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Abstract

The recent rise of “computer-assisted” and “experimental” mathematics raises
intriguing questions as to the future role of computation in mathematics. These
results also draw into question the traditional distinctions that have been drawn
between formal proof and computationally-assisted proof. This article explores these
questions in the context of the growing consensus among computer technologists
that Moore’s Law is likely to continue unabated for quite some time into the future,
producing hardware and software much more powerful than what is available today.

1 Introduction

Recent years have seen the flowering of what is often termed “computer-assisted” or
“experimental” mathematics, namely the utilization of modern computer technology as
an active tool in mathematical research. In particular, a combination of commercial
software (notably Mathematica and Maple), online tools and custom-written computer
programs are being used to test conjectures, discover new identities, perform symbolic
manipulations, plot data and even conduct formal proofs.

With regards to computer technology, Moore’s Law (the observation that computer
technology doubles in aggregate power and capacity every 18 months or so) continues
unabated, having defied numerous predictions that it will soon end (most recently the
100 nanometer “barrier”). At the present time, industry experts, including Gordon Moore
himself, predict that it will continue for at least ten more years [1]. In fact, if some of the
promising research in nanotechnology (the science of constructing devices and materials
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Figure 1: High-end computer performance projections.

at the molecular level) comes to full flower, Moore’s Law may well continue for many
more years [18, pg 7–30]. For example, carbon nanotube-based memory devices, which
promise to store ten times as much data as conventional devices, may be commercially
available as early as 2006 [21]. In another development, researchers at Hewlett-Packard
have fabricated “nano-imprint crossbar” devices with half-pitch feature spacing of only
17 nanometers, and plan to reduce this figure by a factor of four within two years [17][16].

If these projections are even partially realized, future computer systems will be many
thousands of times more powerful than those being used today. See Figure 1, which
plots history and future projections of high-end computer system performance, based on
data from the Top500 list (a twice-yearly updated ranking of the world’s most powerful
computer systems). In this figure, 1 Gflop/s, 1 Tflop/s and 1 Pflop/s denote one billion,
one trillion, and one quadrillion (1015), respectively, floating-point operations per second.

These developments have led some mathematicians to wonder whether computers one
day will be smarter at math than we are. But in many respects, they already are—
Mathematica and Maple today routinely perform integrals and other types of manipula-
tions that are well beyond what humans can reasonably do. What’s more, they normally
perform such manipulations without the errors that humans are prone to make.

In this article, we will briefly summarize a few examples of computational mathematics
in action, and then consider some of the questions that these developments present to
future mathematical research. Some additional examples may be found in [2][11].
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2 A New Formula for Pi

Perhaps the best-known result to emerge from experimental mathematics so far is the
discovery of a new formula for π (now known as the “BBP” formula) by a computer
program in 1996 [5][11, pg 118–125]:
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This formula has the remarkable property that it permits one to directly calculate binary
or hexadecimal digits of π beginning at some position n, without needing to calculate any
of the preceding digits. It was discovered by Peter Borwein (brother of Jonathan) and
Simon Plouffe, using a computer program written by Bailey that implements Helaman Fer-
guson’s “PSLQ” integer relation algorithm, using high-precision arithmetic (200 digits in
this case). An integer relation algorithm is one that, given n real numbers (x1, x2, · · · , xn),
finds n integers (a1, a2, · · · , an), if they exist, such that a1x1 + a2x2 + · · · + anxn = 0 to
within available numeric precision.

In a surprising development, it was recently found that the existence of the BBP
formula has an intriguing connection to the question of whether or not the binary digits
of π are “normal” (statistically random in a certain sense). In particular, it was found
that the question of normality of π reduces to the question of whether a certain iteration
is a uniform random number generator in the unit interval [8][9][11, pg 148–156]. This
line of research is still being actively investigated.

