists η ∈ C1 such that the function

x 7→ f(x) + 〈λ, (g(x), h(x))〉+ η(g(x), h(x))

attains a local minimum at x̄ over C;
(iii) (complementary slackness) 〈λ, (g(x̄), h(x̄))〉 = 0.
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Proof. Suppose that −λ ∈ ∂F v(0, 0). It is easy to see that v(y, 0) is non-increasing with respect
to the partial order ≤K . Thus, for any y ∈ K,

〈λ, (y/‖y‖, 0)〉 ≥ lim inf
t↓0

v(y, 0)− v(0, 0) + 〈λ, (ty, 0)〉
t‖(y, 0)‖ ≥ 0, (12)

so that λ ∈ K+ × Z∗ which verifies (i).
The complementary slackness condition holds trivially if g(x̄) = 0. Assuming, thus, that

g(x̄) 6= 0, then for any t ∈ (0, 1), g(x̄) ≤K tg(x̄) ≤K 0 and h(x̄) = th(x̄) = 0. Since

v(0, 0) ≥ v(g(x̄), h(x̄)) ≥ v(tg(x̄), th(x̄)) ≥ v(0, 0),

the terms above are all equal. It follows that

0 ≥
〈
λ,

(
g(x̄)

‖g(x̄)‖ , 0
)〉

= lim inf
t↓0

v(tg(x̄), th(x̄))− v(0, 0) + 〈λ, (tg(x̄), th(x̄))〉
t‖(tg(x̄), th(x̄))‖ ≥ 0. (13)

Thus, 〈λ, (g(x̄), 0)〉 = 〈λ, (g(x̄), h(x̄))〉 = 0. This establishes (iii).
Finally, to prove (ii) we first observe that

∂F v(0, 0) ⊂ ∂F v(g(x̄), h(x̄)). (14)

This is because if (y∗, z∗) ∈ ∂F v(0, 0) then

lim inf
‖(y,z)‖→0

v(g(x̄) + y, h(x̄) + z)− v(g(x̄), h(x̄))− 〈(y∗, z∗), (y, z)〉
‖(y, z)‖

≥ lim inf
‖(y,z)‖→0

v((y, z))− v(0, 0)− 〈(y∗, z∗), (y, z)〉
‖(y, z)‖ ≥ 0,

that is, (y∗, z∗) ∈ ∂F v(g(x̄), h(x̄)).
Since −λ ∈ ∂F v(0, 0) ⊂ ∂F v(g(x̄), h(x̄)) by Remark 2.5 we have the existence of a C1 function

η with η′(g(x̄), h(x̄)) = 0 such that, for any x ∈ C close enough to x̄,

f(x) + 〈λ, (g(x), h(x))〉+ η(g(x), h(x))

≥ v(g(x), h(x)) + 〈λ, (g(x), h(x))〉+ η(g(x), h(x))

≥ v(g(x̄), h(x̄)) + 〈λ, (g(x̄), h(x̄))〉+ η(g(x̄), h(x̄)),

as required. We are done. �

Remark 2.6 Unlike the situation in Theorem 2.2, the converse of Theorem 2.3 may not be true
because the inclusion ∂F v(0, 0) ⊂ ∂F v(g(x̄), h(x̄)) is typically proper. Also, analysis of the proof
we gave shows that the existence of the local solution x̄ is prerequisite to give an anchor to the
local behavior and, therefore, an analog of Theorem 2.1 is not to be expected. ♦
Remark 2.7 As with Theorem 2.2, it is important in practice to have a convenient calculus for
the Fréchet subdifferential so that (ii) can be represented in terms of the subdifferentials of the
individual constraints — the data.

For instance, let us suppose Y = IRN , Z = IRM , g and h are both C1. Then we can derive
from (ii) — using a derivative sum rule [1] — that

f ′(x̄) +

N∑
n=1

λng
′
n(x̄) +

M∑
m=1

λN+mh
′
m(x̄) = 0.

This is the Lagrange multiplier rule one most usually sees (except that the constraint qual-
ification condition is given in the form of ∂F v(0, 0) 6= ∅). Note that, in deriving this decoupled
form we used both sum and chain rules for the Fréchet subdifferential. ♦
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Without smoothness assumptions on the data the situation is more challenging. Any decou-
pled form has to be in approximate or “fuzzy” form [1]. It turns out there are more direct ways of
deriving such results, as first discussed in [25] and then in [27,28] with [27] requiring the weakest
conditions. To illustrate the idea, we again use Y = IRN and Z = IRM . Using indicator functions
of the level sets to penalize infeasible points we may write problem P (0, 0) as an unconstrained
problem:

min f(x) +

N∑
n=1

ι[gn≤0](x) +

M∑
m=1

ι[hm=0](x) + ιC(x). (15)

Suppose that x̄ ∈ S(0, 0). Denote the closed ball around a point x with radius r by Br(x).
Then applying an approximate sum rule in [1,25] we have, for any ε > 0 and weak∗ neighborhood
V of 0, that there exist y′n ∈ Bε(x̄), n = 0, 1, . . . N , z′m ∈ Bε(x̄),m = 1, . . . ,M , x0, x

′ ∈ Bε(x̄)
such that

0 ∈ ∂F f(x0) +

N∑
n=1

∂F ι[gn≤0](y
′
n) +

M∑
m=1

∂F ι[hm=0](z
′
m) +NF (x′, C) + V. (16)

The key is then to represent ∂F ι[gn≤0](y
′
n) and ∂F ι[hm=0](z

′
m) in terms of the Fréchet subdifferen-

tial of the related functions. Such representations were first discussed in [25] with the additional
condition that that Fréchet subdifferentials of these functions were bounded away from zero near
the points of concern. These conditions have been weakened somewhat in [28] and were eventually
completely avoided in [27].

