
A VERY COMPLICATED PROOF OF THE MINIMAX THEOREM

JONATHAN M. BORWEIN

Abstract. The justly celebrated von Neumann minimax theorem has many proofs.
Here I reproduce the most complex one I am aware of. This provides a fine didactic
example for many courses in convex analysis or functional analysis.

1. Introduction

We work primarily in a real Banach space with norm dual X∗ or indeed in Eu-
clidean space, and adhere to the notation in [4, 5]. From time to time we mention
more general Hausdorff topological vector spaces [20].

The justly celebrated von Neumann minimax theorem has many proofs.

Theorem 1 (Concrete von Neumann minimax theorem). Let A be a linear mapping
between Euclidean spaces E and F . Let C ⊂ E and D ⊂ F be nonempty compact
and convex sets. Then

d := max
y∈D

min
x∈C
〈Ax, y〉 = min

x∈C
max
y∈D
〈Ax, y〉 =: p. (1)

In particular, this holds in the economically meaningful case where both C and D
are simplices of the form Σ := {z :

∑
i∈I zi = 1, zi ≥ 0, ∀ i ∈ I} for a finite set of

indices I.

More generally we have:

Theorem 2 (Von Neumann-Fan minimax theorem). Let X and Y be Banach spaces.
Let C ⊂ X be nonempty and convex, and let D ⊂ Y be nonempty, weakly compact
and convex. Let g : X × Y → R be convex with respect to x ∈ C and concave
and upper-semicontinuous with respect to y ∈ D, and weakly continuous in y when
restricted to D. Then

d := max
y∈D

inf
x∈C

g(x, y) = inf
x∈C

max
y∈D

g(x, y) =: p. (2)
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To deduce Theorem 1 from Theorem 2 we simply consider g(x, y) := 〈Ax, y〉.

1.1. Various proof techniques. In my books and papers I have reproduced a
variety of proofs of Theorem 2. All have their benefits and additional features:

(1) The original proof via Brouwer’s fixed point theorem [4, §8.3] and more refined
subsequent algebraic-topological treatments such as the KKM principle [4,
§8.1, Exer. 15].

(2) Tucker’s proof of Theorem 1 via schema and linear programming [23].
(3) From a compactness and Hahn Banach separation or subgradient argument

[7], [5, §4.2, Exercise 14], [6, Theorem 3.6.4]. This approach also yields Sion’s
convex-concave-like minimax theorem, see [5, Thm 2.3.7] and [22] which con-
tains a nice early history of the minimax theorem.

(4) From Fenchel’s duality theorem applied to indicator functions and their con-
jugate support functions see [4, §4.3, Exercise 16], [5, Exercise 2.4.25] or
[10, 18] in Euclidean space, [1] in the Hilbert space setting, and in generality
[4, 5, 6]. In [3] we show that much of this theory can be implemented in a
computer algebra system.

In the reflexive setting the role of C and D is entirely symmetric. More generally,
we should need to introduce the weak∗ topology and choose not to do so here.

About 35 years ago while first teaching convex analysis and conjugate duality
theory, I derived the proof in Section 3, that seems still to be the most abstract and
sophisticated that I know. I derived it in order to illustrate the power of functional-
analytic convex analysis as a mode of argument. I really do not now know if it
was original at that time, but I did discover it in Giaquinto’s [15, p. 50] attractive
encapsulation:

In short, discovering a truth is coming to believe it in an independent,
reliable, and rational way.

Once a result is discovered, one may then look for a more direct proof. When first
hunting for certainty it is reasonable to use whatever tools one possess. For example,
I have often used the Pontryagin maximum principle [17] of optimal control theory to
discover an inequality for which I subsequently find a direct proof, say from Jensen-
like inequalities [5].

So it seems fitting to write the proof down in the first issue of the new journal
Minimax Theory and its Applications dedicated to minimax matters.

