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Abstract. In his ‘23’ “Mathematische Probleme”1 lecture to the Paris In-
ternational Congress in 1900, David Hilbert wrote “Besides it is an error to
believe that rigor in the proof is the enemy of simplicity.”

In this spirit, we use simple convex analytic methods, relying on an in-
genious function due to Simon Fitzpatrick, to provide a concise proof of the
maximality of the sum of two maximal monotone operators on reflexive Ba-
nach space under standard transversality conditions. Many other extension,
surjectivity, convexity and local boundedness results are likewise established.

1. Introduction

Recall that the domain of an extended valued convex function, denoted dom (f),
is the set of points with value less than +∞, and that a point s is in the core
of a set S (denoted by s ∈ core S) provided that X =

⋃
λ>0 λ(S − s). Recall

that x∗ ∈ X∗ is a subgradient of f : X → (−∞, +∞] at x ∈ dom f provided
that f(y) − f(x) ≥ 〈x∗, y − x〉 for all y in Y . The set of all subgradients of
f at x is called the subdifferential of f at x and is denoted ∂f(x). We shall
need the indicator function ιC(x) which is zero for x in C and +∞ otherwise,
the Fenchel conjugate f∗(x∗) := supx{〈x, x∗〉 − f(x)} and the infimal convolution
f∗2 1

2‖ · ‖2∗(x∗) := inf{f∗(y∗) + 1
2‖z∗‖2∗ : x∗ = y∗ + z∗}. When f is convex and

closed x∗ ∈ ∂f(x) exactly when f(x)+f∗(x∗) = 〈x, x∗〉. We recall that the distance
function associated with a closed set C, given by dC(x) := infc∈C ‖x− c‖, is convex
if and only if C is. Moreover, dC = ιC2‖ · ‖.

As convenient, we shall use both dom T = D(T ) := {x : T (x) 6= ∅}, and
range T = R(T ) := T (X) to denote the domain and range of a multifunction.
We say a multifunction T : X 7→ 2X∗

is monotone provided that for any x, y ∈ X,
x∗ ∈ T (x) and y∗ ∈ T (y),

〈y − x, y∗ − x∗〉 ≥ 0,

and we say that T is maximal monotone if its graph, {(x, x∗) : x∗ ∈ T (x)}, is not
properly included in any other monotone graph. The subdifferential of a convex
lower semicontinuous (lsc) function on a Banach space is a typical example of a
maximal monotone multifunction. We reserve the notation J for the duality map

J(x) :=
1
2

∂‖x‖2 = {x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉},
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and define the convex normal cone to C at x ∈ clC by

NC(x) := ∂ιC(x).

All other notation is generally consistent with usage in [9, 11, 30]. Some of the
side-results in this paper section are not used in the sequel and so we are somewhat
sparing with such details.

Our goal is to derive many key results about maximal monotone operators en-
tirely from the existence of subgradients and the Sandwich theorem given below;
as much as possible using only geometric-functional-analysis tools. In Section 2
we consider general Banach spaces. In Section 3 we look at cyclic operators. In
Section 4 we provide our central result on maximality of the sum in reflexive space.
Section 5 looks at more applications of the technique introduced in Section 4 while
limiting examples are produced in Section 6.

2. Maximality in General Banach Space

For a monotone mapping T , we associate the Fitzpatrick function introduced in
[16]. The Fitzpatrick function is

FT (x, x∗) := sup{〈x, y∗〉+ 〈x∗, y〉 − 〈y, y∗〉 : y∗ ∈ T (y)},
which is clearly lower semicontinuous and convex as an affine supremum. Moreover,

Proposition 1. [16, 11] For a maximal monotone operator T : X → X∗ one has

FT (x, x∗) ≥ 〈x, x∗〉
with equality if and only if x∗ ∈ T (x). Indeed, the equality FT (x, x∗) = 〈x, x∗〉 for
all x∗ ∈ T (x), requires only monotonicity not maximality.

Note that in general FT is not useful for non-maximal operators. As an extreme
example, on the real line if T (0) = 0 and T (x) is empty otherwise, then FT ≡ 0.
Note also that the construction in Proposition 1 extends to any paired vector spaces.

The idea of associating a convex function with a monotone operator and exploit-
ing the relationship was largely neglected for many years after [7] and [16] until
exploited by Penot, Simons, Simons and Zălinescu ([33, 35, 36, 38]), Burachik and
Svaiter and others.

2.1. Convex Analytic Tools. The basic results that we use repeatedly follow:

Proposition 2. [9, 11, 30] A proper lsc convex function on a Banach space is
continuous throughout the core of its domain.

Proposition 3. [9, 11, 30] A proper lsc convex function on a Banach space has a
non-empty subgradient throughout the core of its domain.

These two basic facts lead to:

Theorem 4. (Hahn-Banach Sandwich, [9, 11, 30]) Suppose f and −g are lsc
convex on a Banach space X and that

f(x) ≥ g(x),

for all x in X. Assume that the following constraint qualification (CQ) holds:

0 ∈ core (dom (f)− dom (−g)) .(1)
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Then there is an affine continuous function a such that

f(x) ≥ a(x) ≥ g(x),

for all x in X.

Proof. The value function h(u) := infx∈X f(x)− g(x−u) is convex and the (CQ)
implies it is continuous at 0. Hence there is some −λ ∈ ∂h(0), and this provides
the linear part of the asserted affine separator. Indeed, we have

f(x)− g(u− x) ≥ h(u)− h(0) ≥ λ(u),

as required. 2

We will also refer to constraint qualifications like (1) as transversality conditions
since they ensure that the sum/difference of two convex sets is large, and so resemble
such conditions in differential geometry. It is an easy matter to deduce the complete
Fenchel duality theorem (see [9, 29, 11, 38]) from Theorem 4 and in particular that

Corollary 5. ([11, 9, 29, 38] Suppose that f and g are convex and that (1) holds.
Then ∂f + ∂g = ∂ (f + g).

Proposition 6. [37] For a closed convex function f and fJ := f + 1
2‖ · ‖2 we have(

f + 1
2‖ · ‖2

)∗ = f∗21
2‖ · ‖2∗ is everywhere continuous. Also

v∗ ∈ ∂f(v) + J(v) ⇔ f∗J (v∗) + fJ(v)− 〈v, v∗〉 ≤ 0.

Edgar Asplund wrote a still-very-informative 1969 survey of those parts of convex
analysis “that the author feels are important in the study of monotone mappings,”
[2, p.1]. This includes averaging of norms, decomposition and differentiability re-
sults, as well as the sort of basic results we have described above.

2.2. Representative Convex Functions. Recall that a representative function
for a monotone operator T on X is any convex function HT on X ×X∗ such that
HT (x, x∗) ≥ 〈x, x∗〉 for all x, x∗, while HT (x, x∗) = 〈x, x∗〉 when x∗ ∈ T (x). Unlike
[13], we do not require HT to be closed. When T is maximal, Proposition 1 shows
FT is a representative function for T , as is the convexification

PT (x, x∗) := inf

{
N∑

i=1

λi〈xi, x
∗
i 〉 :

∑

i

λi(xi, x
∗
i , 1) = (x, x∗, 1), x∗i ∈ T (xi), λi ≥ 0

}
,

which has the requisite properties for any monotone T , whether or not maximal:

Proposition 7. For any monotone mapping T , PT is a representative convex
function for T .

Proof. Directly from the definition of monotonicity we have

PT (x, x∗) ≥ 〈x∗, y〉+ 〈y∗, x〉 − 〈y∗, y〉,
for y∗ ∈ T (y). Thus, for all points

PT (x, x∗) + PT (y, y∗) ≥ 〈x∗, y〉+ 〈y∗, x〉.
Note that by definition PT (x, x∗) ≤ 〈x∗, x〉 for x∗ ∈ T (x). Hence, setting x = y
and x∗ = y∗ shows PT (x, x∗) = 〈x∗, x〉 for x∗ ∈ T (x) while PT (z, z∗) ≥ 〈z∗, z〉 for
(z∗, z) ∈ conv graph T and, also by definition, PT (z, z∗) = +∞ otherwise. 2

Direct calculation shows (PT )∗ = FT for any monotone T , [24]. This convexifi-
cation originates with Simons [31] and was refined by Penot [23, Proposition 5].
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2.3. Monotone Extension Formulas. We illustrate the flexibility ofP by using
it to prove a central case of the Debrunner-Flor theorem [14, 25] without using
Brouwer’s theorem.