Lemma 2.2 (Subdifferential Representation of Normal Vectors to a Level Set [27]) Let V be a
weak∗ neighborhood of 0 ∈ X∗ and let f be a lower semicontinuous (resp. continuous) function
around x ∈ [f ≤ 0] (x ∈ [f = 0]).

Then, for any η > 0 and x∗ ∈ NF (x, [f ≤ 0]) (x∗ ∈ NF (x, [f = 0])), there exist u ∈ Bη(x),
u∗ ∈ ∂F f(u) (u∗ ∈ ∂F f(u) ∪ ∂(−f)(u)) and ξ > 0 such that

x∗ ∈ ξu∗ + V, and ξ|f(u)| < η.

Combining (16) and Lemma 2.2 we arrive at a powerful result:

Theorem 2.4 (Decoupled Local Lagrange Multiplier Rule) Assume that in problem P (y, z),
f, g are lower semicontinuous, h is continuous and X has an equivalent Fréchet smooth norm.
Assume that Y = IRN , Z = IRM and that x̄ ∈ S(0, 0).

Then, for any ε > 0 and weak∗ neighborhood V of 0 ∈ X∗, there exist yn ∈ Bε(x̄),

n = 0, 1, . . . , N , zm ∈ Bε(x̄),m = 1, . . . ,M , x0, x̂ ∈ Bε(x̄), λ ∈ IRN+M+1
+ with

∑N+M
n=0 λn = 1

such that
|f(x0)− f(x̄)| < ε, λn|gn(yn)| < ε, λm+N |hm(zm)| < ε,

and

0 ∈ λ0∂F f(x0) +

N∑
n=1

λn∂F gn(yn) +

M∑
m=1

λm+N (∂Fhm(zm) ∪ ∂F (−hm)(zm)) +NF (x̂, C) + V.

Proof. First using Lemma 2.2 we can replace all the normal vectors for the sublevel and level
sets in (16) by the corresponding subdifferentials of the components of g and h at nearby points,

respectively. Finally, we rescale the resulting inclusion using λ0 = 1/(1 +
∑N+M
n=1 λn). �

We call this an approximate decoupling. In finite dimensions where the neighbourhoods are
bounded, or under stronger compactness conditions on f, g, h, we may often move to a limiting
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form as x0, x̂, yn, zm approach x̄. If in this process λ0 can be arbitrarily close to 0 then the mul-
tipliers are detached from the cost function f , and as a result the limit does not provide much
useful information. Such multipliers are usually referred to as degenerate or singular. To avoid
degenerate multipliers additional constraint qualification conditions are needed. The following
is one such condition [1], generalizing the classical Mangasarian-Fromovitz constraint qualifica-
tion condition [29] to nonsmooth problems. Many new developments regarding various types of
constraint qualification conditions can be found in [30].

(CQ) There exist constants ε, c > 0 such that, for any (x0, f(x0)) ∈ Bε((x̄, f(x̄))), zm ∈ Bε(x̄),
m = 1, . . . ,M, (yn, gn(yn)) ∈ Bε((x̄, gn(x̄))), n = 1, . . . , N , and x̂ ∈ Bε(x̄) and for any

λn ≥ 0, n = 1, . . . , N +M with
∑N+M
n=1 λn = 1,

d

(
0,

N∑
n=1

λn∂F gn(yn) +

M∑
m=1

λm+N (∂Fhm(zm) ∪ ∂F (−hm)(zm)) +NF (x̂, C)

)
≥ c.

Here d(y, S) := inf{‖y − s‖ : s ∈ S} represents the distance from point y to set S.
With this constraint qualification condition we have the following generalization of the clas-

sical Karush-Kuhn-Tucker necessary condition for constrained optimization problems.

Theorem 2.5 (Nonsmooth Karush-Kuhn-Tucker Necessary Condition) Assume that in prob-
lem P (y, z), f is locally Lipschitz, g is lower semicontinuous, h is continuous and X is finite
dimensional. Assume that Y = IRN , Z = IRM , x̄ ∈ S(0, 0) and that the constraint qualification
condition CQ holds.

Then, for any ε > 0, there exist yn ∈ Bε(x̄), n = 0, 1, . . . , N , zm ∈ Bε(x̄),m = 1, . . . ,M ,
x0, x̂ ∈ Bε(x̄), λ ∈ IRN+M+1

+ and a positive constant K such that

|f(x0)− f(x̄)| < ε, λn|g(yn)| < ε, λm+N |h(zm)| < ε,

and

0 ∈ ∂F f(x0) +

N∑
n=1

λn∂F gn(yn) +

M∑
m=1

λm+N (∂Fhm(zm) ∪ ∂F (−hm)(zm)) +NF (x̂, C) + εBX∗ ,

where λn ∈ [0,K], n = 1, . . . , N +M .