2. Prerequisite Tools

I enumerate the prerequisite tools, sketching only the final two as they are less
universally treated.
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2.1. The Hahn-Banach separation theorem. If C ⊂ X is a closed convex subset
of a Banach space and x ∈ X \ C then there exists φ 6= 0 in X∗ such that φ(x) >
supx∈C φ(x), as I learned from multiple sources including [16, 17, 18, 21]. We shall
need explicitly only the Euclidean case which can be deduced directly from the
existence and characterisation of the best approximation of a point to a closed convex
set [4, §2.1, Exer. 8].

2.2. Lagrange duality. Lagrangian duality for the abstract convex programme, see[4,
5, 6], and [8, 18] for the standard formulation, as I learned first from Luenberger [17].

Theorem 3 (Lagrange Multipliers). Suppose that C ⊂ X is convex, f : X → R,
is convex and G : X → Y ordered by a closed convex cone S with nonempty norm
interior is S-convex. Suppose that Slater’s condition holds:

∃ x̂ ∈ X with G(x̂) ∈ −intS.

Then, the programme

p := inf{f(x) : G(x) ≤S 0, x ∈ C} (3)

admits a Lagrange multiplier λ ∈ S+ := {µ : µ(s) ≥ 0, ∀s ∈ S} such that

p := inf
x∈C

f(x) + λ(G(x)). (4)

If, moreover, p = G(x0) for some feasible x0 then complementary slackness obtains,
namely λ(G(x0)) = 0, while G(x0) ≤S 0, and λ ≥S+ 0.

In Luenberger this result is derived directly from the Separation theorem. In [4, 5]
it is derived from the nonemptyness of of the subdifferential of a continuous convex
function, from Fenchel duality, and otherwise (all being equivalent). In order to
handle equality constraints, one needs to use cones with empty interior and to relax
Slater’s condition, see [2] and via Fenchel duality in [4, §4.3], [5, §4.4] or [6, Thm.
4.4.3].

2.3. Riesz representation theorem. For a compact Hausdorff space Ω the contin-
uous function space, also Banach algebra and Banach lattice, C(Ω), in the maximum
norm, has dualM(Ω) consisting of all signed regular Borel measures on Ω, as I learned
from Jameson [16], Luenberger [17] for Ω := [a, b] , Rudin [20] and Royden [19]. See
also [11]. Moreover, the positive dual functionals correspond to positive measures,
as follows from the lattice structure.
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2.4. Vector integration. The concept of a weak vector integral, as I learned from
Rudin [20, Ch. 3]. Given a measure space (Q, µ) and a Hausdorff topological vector
space Y , and a weakly integrable function1 F : Q→ Y the integral y :=

∫
Q
F (x)µ(dx)

is said to exist weakly if for each φ ∈ Y ∗ we have

φ(y) =

∫
Q

φ(F (x))µ(dx), (5)

and the necessarily unique value of y =
∫
Q
F (x)µ(dx) defines the weak integral of

F . In [20, Thm. 3.27], Rudin establishes the existence of the weak integral for
any Borel measure on a compact Hausdorff space Q, when F is continuous and
D := convF (Q) is compact. Moreover, when µ is a probability measure then∫
Q
F (x)µ(dx) ∈ conv F(Q).

Proof. To show existence of y it is sufficient, since D is compact, to show that, for
a probability measure µ, (5) can be solved simultaneously in D for any finite set of
linear functionals {φ1, φ2, . . . , φn}. We do this by considering T := (φ1, φ2, . . . , φn)
as a linear mapping from Y into Rn. Consider

m :=

(∫
Q

φ1(F (x))µ(dx), . . . ,

∫
Q

φn(F(x))µ(dx)

)
and use the Euclidean space version of the Separation theorem of Section 2.1 to
deduce a contradiction if m 6∈ conv T (F (Q)). Since conv T (F (Q)) = T (D) we are
done. �

2.5. The existence and properties of a barycentre. We need also the concept
of the barycentre of a non-empty weakly compact convex set D in a Banach space,
with respect to a Borel probability measure µ. As I learned from Choquet [9] and
Rudin [20, Ch. 3]), the barycentre

bD(µ) :=

∫
D

y µ(dy)

exists and lies in D. This is a special case of the discussion in Section 2.4. In the
case of a polyhedron P with equal masses of 1/n at each of the n extreme points
{ei}ni=1 this is just bP = 1

n

∑n
i=1 ei.