Theorem 8. [25, 33] (a) Suppose T is monotone on a Banach space X with range
contained in α BX∗ , for some α > 0. Then for every x0 in X there is x∗0 ∈
conv∗R(T ) ⊂ α BX∗ such that (x0, x

∗
0) is monotonically related to graph (T ).

(b) In consequence, T has a bounded monotone extension T with dom (T )=X and
R(T ) ⊂ conv∗R(T ).
(c) In particular, a maximal monotone T with bounded range has dom (T )=X and
has range (T ) connected.

Proof. (a) It is enough, after translation, to show x0 = 0 ∈ dom (T ). Fix α > 0
with R(T ) ⊂ C := conv∗R(T ) ⊂ α BX∗ .

Consider
fT (x) := inf {PT (x, x∗) : x∗ ∈ C} .

Then fT is convex since PT is. Observe that PT (x, x∗) ≥ 〈x, x∗〉 and so fT (x) ≥
infx∗∈C〈x, x∗〉 ≥ −α ‖x‖ for all x in X. As x 7→ infx∗∈C〈x, x∗〉 is concave and
continuous the Sandwich Theorem 4 applies.

Thus, there exist w∗ in X∗ and γ in R with

PT (x, x∗) ≥ fT (x) ≥ 〈x, w∗〉+ γ ≥ inf
x∗∈C

〈x, x∗〉 ≥ −α ‖x‖

for all x in X and x∗ in C ⊂ α BX∗ . Setting x = 0 shows γ ≥ 0. Now, for any
(y, y∗) in the graph of T we have PT (y, y∗) = 〈y, y∗〉. Thus,

〈y − 0, y∗ − w∗〉 ≥ γ ≥ 0,

which shows that (0, w∗) is monotonically related to the graph of T . Finally,
〈x,w∗〉 + γ ≥ infx∗∈C〈x, x∗〉 ≥ −α ‖x‖ for all x ∈ X involves three sublinear
functions, and so implies that w∗ ∈ C ⊂ α BX∗ .
(b) Consider the set E of all monotone extensions of T with range in C ⊂ α BX∗ ,
ordered by inclusion. By Zorn’s lemma E admits a maximal member T and by (a)
T has domain the whole space. (c) follows immediately, since T being maximal and
everywhere defined is a weak-star cusco and so has a weak-star connected range. 2

One may consult [17] and [33, Theorem 4.1] for other convex analytic proofs of
(c). Note also that the argument in (a) extends to an unbounded set C whenever

x0 ∈ core (dom fT + dom sup
C

).

The full Debrunner-Flor result is stated next:

Theorem 9. (Debrunner-Flor extension theorem, [14, 25].) Suppose T is a
monotone operator on Banach space X with range T ⊂ C with C weak-star compact
and convex. Suppose also ϕ : C 7→ X is weak-star to norm continuous. Then there
is some c∗ ∈ C with 〈x− ϕ(c∗), x∗ − c∗〉 ≥ 0 for all x∗ ∈ T (x).

It seems worth observing that:

Proposition 10. The full Debrunner-Flor extension theorem is equivalent to Brouwer’s
theorem.



MAXIMAL MONOTONICITY VIA CONVEX ANALYSIS 5

Proof. An accessible derivation of Debrunner-Flor from Brouwer’s theorem is
given in [25]. Conversely, let g be a continuous self-map of a norm-compact convex
set K ⊂ intBX in a Euclidean space X. We apply the Debrunner-Flor extension
theorem to the identity map I on BX and to ϕ : BX 7→ X given by ϕ(x) := g(PK x),
where PK is the metric projection mapping (any retraction would do). We obtain
x∗0 ∈ BX and also x0 := ϕ(x∗0) = g(PK x∗0) ∈ K with

〈x− x0, x− x∗0〉 ≥ 0

for all x ∈ BX . Since x0 ∈ intBX , for h ∈ X and small ε > 0 we have x0 + εh ∈ BX

and so 〈h, x0−x∗0〉 ≥ 0 for all h ∈ X. Thus, x0 = x∗0 and so PK x∗0 = PK x0 = x0 =
g(PK x∗0), is a fixed point of the arbitrary self-map g. 2

2.4. Local Boundedness Results. We next turn to local boundedness results.
Recall that an operator T is locally bounded around a point x if T (Bε(x)) is bounded
for some ε > 0.

Theorem 11. [31, 37] Let X be a Banach space and let S and T : X → 2X∗
be

monotone operators. Suppose that

0 ∈ core [conv dom (T )− conv dom (S)].

Then there exist r, c > 0 such that, for any x ∈ dom (T ) ∩ dom (S), t∗ ∈ T (x) and
s∗ ∈ S(x),

max(‖t∗‖, ‖s∗‖) ≤ c (r + ‖x‖)(r + ‖t∗ + s∗‖).
Proof. Consider the convex lower semicontinuous function

σT (x) := sup
z∗∈T (z)

〈x− z, z∗〉
1 + ‖z|| .

This is a refinement of the function [7] originally used to prove local boundedness
of monotone operators [31, 37, 11]. We first show that conv dom (T ) ⊂ domσT ,
and that 0 ∈ core

⋃∞
i=1[{x : σS(x) ≤ i, ‖x‖ ≤ i}−{x : σT (x) ≤ i, ‖x‖ ≤ i}]. We now

apply conventional Baire category techniques—with some care. 2

Corollary 12. [31, 11, 37] Let X be any Banach space. Suppose T is monotone
and

x0 ∈ core conv dom (T ).
Then T is locally bounded around x0.

Proof . Let S = 0 in Theorem 11 or directly apply Proposition 2 to σT . 2

We can also improve Theorem 8.

Corollary 13. A monotone mapping T with bounded range admits an everywhere
defined maximal monotone extension with bounded weak-star connected range con-
tained in conv∗R(T ).

Proof. Let T̂ denote the extension of Theorem 8 (b). Clearly it is everywhere
locally bounded. The desired maximal monotone extension T ∗(x) is the operator
whose graph is the norm-weak-star closure of the graph of x 7→ conv T̂ (x), since this
is both monotone and is a norm-w∗ cusco. Explicitly, T ∗(x) := ∩ε>0conv ∗T̂ (Bε(x)),
see [11]. 2
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Recall that a maximal monotone mapping is locally maximal monotone, or type
(FP), if (graph T−1) ∩ (V ×X) is maximal monotone in V ×X, for every convex
open set V in X∗ with V ∩ range T 6= ∅. Dually, a maximal monotone mapping
is maximal monotone locally (VFP), is defined by reversing the roles of X and X∗

with T instead of T−1. It is known that all maximal monotone operators on a
reflexive space are type (FP) and (VFP), see [17, 18, 25, 32] and Theorem 38, as
are all subgradients of closed convex functions, [31, 32] and Theorem . It is shown
in [17] that a maximal monotone operator T with range T = X∗(resp.domT = X)
is locally maximal monotone (resp. maximal monotone locally).

For a maximal monotone operator T we may usefully apply Corollary 13 to
the mapping Tn(x) := T (x) ∩ nBX∗ . Under many conditions the extension, T̂n is
unique. Indeed as proven by Fitzpatrick and Phelps:

Proposition 14. ([16, 17]) Suppose T is maximal monotone and suppose n is large
enough so that R(T ) ∩ n intBX∗ 6= ∅.
(a) There is a unique maximal monotone T̂n such that Tn(x) ⊂ T̂n(x) ⊂ nBX∗

whenever the mapping Mn defined by

Mn(x) := {x∗ ∈ nBX∗ : 〈x∗ − z∗, x− z〉 ≥ 0 for all z∗ ∈ T (z) ∩ n intBX∗} ,

is monotone; in which case Mn = T̂n.
(b) This happens whenever T is type (FP) and BX∗ is strictly convex, hence for any
maximal monotone operator on a reflexive space in a strictly convex dual norm.