Proof. Let L be the Lipschitz constant of f near x̄. Then for x0 sufficiently close to x̄ we have
d(0, ∂F f(x0)) ≤ L. Without loss of generality we may assume that ε < c. Applying Theorem 2.4
we have x̂ ∈ Bε(x̄), (x0, f(x0)) ∈ Bε((x̄, f(x̄))), (yn, gn(yn)) ∈ Bε((x̄, gn(x̄))) and (zm, hm(zm)) ∈
Bε((x̄, hm(x̄))) for n = 1, . . . , N,m = 1, . . . ,M and λ′ ∈ IRN+M+1

+ such that

λ′n|g(yn)| < ε, λ′m+N |h(zm)| < ε,

and

0 ∈ λ′0∂F f(x0) +

N∑
n=1

λ′n∂F gn(yn) (17)

+

M∑
m=1

λ′m+N (∂Fhm(zm) ∪ ∂F (−hm)(zm)) +NF (x̂, C) + (ε/2)BX∗ ,

where
∑N+M
n=0 λ′n = 1. If λ′0 = 1, the theorem holds with any K > 0. Otherwise, using CQ we

have

λ′0L ≥ λ′0d(0, ∂F f(x0)) = d(0, λ′0∂F f(x0)) ≥ (1− λ′0)c− ε/2 ≥ (1− λ′0)c− c/2.
Thus, λ′0 ≥ c/2(c + L). It remains to multiply (17) by 1/λ′0 and set λn := λ′n/λ

′
0 and K =

2(c+ L)/c to complete the proof. �
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3 Convex Duality Theory

Obtaining Lagrange multipliers by using convex subdifferentials is irrevocably related to convex
duality theory. Let us first recall that for a lower semi-continuous extended valued function f ,
its convex conjugate is defined by

f∗(x∗) := sup
x
{〈x∗, x〉 − f(x)}.

Note that f∗ is always convex even though f itself may not be. We also consider the conjugate
of f∗ denoted f∗∗ defined on X∗∗ ⊃ X. It is easy to show that f∗∗, when restricted to X, is the
largest lower semi-continuous convex function satisfying f∗∗ ≤ f . The following Fenchel-Young
inequality follows directly from the definition:

f∗(x∗) + f(x) ≥ 〈x∗, x〉 (18)

with equality holding if and only if x∗ ∈ ∂f(x).
Using the Fenchel-Young inequality for each constrained optimization problem we can write

its companion dual problem. There are several different but equivalent perspectives.

3.1 Rockafellar Duality

We start with the Rockafellar formulation of bi-conjugate. It is very general and — as we shall
see — other perspectives can easily be written as special cases.

Consider a two variable function F (x, y). Treating y as a parameter, consider the parameter-
ized optimization problem

v(y) = inf
x
F (x, y). (19)

Our associated primal optimization problem3 is

p = v(0) = inf
x∈X

F (x, 0) (20)

and the dual problem is

d = v∗∗(0) = sup
y∗∈Y ∗

−F ∗(0,−y∗). (21)

Since v dominates v∗∗ as the Fenchel-Young inequality establishes, we have

v(0) = p ≥ d = v∗∗(0).

This is called weak duality and the non-negative number p−d = v(0)−v∗∗(0) is called the duality
gap — which we aspire to be small or zero.

Let F (x, (y, z)) := f(x)+ιepi(g)(x, y)+ιgraph(h)(x, z). Then problem P (y, z) becomes problem
(19) with parameters (y, z). On the other hand, we can rewrite (19) as

v(y) = inf
x
{F (x, u) : u = y}

which is problem P (0, y) with x = (x, u), C = X × Y , f(x, u) = F (x, u), h(x, u) = u and
g(x, u) = 0. So where we start is a matter of taste and predisposition.

3 The use of the term ‘primal’ is much more recent than the term ‘dual’ and was suggested by George Dantzig’s
father Tobias when linear programming was being developed in the 1940’s.
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Theorem 3.1 (Duality and Lagrange Multipliers) The following are equivalent:

(i) the primal problem has a Lagrange multiplier λ;
(ii) there is no duality gap, i.e., d = p is finite and the dual problem has solution −λ.

Proof. If the primal problem has a Lagrange multiplier λ then −λ ∈ ∂v(0). By the Fenchel-
Young equality

v(0) + v∗(−λ) = 〈−λ, 0〉 = 0.

Direct calculation yields

v∗(−λ) = sup
y
{〈−λ, y〉 − v(y)} = sup

y,x
{〈−λ, y〉 − F (x, y)} = F ∗(0,−λ).

Since

−F ∗(0,−λ) ≤ v∗∗(0) ≤ v(0) = −v∗(−λ) = −F ∗(0,−λ), (22)

λ is a solution to the dual problem and p = v(0) = v∗∗(0) = d.
On the other hand, if v∗∗(0) = v(0) and λ is a solution to the dual problem then all the

quantities in (22) are equal. In particular,

v(0) + v∗(−λ) = 0.

This implies that −λ ∈ ∂v(0) so that λ is a Lagrange multiplier of the primal problem. �

Example 3.1 (Finite duality gap) Consider

v(y) = inf{|x2 − 1| :
√
x2

1 + x2
2 − x1 ≤ y}.

We can easily calculate

v(y) =


0, y > 0,

1, y = 0,

+∞, y < 0,

and v∗∗(0) = 0, i.e. there is a finite duality gap v(0)− v∗∗(0) = 1.
In this example neither the primal nor the dual problem has a Lagrange multiplier yet both

have solutions. Hence, even in two dimensions, existence of a Lagrange multiplier is only a
sufficient condition for the dual to attain a solution and is far from necessary. ♦

3.2 Fenchel Duality

Let us specify F (x, y) := f(x) + g(Ax+ y), where A : X → Y is a linear operator. We thence get
the Fenchel formulation of duality [1]. Now the primal problem is

p = v(0) = inf
x
{f(x) + g(Ax)}. (23)

To derive the dual problem we calculate

F ∗(0,−y∗) = sup
y
{〈−y∗, y〉 − f(x)− g(Ax+ y)}.
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Letting u = Ax+ y we have

F ∗(0,−y∗) = sup
x,u
{〈−y∗, u−Ax〉 − f(x)− g(u)}

= sup
x
{〈y∗, Ax〉 − f(x)}+ sup

u
{〈−y∗, u〉 − g(u)} = f∗(A∗y∗) + g∗(−y∗).

