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Abstract. We combine methods from convex analysis, based on a function of

Simon Fitzpatrick, with a fine recent idea due to Voisei, to prove maximality

of the sum of two maximal monotone operators in Banach space under various
natural transversality conditions.

1. Introduction and Preliminaries

The results of this paper, especially Theorem 9, marry recent work by Voisei
[12] with additional convex analysis described in [1, 2], see also [4, §5.1] or [3, §8.3],
to provide an accessible short proof of the maximality of the sum of two maximal
monotone operators under domain conditions such as D(B)∩ coreD(A) 6= ∅, while
either D(B) is closed and convex or core convD(B) 6= ∅.

Recall that the domain of an extended-valued convex function, dom (f), is the
set of points with value less than +∞, and that a point s is in the core of a set S
(denoted by s ∈ core S) provided that s lies in S and X =

⋃
λ>0 λ(S − s). Recall

that x∗ ∈ X∗ is a subgradient of f : X → (−∞,+∞] at x ∈ dom f provided that
f(y)− f(x) ≥ 〈x∗, y − x〉. The set of subgradients of f at x is the subderivative or
subdifferential of f at x and is denoted ∂f(x).

We shall need the indicator function ιC(x) which is zero for x in C and +∞
otherwise, the Fenchel conjugate f∗(x∗) := supx{〈x, x∗〉 − f(x)} and the infimal
convolution f�g(x) := inf{f(y) + g(z) : x = y + z}. The central examples of the
normal cone to C at x and the distance function dC , are covered by NC(x) = ∂ιC
and dC = ιC�‖ · ‖.

We say a multifunction T : X 7→ 2X∗
is monotone provided that for any x, y ∈ X,

x∗ ∈ T (x) and y∗ ∈ T (y),
〈y∗ − x∗, y − x〉 ≥ 0,

and we say that T is maximal monotone if its graph is not properly included in any
other monotone graph. The subdifferential of a convex lower semicontinuous (lsc)
function on a Banach space is a fine example of a maximal monotone multifunction
(see [3, 4, 10] wherein other notation and usage may be also followed up).

2. Representative Functions

For any monotone mapping T , we associate the Fitzpatrick function introduced
by Simon Fitzpatrick in [6] but then neglected for many years until re-popularized
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in papers by Penot [8], Buracik-Svaiter [5], and others. Some more of the related
history may be found in [2]. Fitzpatrick’s function is

FT (x, x∗) := sup{〈x, y∗〉+ 〈x∗, y〉 − 〈y, y∗〉 : y∗ ∈ T (y), y ∈ dom T},

which is clearly lower semicontinuous and convex as an affine supremum.

Proposition 1. [6, 4] For a maximal monotone operator T

FT (x, x∗) ≥ 〈x, x∗〉

with equality if and only if x∗ ∈ T (x).

Correspondingly Penot’s function is given as the (closed) convexification

PT (x, x∗) := inf

{
N∑

i=1

λi〈xi, x
∗
i 〉 :

∑
i

λi(xi, x
∗
i ) = (x, x∗), x∗i ∈ T (xi),

∑
λi = 1, λi ≥ 0

}
It is easy to see that PT is convex and that, with the appropriate ordering of

variables x and x∗ (and the conjugate restricted to X ×X∗) we have

P∗T = FT while F∗T = P∗∗T = PT ,

where PT is the lower-semicontinuous hull of PT . Note that
More generally, we say that a lower-semicontinuous convex function HT repre-

sents a monotone operator T if

HT (x, x∗) ≥ 〈x, x∗〉

with equality when x∗ ∈ T (x). We say a representative is exact if HT (x, x∗) =
〈x, x∗〉 exactly on the graph of T . Now we may check that:

Proposition 2. ([2, 8]) Let T be monotone on a Banach space X. Then
i.) Penot’s function PT represents T .
ii.) If HT represents T , then HT ≤ PT pointwise.
iii.) If T is maximal then FT ≤ HT ≤ PT .
iv.) FT (x, x∗) ≤ 〈x, x∗〉 iff (x, x∗) is monotonically related to the graph of T .
v.) Suppose FT represents T . Then FT (x, x∗) = 〈x, x∗〉 iff PT (x, x∗) = 〈x, x∗〉.