Proof. Since T̂n exists by Corollary 13 and since T̂n(x) ⊂ Mn(x), (a) follows. We
refer to [16, Theorem 2.2] for the fairly easy proof of (b). 2

It is reasonable to think of the sequence {T̂n}n∈IN as a good non-reflexive gen-
eralization of the resolvent-based Yosida approximate [25, 11] or of Hausdorff’s
Lipschitz regularization of a convex function, [16, 25, 9]—especially in the (FP)
case where one also shows easily that (i) T̂n(x) = T (x) ∩ nBX∗ whenever T (x) ∩
intn BX∗ 6= ∅, and (ii) T̂n(x) \ T (x) ⊂ nSX∗ , [17]. Thus, for local properties,
such as differentiability, one may often replace T by some T̂n if it simplifies other
matters.

2.5. Convexity of Domain and Range. We start with

Corollary 15. [27, 28, 31] Let X be any Banach space. Suppose that T is maximal
monotone with core conv dom (T ) nonempty. Then

core conv dom (T ) = int conv dom (T ) ⊂ dom (T ).(2)

In consequence dom (T ) has both a convex closure and a convex interior.

Proof. We first establish the inclusion in (2). Fix x+εBX ⊂ int conv dom (T ) and,
appealing to Corollary 12, select M := M(x, ε) > 0 so that T (x+ ε BX) ⊂ M BX∗ .

For N > M define nested sets

TN (x) := {x∗ : 〈x− y, x∗ − y∗〉 ≥ 0, ∀y∗ ∈ T (y) ∩N BX∗},
and note these images are w∗-closed. By Theorem 8 (b), the sets are non-empty, and
by the next Lemma 16 bounded, hence w∗-compact. Observe that by maximality of
T , T (x) = ∩NTN (x) 6= ∅, as a nested intersection, and x is in dom (T ) as asserted.

Then int conv dom (T ) = int dom (T ) and so the final conclusion follows. 2
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Lemma 16. For x ∈ int conv dom (T ) and N sufficiently large, TN (x) is bounded.

Proof. A Baire category argument [25], shows for N large and u ∈ 1/N BX one
has

x + u ∈ cl conv DN where DN := {z : z ∈ dom (T ) ∩N BX , T (z) ∩N BX∗ 6= ∅} .

Now for each x∗ ∈ TN (x), since x + u lies in the closed convex hull of DN , we have

〈u, x∗〉 ≤ sup{〈z − x, z∗〉 : z∗ ∈ T (z) ∩NBX∗, z ∈ N BX} ≤ 2N2

and so ‖x∗‖ ≤ 2N3. 2

Another nice application is:

Corollary 17. [37] Let X be any Banach space and let S, T : X → 2X∗
be maximal

monotone operators. Suppose that

0 ∈ core [conv dom (T )− conv dom (S)].

For any x ∈ dom (T ) ∩ dom (S), T (x) + S(x) is a w∗-closed subset of X∗.

Proof. By the Krein-Smulian theorem, it suffices to use Theorem 11 to prove
every bounded w∗-convergent net in T (x) + S(x) has its limits in T (x) + S(x). 2

Thus, we preserve some structure—it is still open if T + S must actually be
maximal, see [31, 37].

Finally, a recent result by Simons [34] shows that:

Theorem 18. [34] If S is maximal monotone and int dom (S) is nonempty then

int dom (S) = int {x : (x, x∗) ∈ domFS}.
This then very neatly recovers the convexity of intD(S). It would be interest-

ing to how much one can similarly deduce about cl dom (S)—via regularization or
enlargement—when int dom (S) is empty.

For example, suppose S is domain regularizable meaning that for ε > 0, there
is a maximal Sε with H (D(S), D(Sε)) ≤ ε and core D(Sε) 6= ∅. Then dom (S) is
convex. In reflexive space we can use

Sε :=
(
S−1 + N−1

εBX

)−1
,

which is maximal by Theorem 29. [Here H denotes Hausdorff distance and we
assume 0 ∈ S(0).] See also Theorems 37 and 43. When S = ∂f for a closed
convex f this applies in general Banach space. Indeed Sε = ∂fε where fε(x) :=
inf‖y−x‖≤ε f(y).

3. Cyclic and Acyclic Monotone Operators

For completeness we offer a simple variational proof of the next theorem, origi-
nally due to Rockafellar. Simons’ proof is well described in [25, 31].

Theorem 19. (Maximality of Subgradients) Every closed convex function has
a (locally) maximal monotone subgradient.1

1This fails in all incomplete normed spaces and in some Fréchet spaces
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Proof. Without loss of generality we may suppose

〈0− x∗, 0− x〉 ≥ 0 for all x∗ ∈ ∂f(x)

but 0 6∈ ∂f(0); so f(x) − f(0) < 0 for some x. By Zagrodny’s Approximate mean
value theorem (see [11, Thm. 3.4.6]), we find xn → c ∈ (0, x], x∗n ∈ ∂f(xn) with

lim inf
n

〈x∗n, c− xn〉 ≥ 0, lim inf
n

〈x∗n, x〉 ≥ f(0)− f(x) > 0.

Now c = θ x for some θ > 0. Hence,

lim sup
n

〈x∗n, xn〉 < 0,

a contradiction. 2

We recall that for N = 2, 3, . . ., a multifunction T is N -monotone if

N∑

k=1

〈x∗k, xk − xk−1〉 ≥ 0

whenever x∗k ∈ T (xk) and x0 = xN . We say T is cyclically monotone when T is
N -monotone for all N ∈ IN, as hold for all convex subgradients. Then monotonicity
and 2-monotonicity coincide, while it is a classical result of Rockafellar [30, 25] that
in a Banach space every maximal cyclically monotone operator is the subgradient
of a proper closed convex function (and conversely). We recast this result to make
the parallel with the Debrunner-Flor Theorem 8 explicit.

Theorem 20. (Rockafellar, [25, 30].) Suppose C is cyclically monotone on a
Banach space X. Then C has a maximal cyclically monotone extension C, which
is of the form C = ∂fC for some proper closed convex function fC . Moreover,
R(C) ⊂ conv∗R(C).

Proof. We fix x0 ∈ domC, x∗0 ∈ C(x0) and define

fC(x) := sup

{
〈x∗n, x− xn〉+

n−1∑

k=1

〈x∗k−1, xk − xk−1〉 : x∗k ∈ C(xk), n ∈ IN

}
,

where the sup is over all such chains. The proof in [26] shows that C ⊂ C := ∂fC .
The range assertion follows because fC is the supremum of affine functions whose

linear parts all lie in range C. This is most easily seen by writing fC = g∗C with
gC(x∗) := inf{∑i tiαi :

∑
i tix

∗
i = x∗,

∑
i ti = 1, ti > 0} for appropriate αi. 2

The exact relationship between F∂f and ∂f is quite complicated. One does
always have

〈x, x∗〉 ≤ F∂f (x, x∗) ≤ f(x) + f∗(x) ≤ F∗∂f (x, x∗) ≤ 〈x, x∗〉+ ι∂f (x, x∗),

as shown in [5, Prop. 2.1]. Likewise, when L is linear and maximal (with dense
range) then

FL(x, x∗) = 〈x, x∗〉 − inf
z∈X

〈z, Lz − x∗〉.

From various perspectives it is interesting to answer the following questions, [6].
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Q1. When is a maximal monotone operator T the sum of a subgradient ∂f and
a skew linear operator S? This is closely related to the behaviour of the
function

FLT (x) :=
∫ 1

0

sup
x∗(t)∈T (tx)

〈x, x∗(t)〉 dt,

defined assuming 0 ∈ core dom T .2 In this case, FLT = FL∂f = f , and we
call T (fully) decomposable.

Q2. How does one appropriately generalize the decomposition of a linear monotone
operator L into a symmetric (cyclic) and a skew (acyclic) part? Viz

L =
1
2
(L + L∗|X) +

1
2
(L− L∗|X).

Answers to these questions may well allow one to make progress with open questions
about behaviour of maximal monotone operators outside reflexive space—since any
‘bad’ properties are anticipated to originate with the skew or acyclic part.