Thus, the dual problem is

d = v∗∗(0) = sup
y∗
{−f∗(A∗y∗)− g∗(−y∗)}. (24)

If both f and g are convex functions it is easy to see that so is

v(y) = inf
x
{f(x) + g(Ax+ y)}.

Now, in the Euclidean setting, a sufficient condition for the existence of Lagrange multipliers4

for the primal problem, i.e., ∂v(0) 6= ∅, is

0 ∈ ri core dom v = ri core[dom g −A dom f ]. (25)

Figure 2 illustrate the Fenchel duality theorem for f(x) := x2/2+1 and g(x) = (x−1)2/2+1/2.
The upper function is f and the lower one is −g. The minimum gap occurs at 1/2 and is 7/4.

2.3 Conjugate functions and Fenchel duality 47

2

0–0.5 1 1.50.5

1

–1

Figure 2.6 Fenchel duality (Theorem 2.3.4) illustrated for x2/2+ 1 and −(x − 1)2/2− 1/2.
The minimum gap occurs at 1/2 with value 7/4.

Then these values satisfy the weak duality inequality p ≥ d. If, moreover, f and g are
convex and satisfy the condition

0 ∈ core(dom g − A dom f ) (2.3.4)

or the stronger condition

A dom f ∩ cont g �= ∅ (2.3.5)

then p = d and the supremum in the dual problem (2.3.3) is attained whenever it is
finite.

Proof. The weak duality inequality p ≤ d follows immediately from the Fenchel–
Young inequality (2.3.1).

To prove equality, we first define an optimal value function h : Y → [−∞,+∞] by

h(u) = inf
x∈E
{ f (x)+ g(Ax + u)}.

It is easy to check that h is convex and dom h = dom g−A dom f . If p = −∞, there
is nothing to prove. If condition (2.3.4) holds and p is finite, then Lemma 2.3.3 and
the max formula (2.1.19) show there is a subgradient−φ ∈ ∂h(0). Consequently, for

Fig. 2 The Fenchel Duality Sandwich

In infinite dimensions more care is necessary, but in Banach space when the functions are
lower semicontinuous and the operator is continuous (or merely closed)

0 ∈ core dom v = core[dom g −A dom f ]. (26)

suffices, as does the extension to the relative core in the closed subspace generated by dom v [31].
A condition of the form (25) or (26) is often referred to as a constraint qualification or a

transversality condition. Enforcing such constraint qualification conditions we can write Theorem
3.1 in the following form:

Theorem 3.2 (Duality and Constraint Qualification) If the convex functions f , g and the linear
operator A satisfy the constraint qualification conditions (25) or (26) then there is a zero duality
gap between the primal and dual problems, (23) and (24), and the dual problem has a solution.

4 In infinite dimensions we also assume that f, g are lsc and that A is continuous.
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A really illustrative example is the application to entropy optimization.

Example 3.2 (Entropy Optimization Problem) Entropy maximization5 refers to

min f(x) s.t. Ax = b ∈ IRN , (27)

with the lower semicontinuous convex function f defined on a Banach space of signals, emulating
the negative of an entropy and A emulating a finite number of continuous linear constraints
representing conditions on some given moments. A wide variety of applications can be covered
by this model due to its physical relevance.

Applying Theorem 3.2 with g = ι{b} as in [1] we have if b ∈ core (A dom f) then

inf
x∈X
{f(x) : Ax = b} = max

φ∈IRN
{〈φ, b〉 − f∗(A∗φ)}. (28)

If N < dim X (often infinite) the dual problem is often much easier to solve then the primal. ♦

Example 3.3 (Boltzmann–Shannon entropy in Euclidean space) Let

f(x) :=

N∑
n=1

p(xn), (29)

where

p(t) :=


t ln t− t, if t > 0,

0. if t = 0,

+∞, if t < 0.

The functions p and f defined above are (negatives of) Boltzmann–Shannon entropy functions
on IR and IRN , respectively. For c ∈ IRN , b ∈ IRM and linear mapping A : IRN → IRM consider
the entropy optimization problem

min f(x) + 〈c, x〉 s.t. Ax = b. (30)

Example 3.2 can help us conveniently derive an explicit formula for solutions of (30) in terms
of the solution to its dual problem.

First we note that the sublevel sets of the objective function are compact, thus ensuring the
existence of solutions to problem (30). We can also see by direct calculation that the directional
derivative of the cost function is −∞ on any boundary point x of dom f = IRN

+ , the domain of
the cost function, in the direction of z − x. Thus, any solution of (30) must be in the interior of
IRN

+ . Since the cost function is strictly convex on int (IRN
+ ), the solution is unique.

Let us denote this solution of (30) by x̄. The duality result in Example 3.2 implies that

f(x̄) + 〈c, x̄〉 = inf
x∈IRN

{f(x) + 〈c, x〉 : Ax = b} = max
φ∈IRM

{〈φ, b〉 − (f + c)∗(A>φ)}.

Now let φ̄ be a solution to the dual problem, i.e., a Lagrange multiplier for the constrained
minimization problem (30).