3. The proof of Theorem 2

We now provide the promised complicated proof.

Proof. We first note that always p ≥ d, this is weak duality. We proceed to show
d ≥ p.

1That is, for each dual functional φ, the function x 7→ φ(F (x)) is integrable with respect to µ.
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(1) We observe that, on adding a dummy variable,

p = inf
x∈C
{r : g(x, y) ≤ r, for all y ∈ D, r ∈ R}.

(2) Define a vector function by G : X × R→ C(D) by G(x, r)(y) := g(x, y)− r.
This is legitimate because g is continuous in the y variable. We take the
cone S to be the non-negative continuous functions on D and check that G
is S-convex because g is convex in x for each y ∈ D.

We now have an abstract convex programme

p = inf{r : G(x, r) ≤S 0, x ∈ C}, (6)

where the objective is the linear function f(x, r) = r. Fix 0 < ε < 1. Then
there is some x̂ ∈ C with g(x̂, y) ≤ p+ ε for all y ∈ D. We deduce that

G(x̂, p− 2) ≤ −1 ∈ −intS

where 1 is the constant function in C(D). Thence Slater’s condition holds.
(3) We may now appeal to Theorem 3 and obtain a Lagrange multiplier λ ∈ S+.

By the Riesz representation of C(D)∗, given in Section 2.3, we may treat λ
as a measure and write

r +

∫
D

(g(x, y)− r)λ(dy) ≥ p

for all x ∈ C and all r ∈ R. Since C is nonempty and r is arbitrary we deduce
that λ(D) =

∫
D
λ(dy) = 1 and so λ is a probability measure on D.

(4) Consequently, we derive that for all x ∈ C∫
D

g(x, y)λ(dy) ≥ p.

(5) We now consider the barycentre b̂ := bD(λ) guaranteed in section 2.5. Since
λ is a probability measure and g is continuous in y we deduce, using the
integral form of Jensen’s inequality2 for the concave function g(x, ·) , that for
each x ∈ C

g(x,

∫
D

y λ(dy)) ≥
∫
D

g(x, y)λ(dy) ≥ p.

But this says that d = supy∈D infx∈C g(x, y) ≥ infx∈C g(x, b̂) ≥ p.

In particular, this show the left-hand supremum is attained at the barycentre of the
Lagrange multiplier. This completes the proof. �

2Fix k := y → g(x, y) and observe that for any affine majorant a of of k we have k(̂b) =

infa≥k a(̂b) = infa≥k

∫
D
a(y)λ(dy) ≥

∫
D

k(y)λ(dy), where the leftmost equality is a consequence of

upper semicontinuity of k, and the second since λ is a probability and we have a weak integral.
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At the expense of some more juggling with the formulation, this proof can be
adapted to allow for g(x, y) only to be upper-semicontinuous in y, as is assumed in
Fan’s theorem.

4. Concluding Comments

Too often we teach the principles of functional analysis and of convex analysis
with only the most obvious applications in the subject we know the most about—be
it operator theory, partial differential equations,or optimization and control. But
important mathematical results do not arrive in such prepackaged form. In my
books, [4, 5, 6], my coauthors and I have tried in part to redress this imbalance. It
is in this spirit that I offer this modest article.
Acknowledgements. Thanks are due to many but especially to Heinz Bauschke,
Adrian Lewis, Jon Vanderwerff, Jim Zhu, and Brailey Sims who have been close
collaborators on matters relating to this work over many years.
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