3.1. Cyclic-Acyclic Decompositions of Monotone Operators. We next de-
scribe Asplund’s approach in [1, 2] to Question 2. We begin by observing that every
3-monotone operator such that 0 ∈ T (0) has the local property that

〈x, x∗〉+ 〈y, y∗〉 ≥ 〈x, y∗〉(3)

whenever x∗ ∈ T (x) and y∗ ∈ T (y). We will call a monotone operator satisfying
(3), 3−-monotone, and write T ≥N S when T = S + R with R being N -monotone.
Likewise we write T ≥ω0 S when R is cyclically monotone.

Proposition 21. Let N be one of 3−, 3, 4, . . ., or ω0. Consider an increasing
(infinite) net of monotone operators on a Banach space X, satisfying

0 ≤N Tα ≤N Tβ ≤2 T,

whenever α < β ∈ A.
Suppose that 0 ∈ Tα(0), 0 ∈ T (0) and that 0 ∈ core dom T . Then

a) There is a N -monotone operator TA with Tα ≤N TA ≤2 T, for all α ∈ A.
b) If R(T ) ⊂ MBX∗ for some M > 0 then one may suppose R(TA) ⊂ MBX∗ .

Proof. a) We first give details of the single-valued case. As 0 ≤2 Tα ≤2 Tβ ≤2 T ,
while T (0) = 0 = Tα(0), we have

0 ≤ 〈x, Tα(x)〉 ≤ 〈x, Tβ(x)〉 ≤ 〈x, T (x)〉,
for all x in dom T . This shows that 〈x, Tα(x)〉 converges as α goes to ∞.

Fix ε > 0 and M > 0 with T (εBX) ⊂ M BX∗ . We write Tβα = Tβ − Tα for
β > α, so that 〈Tβαx, x〉 → 0 for x ∈ domT as α, β go to ∞.

We appeal to (3) to obtain

〈x, Tβα(x)〉+ 〈y, Tβα(y)〉 ≥ 〈Tβα(x), y〉,(4)

for x, y ∈ dom T . Also, 0 ≤ 〈x, Tβα(x)〉 ≤ ε for β > α > γ(x) for all x ∈ domT .

2The use of FLT originates in discussions I had with Fitzpatrick shortly before his death.
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Now, 0 ≤ 〈y, Tβα(y)〉 ≤ 〈y, T (y)〉 ≤ εM for ‖y‖ ≤ ε. Thus, for ‖y‖ ≤ ε2 and
β > α > γ(x) we have

ε(M + ε) ≥ 〈x, Tβα(x)〉+ 〈y, T (y)〉(5)
≥ 〈x, Tβα(x)〉+ 〈y, Tβα(y)〉
≥ 〈y, Tβα(x)〉,

from which we obtain ‖Tβα(x)‖ ≤ M + ε for all x ∈ dom T , while 〈y, Tβα(x)〉 → 0
for all y ∈ X. We conclude that {Tα(x)}α∈A is a norm-bounded weak-star Cauchy
net and so weak-star convergent to the desired N -monotone limit TA(x).

In the general case we may still use (3) to deduce that Tβ = Tα + Tβα where (i)
Tβα ⊂ (M + ε)BX∗ and (ii) for each t∗βα ∈ Tβα one has t∗βα ⇁∗ 0 as α and β →∞.
The conclusion follows as before, but is somewhat more technical.

b) Fix x ∈ X. We again apply (3), this time to Tα to write

〈Tx, x〉+ 〈Ty, y〉 ≥ 〈Tαx, x〉+ 〈Tαy, y〉 ≥ 〈Tαx, y〉
for all y ∈ D(T ) = X, by Theorem 8 (c). Hence

〈Tx, x〉+ M‖y‖ ≥ ‖Tαx‖ ‖y‖,
for all y ∈ Y . This shows that Tα(x) lies in the M -ball, and since the ball is
weak-star closed, so does TA(x).

The set-valued case is entirely analogous, but more technical. Details will appear
separately. 2

We comment that 0 ≤2 (−ny, nx) ≤2 (−y, x) for n ∈ IN, shows the need for
(3) in the deduction that Tβα(x) are equi-norm bounded. Moreover, if X is an
Asplund space, the proof of Proposition 21 can be adjusted to show that TA(x) =
norm− limα→∞ Tα(x), [6] (the Daniel property). The single-valued case effectively
comprises [2, Theorem 6.1].

We shall say that a maximal monotone operator A is acyclic or in Asplund’s
term irreducible if whenever A = ∂g + S with S maximal monotone and g closed
and convex then g is necessarily a linear function. We can now provide a broad
extension of Asplund’s original idea, [1, 2]:

Theorem 22. (Asplund Decomposition.) Suppose that T is a maximal monotone
operator on a Banach space with domT having non-empty interior.

a) Then T may be decomposed as T = ∂f + A, where f is closed and convex
while A is acyclic.

b) If the range of T lies in M BX∗ then f may be assumed M -Lipschitz.

Proof. a) We normalize so 0 ∈ T (0) and apply Zorn’s lemma to the set of cyclically
monotone operators C := {C : 0 ≤ω0 C ≤2 T, 0 ∈ C(0)} in the cyclic order. By
Proposition 21 every chain in C has a cyclically monotone upper-bound. Consider
such a maximal C with 0 ≤ω0 C ≤2 T . Hence T = C + A where by construction A
is acyclic. Now, T = C + A ⊂ ∂f + A, by Rockafellar’s result. Since T is maximal
the decomposition is as asserted.

b) In this case we require all members of C to have their range in the M -ball
and apply part (b) of Proposition 21. Alternatively, observe that 0 ≤3− U ≤2 T
implies that

‖U(x)‖ ≤ ‖T (x)‖
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for all x ∈ X. It remains to observe that every M -bounded cyclically monotone
operator extends to an M -Lipschitz subgradient—as an inspection of the proof of
Rockafellar’s result of Theorem 20 confirms. 2

By way of application we offer:

Corollary 23. Let T be an arbitrary maximal monotone operator T on a Banach
space. For µ > 0 one may decompose

T ∩ µBX∗ ⊂ T̂µ = ∂fµ + Aµ,

where fµ is µ-Lipschitz and Aµ is acyclic (with bounded range).

Proof. Combining Theorem 22 with Proposition 14 we deduce that the composi-
tion is as claimed. 2

Note that since the acyclic part Aµ is bounded in Corollary 23, it is only skew
and linear when T is itself cyclic. Hence, such a range bounded monotone operator
is never fully decomposable in the sense of Question 1.

Theorem 22 and related results in [1, 6] are entirely existential: how can one
prove Corollary 22 constructively in finite dimensions? How in general does one
effectively diagnose acyclicity? What is the decomposition for such simple monotone
maps such as (x, y) 7→ (sinh(x)−α y2/2, sinh(x)−α x2/2) which is monotone exactly
for α ≥ −2/

√
x2

0 − 1 ∼ 0.7544 . . . with x0 the smallest fixed point of coth?
Asplund comments in [2] that “nothing more is known about irreducible monotone

mappings in this the simplest of cases” than the following:

Example 1. Let f be a C1-complex function on an open convex subset D ⊂ C.
Viewed as a real function on IR2 the following is the case

• f is monotone if and only if it satisfies

Re
∂f

∂z
≥

∣∣∣∣
∂f

∂z

∣∣∣∣
• f is a subgradient if and only if it satisfies

∂f

∂z
≥

∣∣∣∣
∂f

∂z

∣∣∣∣ .

Thus, for f to be acyclic there must exist no nonconstant analytic function g with
∂g

∂z
≥

∣∣∣∣
∂g

∂z

∣∣∣∣ and Re
∂(f − g)

∂z
≥

∣∣∣∣
∂(f − g)

∂z

∣∣∣∣ .

Example 24. Consider the maximal monotone linear mapping

Tθ : (x, y) 7→ (cos(θ)x− sin(θ)y, cos(θ)y + (sin(θ)x)

for 0 ≤ θ ≤ π/2. The methods in [1] show that for n = 1, 2, . . . the rotation
mapping Tπ/n is n-monotone but is not (n + 1)-monotone.