Numerous other formulas and related results of this general type have now been discov-
ered, using this same methodology, namely a combination of integer relation algorithms
and high-precision numerical computations. Here is just a brief sample:
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Most of these results have been obtained using very modest computational platforms,
typically just a personal computer or workstation, and have involved numeric precision
levels of only 100 to 500 digits. However, one such computation required 50,000-digit
arithmetic and a 64-CPU parallel computer system to obtain the result [7]. This raises
the intriguing question of how many more such formulas will be found when computers
many thousands of times more powerful are available.
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The computational cost of integer relation detection, using the PSLQ algorithm, grows
as roughly n3, where n is of the number of terms in the relation (in particular, the
number of iterations required grows at this rate). When we further take into account the
additional numeric precision required to resolve relations when n is large, we obtain a cost
that grows as roughly n4 log n. Today we can usually find integer relations involving 100
terms, typically requiring 5,000-digit precision or so, in a few hours’ run time on a personal
computer or workstation. Given the n4 log n scaling of the computational cost, extending
the reach of these methods to say n = 1000 seems truly formidable. Yet such power
will be available, even in a personal computer, by roughly the year 2020, even assuming
no improvement in the underlying integer relation algorithms. If we assume that faster
algorithms will be found (which seems very likely), then we may well be able to routinely
solve such problems much sooner. Employing highly parallel computer technology will
further accelerate this timetable.

3 High-Precision Computations

As we mentioned in the previous section, high-precision numerical computations are a
key part of the process of discovering new mathematical identities using integer relation
methods. But these same high-precision computations can also be used to verify a relation
once it has been discovered by any means, whether by experimental computations or
conjectural reasoning.

For example, recently some new techniques have been found to evaluate the numer-
ical value of integrals to very high accuracy (hundreds or thousands of digits), even, in
many cases, for functions with singularities [12, pg 306–314]. In one application of these
techniques, the present authors established that the relation
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which arises in quantum physics, holds to 20,000-digit accuracy (note that the integral
has a nasty singularity at t = tan−1

√
7). This calculation required 46 minutes on 1024

CPUs of an Apple-based parallel computer [3]. The question mark is used here because
no formal proof is yet known.

These very high-precision numerical confirmations raise an interesting question: Which
would you rather trust, a mathematical theorem that is the final result of a long, difficult
paper, fully understood only by a handful of people worldwide, or a formula that has been
verified to 20,000-digit accuracy by a computer?

Clearly some caution must be exercised in this regard, since examples of high-precision
“frauds,” namely relations that appear to hold to unusually high accuracy but which
are not precisely equal, are known in the mathematical literature [12, pg 11-15]. One
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particularly perplexing example is the following [4]:

∫ ∞

0
cos(2x)

∞∏
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cos
(

x

n

)
dx =

0.392699081698724154807830422909937860524645434187231595926812285162...

One is tempted to conclude from this numerical value that the integral in question is
equal to π/8. But a careful comparison with a high-precision value of π/8, namely,

0.392699081698724154807830422909937860524646174921888227621868074038...

discloses that the two differ after the 42nd decimal place! However, such instances are
highly exceptional, and only a handful of rather contrived examples are known that hold
beyond 100 digits or so.

4 A Computer-Assisted Proof of Kepler’s Conjecture

In 1611, Kepler described the stacking of equal-sized spheres into the familiar arrangement
we see for oranges in the grocery store. He asserted that this packing is the tightest
possible. This assertion is now known as the Kepler conjecture, and has persisted for
centuries without rigorous proof. German mathematician David Hilbert included the
Kepler conjecture in his famous list of unsolved problems in 1900.

In 1994, Thomas Hales, now at the University of Pittsburgh, proposed a five-step
program that would result in a proof. In 1998, Hales announced that the program was now
complete [15]. This project involved extensive computation, using an interval arithmetic
package, a graph generator, and Mathematica. The computer files containing the source
code and computational results are here: http://www.math.pitt.edu/~thales/kepler98.

The journal Annals of Mathematics has decided to publish Hales’ paper, but with a
cautionary note, because, as they explain, although a team of referees is “99% certain”
that the computer-assisted proof is sound, they have not been able to verify every detail
[22]. One wonders if every other article in this journal has implicitly been certified to be
correct with more than 99% certainty! In an attempt to resolve the remaining uncertainty,
Hales has decided to embark on a project to construct a computer-based formal proof and
anticipates completion by 2012. However, even this is not likely to quell the controversy
among some traditional mathematicians regarding computer-based proofs.

5 Probabilistic Primes versus Provable Primes

Today whenever one uses a credit card to make a purchase over the Internet, it is quite
likely that at some point in the process, one’s Internet browser constructs a pair of large
prime numbers. Through the years numerous efficient computational algorithms have
been found to provably certify that an integer is prime, culminating with the recent
discovery by three Indian mathematicians of a “polynomial time” scheme [12, pg 3023].
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However, the most widely used scheme in practice is the Monier-Rabin probabilistic
primality test [13][12, pg 300–303]. This test specifies that a certain numerical computa-
tion be repeated in several trials, with a certain auxiliary parameter chosen pseudoran-
domly in each trial. If the integer passes one trial, it is prime with probability at least 3/4,
so that m trials increase this probability to 1−1/4m. In fact, for large test integers n, the
probability is even closer to unity. For instance, if n has 500 bits, then this probability is
greater than 1 − 1/428m. Thus a 500-bit integer that passes this test even once is prime
with prohibitively safe odds—the chance of a false declaration of primality is less than
one part in Avogadro’s number (6×1023). If it passes the test four times, then the chance
of false declaration of primality is less than one part in a googol (10100).