We have

f(x̄) + 〈c, x̄〉+ (f + c)∗(A>φ̄) = 〈φ̄, b〉 = 〈φ̄, Ax̄〉 = 〈A>φ̄, x̄〉.
5 Actually this term arises because in the Boltzmann-Shannon case one is minimizing the negative of the

entropy.
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It follows from the Fenchel-Young equality [33] that A>φ̄ ∈ ∂(f + c)(x̄). Since x̄ ∈ int (IRN
+ )

where f is differentiable, we have A>φ̄ = f ′(x̄)+ c. Explicit computation shows x̄ = (x̄1, . . . , x̄N )
is determined by

x̄n = exp(A>φ̄− c)n, n = 1, . . . , N. (31)

Indeed, we can use the existence of the dual solution to prove that the primal problem has the
given solution without direct appeal to compactness — we deduce the existence of the primal
directly from convex duality theory [1,32]. ♦

We say a function f is polyhedral if its epigraph is polyhedral, i.e., a finite intersection of
closed half-spaces. When both f and g are polyhedral constraint qualification condition (25)
simplifies to (see [33, Section 5.1] for the hard work required here)

dom g ∩A dom f 6= ∅. (32)

This is very useful in dealing with polyhedral cone programming and, in particular, linear pro-
gramming problems. One can also similarly handle a subset of polyhedral constraints [1].

Example 3.4 (Abstract linear programming) Consider the cone programming problem (10) and
its dual is

sup{〈b, φ〉 : A∗φ+ c ∈ K+}. (33)

Assuming that K is polyhedral, if b ∈ AK (i.e., the primary problem is feasible) implies that
there is no duality gap and the dual optimal value is attained when finite. Symmetrically, if
−c ∈ A∗X∗−K+ (i.e., the dual problem is feasible) then there is no duality gap and the primary
optimal value is attained if finite.

3.3 Lagrange Duality Reobtained

For problem (1) define the Lagrangian

L(λ, x; (y, z)) = f(x) + 〈λ, (g(x)− y, h(x)− z)〉.

Then

sup
λ∈Y ∗+×Z∗

L(λ, x; (y, z)) =

{
f(x), if g(x) ≤K y, h(x) = z,

+∞, otherwise.

Then problem (1) can be written as

p = v(0) = inf
x∈C

sup
λ∈Y ∗+×Z∗

L(λ, x; 0). (34)

We can calculate

v∗(−λ) = sup
y,z
{〈−λ, (y, z)〉 − v(y, z)}

= sup
y,z
{〈−λ, (y, z)〉 − inf

x∈C
[f(x) : g(x) ≤K y, h(x) = z]}

= sup
x∈C,y,z

{〈−λ, (y, z)〉 − f(x) : g(x) ≤K y, h(x) = z}.
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Letting ξ = y − g(x) ∈ K we can rewrite the expression above as

v∗(−λ) = sup
x∈C,ξ∈K

{〈−λ, (g(x), h(x))〉 − f(x) + 〈−λ, (ξ, 0)〉}

= − inf
x∈C,ξ∈K

{L(λ, x; 0)− 〈λ, (ξ, 0)〉} =

{
− infx∈C L(λ, x; 0), if λ ∈ Y ∗+ × Z∗,
+∞, otherwise.

Thus, the dual problem is

d = v∗∗(0) = sup
λ
−v∗(−λ) = sup

λ∈Y ∗+×Z∗
inf
x∈C

L(λ, x; 0). (35)

We can see that the weak duality inequality v(0) ≥ v∗∗(0) is simply the familiar fact that

inf sup ≥ sup inf .

Example 3.5 (Classical Linear Programming Duality) Consider a linear programming problem

min〈c, x〉 s.t. Ax ≤ b, (36)

where x ∈ IRN , b ∈ IRM , A is a M ×N matrix and ≤ is the partial order generated by the cone
IRM

+ . Then by Lagrange duality the dual problem is

max〈−b, φ〉 s.t. A∗φ = −c, φ ≥ 0. (37)

Clearly, all the functions involved herein are polyhedral. Applying the polyhedral cone duality
results in Example 3.4, we can conclude that if either the primary problem or the dual problem
is feasible then there is no duality gap. Moreover, when the common optimal value is finite then
both problems have optimal solutions. ♦

The hard work in Example 3.5 was hidden in establishing that the constraint qualification
(32) is sufficient, but unlike many applied developments we have rigorously recaptured linear
programming duality within our framework.

4 Further Examples and Applications

The basic Lagrange multiplier rule is related to many other important results, and its value
goes much beyond t merely facilitating computation when looking for solutions to constrained
optimization problems. The following are a few substantial examples.

4.1 Subdifferential of a Maximum Function

The maximum function (or max function) given by

m(x) := max{f1(x), . . . , fN (x)}. (38)

is very useful yet intrinsically nonsmooth. Denote I(x̄) := {n ∈ {1, 2, . . . , N} : fn(x̄) = m(x̄)}.
This is the subset of active component functions. Characterizing the (generalized) derivative of
m is rather important.

For simplicity, we assume throughout that we work in a Euclidean space. We consider the
convex case first.
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Theorem 4.1 (Convex Max Function) When all the functions fn, n = 1, . . . , N in (38) are
convex and lower semicontinuous, then so is m(x). Suppose further that x∗ ∈ ∂m(x̄).

Then, there exists nonnegative numbers λ ∈ RN+ with
∑N
n=1 λn = 1 satisfying the comple-

mentary slackness condition 〈λ, f(x̄)−m(x̄)1〉 = 0, where f = (f1, . . . , fN ) such that

x∗ ∈ ∂
∑
n∈I

λnfn(x̄).