4. Maximality In Reflexive Banach Space

We begin with:

Proposition 25. A monotone operator T on a reflexive Banach space is maximal
if and only if the mapping T (· + x) + J is surjective for all x in X. [Moreover,
when J and J−1 are both single valued, a monotone mapping T is maximal if and
only if T + J is surjective.]
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Proof. We prove the ‘if’. The ‘only if’ is completed in Corollary 33. Assume
(w, w∗) is monotonically related to the graph of T . By hypothesis, we may solve
w∗ ∈ T (x + w) + J(x). Thus w∗ = t∗ + j∗ where t∗ ∈ T (x + w), j∗ ∈ J(x). Hence

0 ≤ 〈w − (w + x), w∗ − t∗〉 = −〈x,w∗ − t∗〉 = −〈x, j∗〉 = −‖x‖2 ≤ 0.

Thus, j∗ = 0, x = 0. So w∗ ∈ T (w) and we are done. 2

We now prove our central result whose proof—originally very hard and due to
Rockafellar [29]—has been revisited over many years culminating in the results in
[31, 35, 36, 38, 11] among others:

Theorem 26. Let X be a reflexive space. Let T be maximal monotone and let f
be closed and convex. Suppose that

0 ∈ core {conv dom (T )− conv dom (∂f)}.
Then
(a) ∂f + T + J is surjective.
(b) ∂f + T is maximal monotone.
(c) ∂f is maximal monotone.

Proof. (a) As in [35, 36, 38], we consider the Fitzpatrick function FT (x, x∗) and
further introduce fJ(x) := f(x) + 1/2‖x‖2. Let G(x, x∗) := −fJ(x) − f∗J (−x∗).
Observe that

FT (x, x∗) ≥ 〈x, x∗〉 ≥ G(x, x∗)
pointwise thanks to the Fenchel-Young inequality

f(x) + f∗(x∗) ≥ 〈x, x∗〉,
for all x ∈ X, x∗ ∈ X∗, along with Proposition 1. Now, the constraint qualification

0 ∈ core {conv dom (T )− conv dom (∂f)}
assures that the Sandwich theorem applies to FT ≥ G since f∗J is everywhere finite
by Proposition 6.

Then there are w ∈ X and w∗ ∈ X∗ such that

FT (x, x∗)−G(z, z∗) ≥ w(x∗ − z∗) + w∗(x− z)(6)

for all x, x∗ and all z, z∗. In particular, for x∗ ∈ T (x) and for all z∗, z we have

〈x− w, x∗ − w∗〉+ [fJ(z) + f∗J (−z∗) + 〈z, z∗〉] ≥ 〈w − z, w∗ − z∗〉.
Now use the fact that −w∗ ∈ dom (∂f∗J ), by Proposition 6, to deduce that

−w∗ ∈ ∂fJ(v) for some z and so

〈v − w, x∗ − w∗〉+ [fJ(v) + f∗J (−w∗) + 〈v, w∗〉] ≥ 〈w − v, w∗ − w∗〉 = 0.

The second term on the left is zero and so w∗ ∈ T (w) by maximality. Substitution
of x = w and x∗ = w∗ in (6), and rearranging yields

〈w, w∗〉+ {〈−z∗, w〉 − f∗J (−z∗)}+ {〈z,−w∗〉 − fJ(z)} ≤ 0,

for all z, z∗. Taking the supremum over z and z∗ produces 〈w, w∗〉 + fJ(w) +
f∗J (−w∗) ≤ 0. This shows −w∗ ∈ ∂fJ(w) = ∂f(w) + J(w) on using the sum
formula for subgradients, implicit in Proposition 6.

Thus, 0 ∈ (T + ∂fJ )(w), and since all translations of T + ∂f may be used, while
the (CQ) is undisturbed by translation, (∂f + T ) (x + ·) + J is surjective which
completes (a). Also ∂f + T is maximal by Proposition 25 which is (b). Finally,
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setting T ≡ 0 we recover the reflexive case of the maximality for a lsc convex
function. 2

Recall that the normal cone NC(x) to a closed convex set C at a point x in C
is NC(x) = ∂ιC(x).

Corollary 27. The sum of a maximal monotone operator T and a normal cone
NC on a reflexive Banach space, is maximal monotone whenever the transversality
condition 0 ∈ core [C − conv dom (T )] holds.

In particular, if T is monotone and C := cl conv dom (T ) has nonempty interior,
then for any maximal extension T the sum T +NC is a ‘domain preserving’ maximal
monotone extension of T .

Corollary 28. [31, 36] The sum of two maximal monotone operators T1 and T2,
on a reflexive Banach space, is maximal monotone whenever the transversality con-
dition 0 ∈ core [conv dom (T1)− conv dom (T2)] holds.

Proof. Theorem 26 applies to the maximal monotone product mapping T (x, y) :=
(T1(x), T2(y)) and the indicator function f(x, y) = ι{x=y} of the diagonal in X⊗X.
Finally, check that the given transversality condition implies the needed (CQ), along
the lines of Theorem 26. We obtain that T + JX⊗X + ∂ι{x=y} is surjective. Thus,
so is T1 + T2 + 2 J and we are done. 2

As always in convex analysis, one may easily replace the core condition by a
relativized version—with respect to the closed affine hull.

4.1. The Fitzpatrick Inequality. We record that

F∂f (x, x∗) ≤ f(x) + f∗(x∗),

and that we have exploited the beautiful inequality

FT (x, x∗) + f(x) + f∗(−x∗) ≥ 0, ∀x ∈ X, x∗ ∈ X∗,(7)

valid for any maximal monotone T and any convex function f . Also, note that
(x, x∗) 7→ f(x) + f∗(x∗) is a representative function for ∂f . Correspondingly, we
have the Fitzpatrick inequality

FT1(x, x∗) + FT2(x,−x∗) ≥ 0, ∀x ∈ X, x∗ ∈ X∗,(8)

valid for any maximal monotone T1, T2. Moreover, by Proposition 1,

F∗T (x∗, x) ≥ sup
y∗∈T (y)

〈x, y∗〉+ 〈x∗, y〉 − FT (y, y∗) = FT (x, x∗).(9)

We clearly have an extension of (8): H1
T (x, x∗) +H2

S(x,−x∗) ≥ 0, for any repre-
sentative functions H1

T and H2
S .

Letting F̂S(x, x∗) := FS(x,−x∗), we may establish:

Theorem 29. Let S and T be maximal monotone on a reflexive space. Suppose
that 0 ∈ core {dom (FT ) − dom (F̂S)} as happens if 0 ∈ core {conv graph (T ) −
conv graph (−S)}. Then 0 ∈ range (T + S).

Proof. We apply the Fenchel duality theorem, or follow through the steps of
Theorem 26. From either result one obtains µ ∈ X, λ ∈ X∗ and β ∈ IR such that

FT (x, x∗)− 〈x, λ〉 − 〈µ, x∗〉+ 〈µ, λ〉 ≥ β ≥ −FS(y,−y∗) + 〈y, λ〉 − 〈µ, y∗〉 − 〈µ, λ〉,
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for all variables x, y, x∗, y∗. Hence for x∗ ∈ T (x) and −y∗ ∈ S(y) we obtain

〈x− µ, x∗ − λ〉 ≥ β ≥ 〈y − µ, y∗ + λ〉.
If β ≤ 0, we derive that −λ∗ ∈ S(µ) and so β = 0; consequently, λ ∈ T (µ) and
since 0 ∈ (T + S)(µ) we are done. If β ≥ 0 we argue first with T . 2

Note that the graph condition in Theorem 29 is formally more exacting than the
domain condition as shown by conv graph (J`2) which is the diagonal in `2 ⊗ `2 =
dom (FJ`2

), indeed FJ`2
(x, x∗) = 1

4‖x+x∗‖2. More interestingly, Zalinescu [40] has
adapted this argument to extend results like those in [34] in the reflexive case.

4.2. Extensions to non-reflexive space. We let T denote the monotone closure
of T in X∗∗ ×X∗. That is, x∗ ∈ T (x∗∗) when

inf
y∗∈T (y)

〈x∗ − y∗, x∗∗ − y〉 ≥ 0.