It is worth pointing out that such tiny probabilities are many times more remote
than the chance that an undetected hardware error occurs during the calculation, not to
mention the possibility of a computer program bug. Given these realities, what is the
point of distinguishing between a “provable” primality test (performed on a computer)
and a probabilistic primality test (also performed on a computer)?

6 Validity Checks for Large Computations

In several recent mathematical computations, computer runs of many hours were required,
sometimes on highly parallel computers. Given the many possible sources of error in such
calculations (computer program, processor, memory, network, disk, compiler, operating
system, etc.), one can rightly ask why anyone would ever have confidence in the results.

In fact, these computations typically employ very rigorous validity checks. For exam-
ple, Richard Crandall, Ernst Mayer and Jason Papadoupoulos recently determined that
the Fermat number F24 = 2224

+ 1 is composite. This calculation employed a “wavefront”
scheme, where a faster computer system computed a chain of squares modulo F24, such
as 321000000

mod F24, 322000000
mod F24, 323000000

mod F24, · · ·. Then each of a set of slower
computers started with one of these intermediate values, squared it 1,000,000 times mod-
ulo F24, and checked to see if the result (a 16-million-bit integer) precisely reproduced the
next value in the chain. If it did, then this is very strong evidence that both computations
were correct. If not, then the process was repeated [14, page 187].

Along this line, Yasumada Kanada of the University of Tokyo recently computed the
first trillion hexadecimal digits of π (and also the first trillion decimal digits). To validate
his results, he first computed the first trillion hexadecimal (base-16) digits of π, using
two different formulas. Both of these computations precisely agreed to over one trillion
digits. Then he used a variant of the BBP formula for π to independently calculate 24
hexadecimal digits beginning at position one trillion. The result precisely agreed with
the two earlier calculations. Needless to say, it is exceedingly unlikely that independent
computations, employing a completely different technique, would each produce the same
24-long hexadecimal digit sequence, unless each is in fact correct (the probability of such
an accidental agreement, in a heuristic sense, is 16−24 ≈ 1.26× 10−29).

In a similar way in 1999, Colin Percival, then an undergraduate student at Simon
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Fraser University, harnessed a worldwide network of personal computers to calculate a
segment of binary digits of π beginning at the quadrillionth (i.e., 1015-th) place, using a
variant of the BBP formula for π. Such calculations can be checked by computing two
closely overlapping sections of digits, and verifying that the overlapped digits precisely
agree (although Percival’s actual scheme was somewhat different).

Again, this raises the question: Which would you rather trust, a mathematical theorem
that is the final result of a long, difficult paper, fully understood only by a handful of people
worldwide, or a computational result that has been confirmed by multiple independent,
exacting validity checks?

7 Mathematical Knowledge Management

The global MKM Interest Group founded in 2005 writes:

Mathematical Knowledge Management is an exciting new field in the intersec-
tion of mathematics and computer science. We need efficient, new techniques—
based on sophisticated formal mathematics and software technology—for taking
fruit of the enormous knowledge available in current mathematical sources and
for organizing mathematical knowledge in a new way. On the other side, due
its very nature, the realm of mathematical information looks as the best candi-
date for testing innovative theoretical and technological solutions for content-
based systems, interoperability, management of machine understandable infor-
mation, and the Semantic Web. (http://www.mkm-ig.org/index.html)

Twenty-five years ago, the best theorem-proving systems could return a proof of the
Cantor diagonal theorem, when fed a careful diet of axioms. Today, as suggested by
Hale’s project, we stand on the edge of an extraordinary ability to both discover and
confirm formal mathematics. The French system COQ, has apparently been used to
provide formal proofs of the Prime number theorem and the Four color theorem—two of
the luminous highlights of pure mathematics [20, 19].

Similarly, early work by Herbert Simons and others on computational scientific-theory
construction is also showing rapid development, as instanced by the health of software
such as Graffiti, which can conjecture and often dispose of graph-theoretic results using
databases of graph structure.