Proof. Consider the following form of a constrained minimization problem

v(y, z) := min{r − 〈x∗, u〉 : f(u)− r1 ≤ y,u− x̄ = z}. (39)

Clearly, (x̄,m(x̄)) is a solution to problem v(0, 0). Let ∂z represent the subdifferential of v with
respect to variable z. We can see that v(0, z) = m(x̄+ z)− 〈x∗, x̄+ z〉 so that 0 ∈ ∂zv(0, 0).

Furthermore, v(y, 0) = max(f1(x̄) + y1, . . . , fN (x̄) + yN ) − 〈x∗, x〉 is a convex function of y
with domain RN and, thus, ∂yv(0, 0) 6= ∅. It follows that problem (39) has a Lagrange multiplier

of the form (λ, 0) with λ ∈ IRN
+ such that

(r, u) 7→ r − 〈x∗, u〉+

N∑
n=1

λn(fn(u)− r)

attains minimum at (x̄,m(x̄)) and

N∑
n=1

λn(fn(x̄)−m(x̄)) = 0. (40)

Using the definition of the subdifferential, and decoupling information regarding variables u, r,
we have

∑N
n=1 λn = 1 and x∗ ∈ ∂∑N

n=1 λnfn(x̄). The complementary slackness condition (40)
implies the more precise inclusion

x∗ ∈ ∂
∑

n∈I(x̄)

λnfn(x̄).

This completes the proof. �

Remark 4.1 We note that Theorem 4.1 is a special case of much more general formulas for the
generalized derivatives of the supremum of (possibly) infinitely many functions (see, e.g., [34]).
Nevertheless, despite the different levels of generality, in all such representation theorems for
generalized derivatives of the maximum function, it is the Lagrange multipliers that plays a key
role. ♦

4.2 Separation and Sandwich Theorems

We start with a proof of the standard Hahn-Banach separation theorem using the Lagrange
multiplier rule.

Theorem 4.2 (Hahn-Banach Separation Theorem) Let X be a Banach space and let C1 and C2

be convex subsets of X. Suppose that

C2 ∩ intC1 = ∅. (41)

Then there exists λ ∈ X∗\{0} such that, for all x ∈ C1 and y ∈ C2,

〈λ, y〉 ≥ 〈λ, x〉. (42)



A Variational Approach to Lagrange Multipliers 19

Proof. Without loss of generality we assume that 0 ∈ intC1. Then the convex gauge function
of C1,

γC1
(x) := inf{t : x ∈ tC1}

is defined for all x ∈ X and has the property that γC1
(x) < 1 if and only if x ∈ intC1.

Consider the constrained convex optimization problem

p = min{γC1(x)− 1: y − x = 0, y ∈ cl C2}. (43)

Then the separation condition (41) and the propertyies of the gauge function together imply
that p ≥ 0.

Setting f(x) = γC1(x)−1 and g(x) = ιcl C2(x), clearly (43) is equivalent to the Fenchel primal
optimization problem (23) with A being the identity operator. Since dom f = X the constraint
qualification condition (25) holds. Thus, problem (43) has a Lagrange multiplier λ ∈ X∗\{0}6
such that, by Theorem 2.1, for all x ∈ X and y ∈ clC2,

γC1
(x)− 1 + 〈λ, y − x〉 ≥ p ≥ 0. (44)

Rewrite (44) as

〈λ, y〉 ≥ 〈λ, x〉+ 1− γC1
(x).

Noting that x ∈ C1 implies that 1− γC1(x) ≥ 0 we derive (42). �
Note that the Lagrange multiplier in this example plays the role of the separating hyperplane.

The proof given above also works for more general convex functions f and g in composition with
a linear mapping. This yields what gets called a sandwich theorem.

Theorem 4.3 (Sandwich Theorem) Let X and Y be Banach spaces, let f and g be convex lower
semicontinuous extended valued functions, and let A : X → Y be a bounded linear mapping.
Suppose that f ≥ −g ◦A and

0 ∈ core (dom g −A dom f). (45)

Then there exists an affine function α : X → R of the form

α(x) = 〈A∗y∗, x〉+ c

satisfying
f ≥ α ≥ −g ◦A.

Proof. Consider the corresponding constrained minimization problem

v(y, z) = min{f(x) + g(Ax+ y)− z} = min{f(x) + r : u−Ax = y, g(u)− r ≤ z}. (46)

We can see that v(0, 0) ≥ 0 because f ≥ −g ◦ A. Since v is linear in z it follows that when the
constraint qualification condition (45) holds ∂v(0, 0) 6= ∅.

Thus, by Theorem 2.3, problem (46) has a Lagrange multiplier of the form (y∗, µ) ∈ Y ∗×R+

such that, for x ∈ X, u ∈ Y ,

f(x) + r + 〈y∗, u−Ax〉+ µ(g(u)− r) ≥ v(0, 0) ≥ 0. (47)

Letting u = Ax′ and r = g(Ax′) in (47) we have, for x, x′ ∈ X,

f(x)− 〈A∗y∗, x〉 ≥ −g(Ax′)− 〈A∗y∗, x′〉.
6 Since γC1

(x)− 1 < 0 for x ∈ intC1, λ 6= 0.
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Thus,

a := inf
x
{f(x)− 〈A∗y∗, x〉} ≥ b := sup

x′
{−g(Ax′)− 〈A∗y∗, x′〉}.