Recall that T is type (NI) if

inf
y∗∈T (y)

〈x∗ − y∗, x∗∗ − y〉 ≤ 0

for all x∗∗ ∈ X∗∗ and x∗ ∈ X∗, see [31, 32].
We say T is of dense type if every pair (x∗, x∗∗) in the graph of the monotone

closure of T is the limit of a net (x∗α, xα) with x∗α ∈ T (xα) with xα ⇁∗ x∗∗, x∗α → x∗

and supα ‖xα‖ < ∞, and we write x∗ ∈ T1(x∗∗),[19, 31, 32].
Clearly, T1(x) ⊂ T (x); so every dense type operator is of type (NI). We denote

FT (G, x∗) := P∗T (x∗, G), viewed as a mapping on X∗∗×X∗, and make the following
connection with FT .

Proposition 30. Let T be maximal monotone on a Banach space X. Then

FT (G, x∗) = sup
y∗∈T (y)

〈y∗, G〉+ 〈y, x∗〉 − 〈y, y∗〉 ≥ 〈x∗, G〉

with equality if and only if x∗ ∈ T (G).
In particular, FT |X×X∗ = FT .
Moreover, T is type (NI) if and only if FT is a representative function for T .

Proof. These are left for the reader. 2

Proposition 31. (Gossez) The subgradient of every closed convex function f on
a Banach space is of dense type. Indeed

∂f = (∂f)1 = (∂f∗)−1
.

Proof. For any closed convex f we have (∂f∗)−1 ⊂ ∂f, while—with a little
effort—Golstein’s theorem shows that (∂f∗)−1 ⊂ ∂f1. 2

A fairly satisfactory extension of Theorem 26 is:

Corollary 32. If T is type (NI) then

range (T + ∂f∗∗ + J∗∗) = X∗.

Proof. Follow the steps of Theorem 26 or Theorem 29 using PT and and fJ + f∗J
as the functions in the Fitzpatrick inequality. 2

In the case that T is dense type this result originates with Gossez (see [19, 25]).
We next recover the Rockafellar-Minty surjectivity theorem:
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Corollary 33. For a maximal monotone operator on a reflexive Banach space,
range (T + J) = X∗.

Proof. Let f ≡ 0 in Theorem 26. Alternatively, on noting that

FJ(x, x∗) ≤ ‖x‖2 + ‖x∗‖2
2

,

we may apply Theorem 29. 2

Correspondingly, we see for an maximal monotone N of type (NI) that range (N+
J∗∗) = X∗ which implies that N = N ; and so that N is maximal as a monotone
mapping from X∗∗ to X∗.

Theorem 34. (Fitzpatrick, Phelps, [17]) Every locally maximal monotone op-
erator on a Banach space has cl range T convex.

Proof. We suppose not and then may suppose by homothety that there are ±x∗

in cl range T of unit-norm but with midpoint 0 6∈ cl range T .
We build the equivalent dual ball B

′
:= conv {±2x∗, α B∗

X} where 0 < α < 1/2
is chosen with (range T ) ∩ 2αB∗

X = ∅. We consider T̂ extending T ∩ B
′

as in
Proposition 14, so that

range T̂ ⊂ cl conv {R(T ) ∩B
′} and range T̂ \ range T ⊂ bd B

′
.

It follows that

range T̂ ⊂ (R(T ) ∩B′)
⋃

(cl conv {R(T ) ∩B
′} ∩ bd B

′
).

Hence range T̂ is weak-star disconnected. As T̂ is a weak-star cusco it has a weak-
star connected range which contradicts the construction. 2

B
′
(red), αBX∗ (yellow) and 2αBX∗ (grey)

A dual argument shows that type (VFP) mappings have cl dom (T ) convex.

5. Further Applications

5.1. Local Maximality Revisited. We are also in a position to show why in a
reflexive setting all maximal monotone operators are locally maximal, that is type
(FP). We start with the following contrapositive whose simple proof is in [25].
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Proposition 35. Let T be a monotone operator on a Banach space X. Then T is
locally maximal monotone if and only if every weak-star compact and convex set C∗

in X∗ with R(T ) ∩ intC∗ 6= ∅ is such that if x∗ ∈ intC∗ (in norm) but x∗ /∈ T (x)
there is z∗ ∈ T (z) ∩ C∗ with 0 > 〈z∗ − x∗, z − x〉.

It is obvious that every maximal monotone operator on a reflexive space is type
(D), and it is known that type (D) implies type (FP), [32, Thm. 17]. A direct proof
follows.

Theorem 36. (Fitzpatrick-Phelps) Every maximal monotone operator on a re-
flexive space is locally maximal.

Proof. Since X is reflexive, M := (T−1 + ∂ιC∗)−1 is maximal, by Theorem 26(b),
while x∗ ∈ intC∗\M(x). Since M is maximal monotone we can find z ∈ domT, z∗ ∈
C∗, z∗ ∈ T (z) and u ∈ NC∗(z∗) such that z + u ∈ (T + ∂ιC∗)−1(z∗) with

0 > 〈z∗ − x∗, z − x〉+ 〈z∗ − x∗, u〉.
As the second term on the right is nonnegative, we are done. 2

A useful reformulation of the argument in Theorem 38 is given next.

Proposition 37. (Fitzpatrick-Phelps) Let X be a Banach space. A maximal
monotone operator T is locally maximal monotone if

M(T, C∗) :=
(
T−1 + ∂ιC∗

)−1

is maximal monotone on X whenever C∗ is convex and weak-star compact with
R(T ) ∩ intC∗ 6= ∅.

We shall call an operator satisfying these hypotheses strongly locally maximal.
While every maximal monotone operator on a reflexive space is clearly strongly lo-
cally maximal, not every convex subgradient is—as Theorem 46 will show. However
we can still use Proposition 35 to prove:

Theorem 38. (Simons) The subgradient of every closed convex function f on a
Banach space is locally maximal monotone.

Proof. Fix x∗ ∈ intC∗\∂g(x) as in the hypotheses of Proposition 35. Then Corol-
lary 5 and Theorem 19 and combine to show that M := ∂g∗ + ∂ιC∗ = ∂ (g∗ + ιC∗)
is maximal monotone on X∗, since dom g∗ ∩ intC∗ 6= ∅. Now x 6∈ M(x∗) (since
x∗ ∈ intC∗) so we deduce the existence of w∗∗ = z∗∗ + u∗∗, z∗∗ ∈ ∂g∗(z∗), u∗∗ ∈
∂ιC(z∗) = NC(z∗) with

0 > 〈z∗ − x∗, z∗∗ − x〉+ 〈z∗ − x∗, u∗∗〉 ≥ 〈z∗ − x∗, z∗∗ − x〉.
By Proposition 31 we may select z∗α and zα with z∗α ∈ ∂g(zα), z∗α → z∗ ∈ C∗,
zα ⇁∗ z∗∗ and supα ‖zα‖ < ∞. In consequence,

lim sup
α

〈z∗α − x∗, zα − x〉 < 0.

Now the observation that z∗α ∈ C∗ for large α, and an appeal to Proposition 35
finishes the proof of (a). 2

One may similarly prove Simon’ result that dense type operators are locally
maximal by applying a variant of Corollary 32 with ∂g∗ replaced by T−1. The
corresponding results for type (VFP) appear usually to be easier. For example,
T is type (VFP) if T + NC is maximal monotone for all bounded closed convex
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sets with dom T ∩ intC 6= ∅. In consequence, subgradients and reflexive maximal
monotones are type (VFP).

5.2. The Composition Formula. Another very useful foundational result is:

Theorem 39. [38, Thm. 6] Suppose X and Y are Banach spaces with X reflexive,
that T is a maximal monotone operator on Y , and that A : X 7→ Y , is a bounded
linear mapping. Then TA := A∗ ◦ T ◦ A is maximal monotone on X whenever
0 ∈ core (range (A) + conv dom T ).

Proof. Monotonicity is clear. To obtain maximality, we consider the Fitzpatrick
inequality (8) to write

f(x, x∗) + g(x, x∗) ≥ 0,

where

f(x, x∗) := inf{FT (Ax, y∗) : A∗y∗ = x∗}, g(x, x∗) :=
1
2
‖x‖2 +

1
2
‖x∗‖2,

and apply Fenchel’s duality theorem [39, 30, 9, 11]—or use the Sandwich theorem
directly—to deduce the existence of x ∈ X, x∗ ∈ X∗ with

f∗(x∗, x) + g∗(x∗, x) ≤ 0.(10)

Semi-continuity of f is not needed since g is continuous throughout.
Also, the constraint qualification implies that the condition used in [11, Thm

4.4.3] and in [23, Proposition 13] holds. Thus, applying [23, Proposition 13]—or
carefully using the standard formula for the conjugate of a convex composition
([28], [11, Thm 4.4.3])—we have for some y∗ with A∗y∗ = x∗:

f∗(x∗, x) = inf{F∗T (Ax, y∗) : A∗y∗ = x∗} = min{F∗T (y∗, Ax) : A∗y∗ = x∗}
= F∗T (y∗, Ax)
≥ FT (Ax, y∗),

where the last inequality follows from (9). Moreover,

g∗(x∗, x) =
1
2
‖x‖2 +

1
2
‖A∗y∗‖2.