While many of the issues in mathematical knowledge management are shared by all
disciplines, the need for reliable mathematical optical character recognition (OCR) stands
out separately. There are still no reliable, scalable methods of identifying mathematics in
documents. Some of the most interesting current projects arise in Japan, where the spatial
demands of the language recognition are closer to those of mathematics. Nonetheless, it
is reasonable to assume that within five to ten years mathematical OCR will be generally
accessible. This will further facilitate the computerization of the entire mathematical
research process. At that point its future relies more on commercial than technical issues.

7



8 What We Cannot Do

Even given such examples, it should not be presumed that amassing huge amounts of
processing power can solve all mathematical problems, even those that are amenable to
computational analysis.

For one thing, it is quite likely that some mathematical computing problems are in
a class that fundamentally cannot be solved except by schemes that scale exponentially
in cost with the size of the problem (assuming the widely believed equivalence of P and
NP, a conjecture from the field of theoretical computer science). For such problems, once
they are sufficiently large in size, no amount of advanced computing technology or parallel
processing is likely to solve them.

Along this line, consider Clement Lam’s 1991 proof of the nonexistence of a finite
projective plane of order ten [11, pg 4]. This involved a search for a configuration of
n2 +n+1 points and equally many lines. Lam’s computer program required thousands of
hours of run time on a Cray computer system. Lam estimates that the next case (n = 18)
susceptible to his methods would take millions of years on any conceivable architecture.

Some mathematical computations are “naturally parallel” and thus readily suited for
implementation on highly parallel computer systems. However, these tend not to be
problems of central interest in mathematics. The majority of interesting large-scale cal-
culations in computational mathematics, like their counterparts in computational physics
and chemistry, require significant communication between independent computing nodes.
Parallel implementations of such calculations require considerable programming effort, in
addition to a well-designed parallel system with a strong interconnection network.

More importantly, such calculations are subject to fundamental limits of parallel com-
puting, especially Amdahl’s Law, namely the observation that the serial portion of a
computer program will dominate the run time unless it constitutes an extremely small
portion of the program. Along this line, it appears that integer relation detection is one
example of a demanding computation that possesses only limited concurrency. Variants
of PSLQ that are suitable for parallel processing are known, but even in the best schemes,
concurrency is limited to less than n/2, where n is the length of the test vector [6]. Thus,
while PSLQ variants have been successfully implemented on systems with up to 64 CPUs
(for problems where n was well over 100), much more highly parallel implementations, for
reasonably-sized n, will be a challenge.

9 What Does the Future Hold?

In spite of the difficulties mentioned in the previous section, it seems clear that computa-
tion is destined to assume a much more important role in future mathematical research
than at the present time. For one thing, present-day mathematical software is greatly
improved over what was available just a few years ago, and as a result many mathemati-
cians are just now beginning to be fully skilled and experienced in using these tools. For
this reason alone, we believe that we will see much greater usage of computational math
facilities in the future.
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It also seems inevitable that mathematicians will need to rethink the distinction be-
tween human-proven results and computer-proven results. As we have seen, it is increas-
ingly difficult to distinguish between a purely human proof, and a proof that has utilized
computational resources for at least part of the overall process of discovery and valida-
tion. We may even need to reconsider the distinction between computer-proven results
and experimentally discovered results that have been confirmed with very strong numer-
ical evidence. Such distinctions will only fade further as computer-based mathematical
tools become more widely utilized.

As we mentioned in the introduction, experts are now confident that Moore’s Law,
which to date has sustained 40 years of exponential growth, will continue for at least
another ten years, and, given some of the recent interesting developments in nanotech-
nology, it may continue much longer. Even more interesting is the possibility of quantum
computing, which is based on quantum superposition, an eerie effects of quantum the-
ory. Quantum computation, if fully realized, will dramatically accelerate certain classes
of mathematical computation. At present, only a few small demonstrations have been
done (such as the factoring of 15 = 3 · 5), but scientists worldwide are exploring ways to
extend the reach of these demonstrations to significantly larger achievements.

If even some of these predictions of future computing technology are realized, future
mathematical computing facilities will be thousands or even millions of times more pow-
erful than they are today. We may well see the day when virtually every mathematical
question can be explored on the computer, using much more comprehensive and powerful
software and hardware than any that is available today. We can only dimly imagine such
a future at the present time. But perhaps it is not too early to try. Certainly there are
many philosophical implications [10].
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