Picking any c ∈ [a, b], the affine function α(x) = 〈A∗y∗, x〉+ c separates f and −g ◦A as was to
be shown. �

We observe that in both of the previous proofs the existence of an optimal primal solution is
neither important nor expected. Also, in deriving the separation and the sandwich theorems the
(generalized) derivative information regarding the functions involved is not exploited.

An attractive feature of Theorem 4.3 is that it often reduces the study of a linearly constrained
convex program to linear program — without any assumption of primal solvability.

4.3 Generalized Linear Complementary Problems

Let X be a reflexive Banach space, X∗ its dual and S a closed convex cone in X. Let T : X 7→ X∗

be a closed linear operator and suppose q ∈ X∗. The generalized linear complementary problem
wants to find x ∈ X solving

〈Tx− q, x〉 = 0, while x ∈ S and Tx− q ∈ S+. (48)

As discussed in [8] we can break down this problem into two parts: first we show that for every
ε > 0, the problem has an ε-solution (〈Tx− q, x〉 ≤ ε) and then we add coercivity conditions to
ensure that a sequence of 1/n-solutions will converges to a true solution as n goes to infinity.

Herein, we will only discuss the first part which is closely related to existence of Lagrange
multipliers. Following [8] when T is monotone, continuous and linear, we can convert this problem
to a convex quadratic programming problem:

min f(x) := 〈Tx− q, x〉+ ιS =

〈
T + T>

2
x− q, x

〉
+ ιS s.t. q − Tx ≤S+ 0. (49)

and consider the perturbed problem of

v(y) = inf{f(x) : q − Tx ≤S+ y}.

If a Lagrange multiplier λ ∈ S++ = S exists then for any x ∈ S we have

〈Tx− q, x〉+ 〈λ, q − Tx〉 ≥ v(0).

In particular, x = λ is feasible and we derive

0 ≥ 〈Tλ− q, λ〉+ 〈λ, q − Tλ〉 ≥ v(0) ≥ 0,

that is v(0) = 0 or, equivalently, problem (48) always has a ε-solution.

Thus, the existence of an ε-solution to problem (48) is entirely determined by a constraint
qualification condition that ensures ∂v(0) 6= ∅. Several such conditions are elaborated in Section 2
of [8] which we do not repeat here. A point to emphasize here is that in establishing the ε-solution
of this problem the simpler version of the Lagrange multiplier rule Theorem 2.1, more precisely
Corollary 2.1, suffices.
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4.4 Characterization of Quasiconvex Vector-valued Functions

A quasiconvex function is a real-valued function whose lower level sets are all convex. This notion
can easily be extended to quasiconvex vector-valued functions using a partial order induced by a
cone: we require that {x : f(x) ≤K y} is convex for all y ∈ Y . We next provide a characterization
of cone-quasiconvexity in terms of scalarization using the Lagrange multiplier rule. Our proof
follows [7].

Consider a partially ordered Banach space (Y,≤K) where K is a nonempty closed convex cone
with polar cone K+ ⊂ Y ∗. We use extd K+ to denote the extreme directions: those y∗ ∈ K+

such that any y1, y2 ∈ K+ with y∗ = y1 + y2 must belong to the ray {ry∗ : r ≥ 0}. We say that
(Y,≤K) is directed if for all y1, y2 ∈ Y there exists z ∈ Y such that y1 ≤K z and y2 ≤K z. It is
easy to check that (Y,≤K) is directed if and only if Y = K −K — that is K generates Y .

The key is the following lemma which we shall prove by using the Lagrange multiplier rule.

Lemma 4.1 (Lattice-like Behavior) Assume that (Y,≤K) is directed. Let y∗ ∈ extd K+ and let
y1, y2 ∈ Y be such that 〈y∗, yi〉 ≤ 0, i = 1, 2. Then for every ε > 0 there exists zε ∈ Y such that
yi ≤K zε, (i = 1, 2) and 〈y∗, zε〉 ≤ ε.

Proof. Consider the optimization problem

v(u1, u2) = inf{〈y∗, z〉 : yi − z ≤K ui, i = 1, 2} = inf{〈y∗, z〉 : yi − ui ≤K z, i = 1, 2}. (50)

We need only to show that the optimal value v(0, 0) ≤ 0. Since (Y,≤K) is directed, for any
yi, ui, i = 1, 2, we can find z ∈ Y such that yi − ui ≤K z, (i = 1, 2), so that

max(〈y∗, y1 − u1〉, 〈y∗, y2 − u2〉) ≤ v(u1, u2) ≤ 〈y∗, z〉.

Thus, dom v = Y × Y and a Lagrange multiplier exists for problem (50) when (u1, u2) = (0, 0)
(using the core constraint qualification of (26) above).

Let (λ1, λ2) ∈ K+ ×K+ be the Lagrange multiplier for (50) when (u1, u2) = (0, 0). Then we
have, for all z ∈ Y ,

v(0, 0) ≤ 〈y∗, z〉+ 〈λ1, y1 − z〉+ 〈λ2, y1 − z〉. (51)

Since z ∈ Y in (51) is free we must have

y∗ = λ1 + λ2. (52)

Using the fact that y∗ ∈ extd K+, we conclude from (52) that λ1 = t1y
∗, λ2 = t2y

∗ where
t1, t2 ≥ 0 and (51) becomes

v(0, 0) ≤ t1〈y∗, y1〉+ t2〈y∗, y2〉 ≤ 0,

as asserted. �

Remark 4.2 Note that v(0, 0) is not necessarily attained and we do not need it to be to obtain
the desired conclusion. ♦

Now we are ready to prove the following equivalence.