Thus, (10) implies that
{
FT (Ax, y∗)− 〈y∗, Ax〉

}
+

{
1
2
‖x‖2 +

1
2
‖A∗y∗‖2 + 〈y∗, Ax〉

}
≤ 0,

and we conclude that y∗ ∈ T (Ax) and −x∗ := −A∗y∗ ∈ JX(x) since both bracketed
terms are non-negative. Hence, 0 ∈ JX(x) + TA(x).

In the same way if we start with

f(x, x∗) := inf{FT (Ax, y∗) : A∗y∗ = x∗+x∗0}, g(x, x∗) :=
1
2
‖x‖2+1

2
‖x∗‖2−〈x, x∗0〉,

we deduce, x∗0 ∈ JX(x) + TA(x). This applies to all domain translations of T . As
in Theorem 26, this is sufficient to conclude TA is maximal. 2

Note that only the domain space needs to be reflexive. Application of Theorem
39 to T (x, y) := (T1(x), T2(y)), and A(x) := (x, x) yields TA(x) = T1(x) + T2(x)
and recovers Theorem 26. With a little more effort the reader can discover how
to likewise embed Theorem 39 in Theorem 26. Alternatively, one may combine
Theorem 26 and this result in one. Again, it is relatively easy to relativize this
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result to the intrinsic core; this is especially useful in finite dimensions, see [3]. A
recent paper [12] observes that the result remains true when one assumes only that

{(A∗y∗, Ax, r) : F∗T (Ax, y∗) ≤ r}
is relatively closed in X∗ ×R(A)× IR.

An important case of Theorem 39 is the case of a reflexive injection.

Corollary 40. Let T be maximal monotone on a Banach space Y . Let ι denote
the injection of a reflexive subspace Z ⊂ Y into Y . Then TZ := ι∗ ◦ T ◦ ι is
maximal monotone on Z whenever 0 ∈ core (Z + conv dom T ). In particular, if
0 ∈ core (conv dom T ) then TZ is maximal for each reflexive subspace Z.

In this case [12] implies the result remains true when one assumes only that

{(y∗|Z , z, r) : F∗T (z, y∗) ≤ r, z ∈ Z}
is relatively closed in Z∗ × Z × IR.

5.3. Monotone Variational Inequalities. We say that T is coercive on C if
infy∗∈(T+NC)(y)〈y, y∗〉/‖y‖ → ∞ as y ∈ C goes to infinity in norm, with the con-
vention that inf ∅ = +∞. A variational inequality requests a solution y ∈ C and
y∗ ∈ T (y) to

〈y∗, x− y〉 ≥ 0 ∀x ∈ C.

Equivalently this requires us to solve the set inclusion 0 ∈ T (y)+NC(y). In Hilbert
space this is also equivalent to finding a zero of the normal mapping TC(x) :=
T (PC(x)) + (I − PC)(x).

We denote the variational inequality by V (T ;C). (For general variational in-
equalities with T merely upper semi-continuous, proving solutions to V(T,C) is
equivalent to establishing Brouwer’s theorem.)

Corollary 41. Suppose T is maximal monotone on a reflexive Banach space and is
coercive on the closed convex set C. Suppose also that 0 ∈ core (C− conv dom (T )).
Then V (T, C) has a solution.

Proof. Let f := ιC , the indicator function. For n = 1, 2, 3, · · · , let Tn := T +J/n.
We solve

0 ∈ (Tn + ∂ιC) (yn) = (T + ∂ιC) +
1
n

J(yn)(11)

and take limits as n goes to infinity. More precisely, we observe that using our
key Theorem 26, we find yn in C, and y∗n ∈ (T + ∂ιC) (yn), j∗n ∈ J(yn)/n with
y∗n = −j∗n. Then

〈y∗n, yn〉 = − 1
n
〈j∗n, yn〉 = − 1

n
‖yn‖2 ≤ 0

so coercivity of T + ∂ιC implies that ‖yn‖ remains bounded and so j∗n → 0. On
taking a subsequence we may assume yn ⇁ y. Since T + ∂ιC is maximal monotone
(again by Theorem 26), it is demi-closed [11]. It follows that 0 ∈ (T + ∂ιC)(y) =
T (y) + NC(y) as required. 2

A more careful argument requires only that for some c ∈ C

inf
y∗∈T (y)

〈y − c, y∗〉/‖y‖ → ∞

as ‖y‖ → ∞, y ∈ C. Letting C = X in Corollary 41 we deduce:
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Corollary 42. Every coercive maximal monotone operator on a Banach space is
surjective if (and only if) the space is reflexive.

Proof. To complete the proof we recall that, by James’ theorem, surjectivity of J
is equivalent to reflexivity of the corresponding space. 2

We can similarly derive that V (T ,C
∗
) will have solution when the (CQ) holds

and T is type (NI). We refer to [20, 17, 18] for more detailed results regarding
coercive operators in non-reflexive space. We can also improve Corollary 15 in the
reflexive setting.

Theorem 43. [31] Suppose T is maximal monotone on a reflexive Banach space.
Then dom (T ) and range (T ) have convex closure (and interior).

Proof. Without loss of generality, we assume 0 is in the closure of conv dom (T ).
Fix y ∈ dom (T ), y∗ ∈ T (y). Theorem 33 applied to T/n solves w∗n/n+ j∗n = 0 with
w∗n ∈ T (wn), j∗n ∈ J(wn), for integer n > 0. By monotonicity

1
n
〈y∗, y − wn〉 ≥ 1

n
〈w∗n, y − wn〉 = ‖wn‖2 − 〈j∗n, y〉

where ‖wn‖2 = ‖j∗n‖2 = 〈j∗n, wn〉 and wn ∈ dom (T ). We deduce supn ‖wn‖ < ∞.
Thus, (j∗n) has a weak cluster point j∗. In particular, denoting D := dom (T )

d2
D(0) ≤ lim inf

n→∞
‖wn‖2 ≤ inf

y∈D
〈j∗, y〉 = inf

y∈conv D
〈j∗, y〉 ≤ ‖j∗‖ dconv D(0) = 0.

We have actually shown that cl conv dom (T ) ⊂ cl dom (T ) and so cl dom (T ) is
convex as required.

Since range (T ) = dom (T−1) and X∗ is also reflexive we are done. 2

In a non-reflexive space, Theorem 32 applied similarly proves that domT is
convex. Consequently, if as when T is type (ED)—see [32]—dom (T )∩ ⊂ dom (T ),
the later is convex. Dually, it is known that every locally maximal operator T—and
so every dense type operator—has range (T ) convex, [25, Prop. 4.2].

Corollary 44. Suppose T is maximal monotone on a reflexive Banach space X
and is locally bounded at each point of cl dom (T ). Then dom (T ) = X.

Proof. Let us first observe that dom (T ) must be closed and so convex. By the
Bishop-Phelps theorem, (see [11]), there is some boundary point x ∈ dom (T ) with
a non-zero support functional x∗. Then T (x) + [0,∞) x∗ is monotonically related
to the graph of T . By maximality T (x)+[0,∞)x∗ = T (x) which is then non-empty
and (linearly) unbounded. 2

It also seems worth noting that the techniques of §5.1 are all at heart techniques
for variational equalities. We conclude this section by noting another convex ap-
proach to the affine monotone variational inequality (complementarity problem)
on a closed convex cone S in a reflexive space. We consider the abstract quadratic
program

0 ≤ µ := inf{〈L(x)− q, x〉 : Lx ≥S+ q, x ≥S 0},(12)

which has a convex objective function. Suppose that (12) satisfies a constraint
qualification as happens if either L(S) + S+ = X∗ or if X is finite dimensional and
S is polyhedral. Then there is y ∈ S++ = S with

µ ≤ 〈L(x)− q, x〉+ 〈Lx− q, y〉,(13)
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for all x ∈ S. Letting x := y shows µ = 0, and we have approximate solutions to
the affine complementarity problem. Moreover, when L is coercive on S or in the
polyhedral case, (12) is attained and we have produced a solution to the problem.