Theorem 4.4 (Scalarization Characterization of Cone-Quasiconvexity) Assume that (Y,≤K) is
directed and K+ is the weak-star closed convex hull of extd K+. Then f is K-quasiconvex if and
only if y∗ ◦ f is quasiconvex for all y∗ ∈ extd K+.
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Proof. (a) The “if” part. Let xi ∈ {x : f(x) ≤K y}, for i = 1, 2 and let t ∈ [0, 1]. Then for all
y∗ ∈ extd K+, we have 〈y∗, f(xi)〉 ≤ 〈y∗, y〉, for i = 1, 2. Since y∗ ◦ f is quasiconvex, we have

〈y∗, f(tx1 + (1− t)x2)− y〉 ≤ 0. (53)

Since (53) holds for all y∗ ∈ extd K+ and K+ is the weak-star closed convex hull of extd K+,
we conclude that (53) holds for all y∗ ∈ K+. Thus, f(tx1 + (1− t)x2)− y ∈ K++ = K or

tx1 + (1− t)x2 ∈ {x : f(x) ≤K y}.

(b) The “only if” part. Fix any y∗ ∈ extd K+ and r ∈ IR. Let ε > 0 be arbitrary and positive
and select xi ∈ {x : y∗◦f(x) ≤ r}, for i = 1, 2 and let t ∈ [0, 1]. Select y ∈ Y such that 〈y∗, y〉 = r.
Applying Lemma 4.1 to yi = f(xi)− y, (i = 1, 2), there exists zε ∈ Y such that 〈y∗, zε〉 ≤ ε and
yi ≤K zε, (i = 1, 2). Since f is K-quasiconvex, f(tx1 + (1− t)x2)− y ≤K zε which implies that

y∗ ◦ f(tx1 + (1− t)x2)− r ≤ ε.

Since ε > 0 is arbitrary, we have

y∗ ◦ f(tx1 + (1− t)x2) ≤ r

or tx1 + (1− t)x2 ∈ {x : y∗ ◦ f(x) ≤ r}, and we are done. �
We remark that when K has non-empty norm-interior, all the hypotheses of Theorem 4.4

certainly hold. Moreover, when K is the positive orthant in IRN the equivalence is with quasi-
convexity of the coordinate functions.

4.5 Minimax Theorem

Our final example, following [35], deduces the Von Neumann-Fan minimax theorem from the La-
grange multiplier rule. This illustrates the variety of circumstances in which an abstract Lagrange
multiplier can be shown to exist and its structure subsequently exploited.

Theorem 4.5 (von Neumann-Fan Minimax Theorem) Let X and Y be Banach spaces. Let
C ⊂ X be nonempty and convex, and let D ⊂ Y be nonempty, weakly compact and convex. Let
g : X×Y → IR be convex with respect to x ∈ C and concave and (weakly) continuous with respect
to y ∈ D. Then

p := inf
x∈C

max
y∈D

g(x, y) = max
y∈D

inf
x∈C

g(x, y) =: d (54)

Proof. We first note that by weak duality always p ≥ d and proceed to show d ≥ p.
Define a vector function G : X × IR → C(D), the Banach space of continuous functions on

D with the sup norm, by G(x, r)(y) := g(x, y)− r. This is legitimate because g is continuous in
the y variable. Let K ⊂ C(D) be the non-negative continuous functions on D. Since g is convex
in x for each y ∈ D we can check that G is convex with respect to ≤K .

Consider the abstract convex program

p = inf
x∈C
{r : g(x, y) ≤ r, ∀y ∈ D, r ∈ R} = inf

x∈C,r∈R
{r : G(x, r) ≤K 0}. (55)

Fix ε ∈ (0, 1). Then there is some x̂ ∈ C with g(x̂, y) ≤ p+ ε for all y ∈ D. We have

G(x̂, p+ 2) ≤K −1 <K 0,
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where −1, 0 are constant functions in C(D). Thence, Slater’s condition holds for the abstract
convex program (55). Consequently, problem (55) has a Lagrange multiplier λ ∈ C(D)∗+. By the
Riesz representation theorem (see, e.g., [36,37]) we can treat λ as a measure on D. So we have,
for all x ∈ C, r ∈ IR,

r + 〈λ,G(x, r)〉 = r +

∫
D

(g(x, y)− r)λ(dy) ≥ p.

Since r is arbitrary we must have
∫
D
λ(dy) = 1, that is to say that λ is a probability measure.

Using Jensen’s inequality and noticing
∫
D
yλ(dy) ∈ D we have, for all x ∈ C,

g(x,

∫
D

yλ(dy)) ≥
∫
D

g(x, y)λ(dy) = r +

∫
D

(g(x, y)− r)λ(dy) ≥ p

Taking the infimum of the left hand over x ∈ C yields d ≥ p, which completes the proof. �
Note that, even if both C and D lie in finite dimensional space, we still need the abstract form

of the Lagrange multiplier in this proof. On the other hand, sometimes in dynamical problems
one can use a Lagrange multiplier rule for the finite dimensional constraint and ‘propagate’
the resulting multipliers along the dynamics. The fully convex problem of calculus of variations
discussed in [38] provides such an example.

5 Conclusions

We hope we have persuaded the reader that there is much to be gained by yet again revisiting
the subject of Lagrange multipliers. What we forget of past mathematics we frequently have to
rediscover—and we may not do as good a job as our predecessors did.

We also emphasise that there is much to be learned from knowing different approaches to
establishing multiplier rules. No one approach is uniformly the best and each problem has its
own idiosyncrasies. Even when the hypotheses may not apply to the given problem, rough com-
putations may lead one efficiently to the right solution method.
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