6. Limiting Examples and Constructions

It is unknown outside reflexive space whether cl dom (T ) must always be convex
for a maximal monotone operator, though the assumption of reflexivity in Theorem
may be relaxed to requiring R(T + J) is boundedly w∗-dense—as an examination
of the proof will show.

We do however have the following result:

Theorem 45. [8] The following are equivalent for a Banach space X.
(a) X is reflexive;
(b) int range (∂f) is convex for each coercive lsc convex function f on X;
(c) int range (T ) is convex for each coercive maximal monotone mapping T .

Proof. Suppose X is nonreflexive and p ∈ X with ‖p‖ = 5 and p∗ ∈ Jp where J
is the duality map. Define

f(x) := max
{

1
2
‖x‖2, ‖x− p‖ − 12 + 〈p∗, x〉, ‖x + p‖ − 12− 〈p∗, x〉

}

for x ∈ X. By the max-formula, we have, for x ∈ BX ,

∂f(p) = BX∗ + p∗, ∂f(−p) = BX∗ − p∗, ∂f(x) = Jx(14)

using inequalities like ‖p− p‖ − 12 + 〈p∗, p〉 = 13 > 25
2 = 1

2‖p‖2.
Moreover, f(0) = 0 and f(x) > 1

2‖x‖ for ‖x‖ > 1, thus ‖x∗‖ > 1
2 if x∗ ∈ ∂f(x)

and ‖x‖ > 1. Combining this with (14) shows

range (∂f) ∩ 1
2
BX∗ = range (J) ∩ 1

2
BX∗ .

Let UX∗ denote the open unit ball in X∗. Now James’ theorem [31, 11] gives us
points x∗ ∈ 1

2UX∗ \ range (J), thus UX∗ \ range (∂f) 6= ∅. However, from (14)

UX∗ ⊂ conv ((p∗ + UX∗) ∪ (−p∗ + UX∗)) ⊂ conv int range (∂f)

so range (∂f) has non-convex interior. This shows that (b) implies (a) while (c)
implies (b) is clear. Finally (a) implies (c) follows from Theorem 6. 2

Observe the distinct role of convexity in each direction the proof of (a) ⇔ (c).
It is most often the case that one uses the same logic to establish any result of the
form “Property P holds for all maximal monotone operators if and only if X is a
Banach space with property Q.” Another example is “Every (maximal) monotone
operator T on a Banach space X is bounded on bounded subsets of int domT iff X
is finite dimensional.” (See [8] for this and other like results.)

Example 2. The easiest explicit example, due to Fitzpatrick and Phelps (see [8]),
lies in the space c0 of null sequences endowed with the supremum norm. One may
use

(15) f(x) := ‖x− e1‖∞ + ‖x + e1‖∞
where e1 is first unit vector. Then

int range(∂f) = {U`1 + e1} ∪ {U`1 − e1}
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cl int range(∂f) = {B`1 + e1} ∪ {B`1 − e1}
both of which are far from convex. It is instructive to compute the closure of the
range of the subgradient. 2

Example 3. Gossez [21] produces a coercive maximal monotone operator with full
domain whose range has a non-convex closure, see also Example 4. It is of the form
2−n J`1 + S for some n > 0 and sufficiently large.

The continuous linear map S : `1 → `∞ is given by

(Sx)n := −
∑

k<n

xk +
∑

k>n

xk, ∀x = (xk) ∈ `1, n ∈ N.

We record that ∓S : `1 7→ `∞ is a skew bounded linear operator, for which S∗ is
not monotone but −S∗ is. Hence, −S is both of dense type and locally maximal
monotone (also called FP) while S is in neither class, [31, 4].

Relatedly, let ι denote the injection of `1 into `∞. Then for small positive ε, the
mapping Sε := ει + S is a coercive maximal monotone operators for which Sε fails
to be coercive, see also [20] 2

Example 4. (Some further related results) Somewhat more abstractly, one can
show that if the underlying space X is rugged, meaning that cl span range (J−J) =
X∗, then the following are equivalent whenever T is bounded linear and maximal
monotone, see [4]:

(i) T is of dense type.
(ii) cl range (T + λJ) = X∗, ∀λ > 0.
(iii) cl range (T + λJ) is convex, ∀λ > 0.
(iv) T + λJ is locally maximal monotone, ∀λ > 0.

It actually suffices that (ii)–(iv) hold for a sequence λn ↓ 0. The equivalence of
(i)–(iv) thus holds for the following rugged spaces: c0, c, `1, `∞, L1[0, 1], L∞[0, 1],
C[0, 1]. In cases like c0, or C[0, 1] which contain no complemented copy of `1, a
maximal monotone bounded linear T is always of dense type [4].

In particular, S in Example 3 is necessarily not of dense type, and so on. Also,
one may use a smooth renorming of `1. This means T + λJ is single-valued, demi-
continuous. 2

Fittingly, we finish with another result due implicitly to Simon Fitzpatrick. It
again uses convexity twice.

Theorem 46. (Fitzpatrick-Phelps, [16]) The following are equivalent for a
Banach space X.

(a) X is reflexive;
(b) ∂f is strongly locally maximal for each continuous convex function f on X;
(c) Each maximal monotone mapping T on X is strongly locally maximal.

Proof. (a)⇒ (c) was proven in Theorem 38 while (c) ⇒ (b) follows from Theorem
19. We prove (b)⇒ (a) by contradiction and James theorem. Select x∗ ∈ X∗ such
that ‖x∗‖ = 1 but |〈x∗, x〉| < 1 whenever ‖x‖ ≤ 1, and define f(x) := |〈x∗, x〉|.
Let T := ∂f and C∗ := BX∗ . Then dom (∂f∗ + NC∗) = {tx∗ : |t| < 1} while for
|t| < 1, (∂f∗ + NC∗) (tx∗) = {0}. Thus, the graph of M = (∂f∗ + NC)−1 is the set



22 JONATHAN BORWEIN

(−x∗, x∗),×{0} ⊂ X × X∗, which is monotone but not closed and hence not the
graph of a maximal monotone operator. 2

Note that we have exhibited a case of two convex functions f and g := ι∗B∗ on a
Banach space such that (∂f∗ + ∂g∗)−1 is maximal as a monotone mapping on X∗∗

but not as a mapping restricted to X.

7. Conclusion

The Fitzpatrick function introduced in [16] was discovered precisely to provide
a more transparent convex alternative to the earlier saddle function construction
due to Krauss [22]. At the time, Fitzpatrick’s interests were more centrally in the
differentiation theory for convex functions and monotone operators.

The search for results relating when a maximal monotone T is single-valued to
differentiability of FT did not yield fruit, and he put the function aside. This is still
the one area where to the best of my knowledge FT has proved of little help—in
part because generic properties of domFT and of dom (T ) seem poorly related.

By contrast, as we have seen the Fitzpatrick function and its relatives now pro-
vide the easiest access to a gamut of solvability and boundedness results. The clarity
of the constructions also offers hope for resolving some of the most persistent open
questions about maximal monotone operators such as:

(1) Must cl dom (T ) always be convex? This is true for all operators of type
(FPV), see [31].

(2) Must T1 +T2 be maximal when 0 ∈ core conv (dom (T1)−dom (T2))? What
if both operators are locally maximal?

(3) Is every locally maximal operator of dense type [32]? Is every maximal
monotone operator maximal locally [32]?

(4) Given a maximal monotone operator T , can one associate a convex function
fT to T in such a fashion that T (x) is singleton as soon as ∂fT (x) is?

(5) Are there some nonreflexive spaces, such as c0 or the James space (which is
codimension-one in its bidual, [15]), for which the answer to such questions
can be answered in the affirmative?
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[39] Zălinescu C., Convex Analysis in General Vector Spaces, World Scientific Press, 2002.
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