Proof. (i.) is an easy computation performed in [2, 8]. (ii.) a direct consequence
of PT = (cT )∗∗ and that HT (x, x∗) ≤ cT , where cT (x, x∗) := 〈x, x∗〉+ ιGr(T )(x, x∗).
(iii.) The lefthand inequality is established in [6, 8]. (iv.) is a direct computation.
(v.) By (iv.)—as FT is representative—we need only show the ‘if’. We observe
that if FT (x, x∗) = 〈x, x∗〉, then minorizing FT (x + t(y − x), x∗ + t(y∗ − x∗)) by
〈x + t(y − x), x∗ + t(y∗ − x∗)〉 we have

FT (y, y∗)−FT (x, x∗) ≥ d+FT ((x, x∗); (y− x, y∗ − x∗)) ≥ 〈x, y∗ − x∗〉+ 〈y− x, x∗〉

for all y, y∗. This shows (x∗, x) ∈ ∂FT (x, x∗). Equivalently,

2〈x, x∗〉 = FT (x, x∗) + F∗T (x, x∗) = FT (x, x∗) + PT (x, x∗)

and so PT (x, x∗) = 〈x, x∗〉. 2

Note that FT need not represent T if T is not maximal. The situation is however
ameliorated when T = A+B is the sum of maximal monotone operators satisfying

0 ∈ core {convD(A)− convD(B)} .(1)
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We next define two partial infimal convolutions:

VA,B(x, x∗) := inf {FA(x, u∗) + FB(x, v∗) : u∗ + v∗ = x∗} ,

and
WA,B(x, x∗) := inf {PA(x, u∗) + PB(x, v∗) : u∗ + v∗ = x∗} .

The first result is very interesting in its own right it is a lovely observation first
exploited by Voisei:

Theorem 3. (Partial Convolution, [12].) Suppose A and B are maximal monotone
and satisfy the transversality condition (1). Then VA,B(x, x∗) = W∗

A,B(x, x∗) is
norm-weak-star lower-semicontinuous and is attained when finite.

In consequence
VA,B(x, x∗) ≥ 〈x, x∗〉

with equality if and only if x∗ ∈ (A + B)(x). In particular, VA,B represents A + B

and so VA,B ≤ PA+B .

Proof. The argument—based on a conjugate formula of Penot [8, Prop. 13]—as
in Vosei [12] and in [2, §5], or a direct Lagrangian calculation, shows VA,B(x, x∗) =
W∗

A,B(x, x∗) and is attained when finite. The rest follows since P∗A = FA and
P∗B = FB have the representative properties of Proposition 1.

Indeed, VA,B(x, x∗) ≥ 〈x, x∗〉 follows directly from the definition of convolution
as does VA,B(x, x∗) = 〈x, x∗〉 when x∗ ∈ (A + B)(x). Finally if VA,B(x, x∗) =
〈x, x∗〉, we let x∗ = u∗ + v∗ be the attaining values, as assured by the conjugacy
formula. Then

0 = VA,B(x, x∗)− 〈x, x∗〉 = {FA(x, u∗)− 〈x, u∗〉}+ {FB(x, v∗)− 〈x, v∗〉} .

As the bracketed terms are non-negative we deduce that they are both zero and so
u∗ ∈ A(x), v∗ ∈ B(x); and we are done. 2

Let us say that a monotone operator T is almost maximal if

FT (x, x∗) ≥ 〈x, x∗〉
for all x ∈ X, x∗ ∈ X∗. This is to say that FT represents T . The name is justi-
fied since Proposition 1 assures that every maximal monotone operator is almost
maximal. Also, if T is maximal and GrS = Gr (T ) then S is almost maximal.

A nice consequence of the definition is:

Corollary 4. Suppose T is almost maximal monotone. Then a closed convex func-
tion H represents T if and only if

FT ≤ H ≤ PT .

Proof. By Proposition 2 we need only show that each representative function H
is minorized by FT . Suppose we show that H∗ is also a representative. Then
H∗ ≤ PT ⇒ H ≥ FT as required. To show H∗ is a representative, since H∗ ≥ FT

we need only show that H∗(x, x∗) = 〈x, x∗〉 on Gr (T ). This is the case by the
argument of Proposition 2 v.) applied to H. �

We offer further justification of the term in the final preliminary result.

Proposition 5. Suppose that A and B are maximal monotone operators on a
Banach space X and that the transversality condition (1) holds. Then A + B is
maximal as soon as it is almost maximal.
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Proof. Suppose that (x, x∗) is monotonically related to the graph of A+B. Then
FA+B(x, x∗) ≤ 〈x, x∗〉. As A+B is almost maximal we deduce that FA+B(x, x∗) =
〈x, x∗〉 and so, by part v.) of Proposition 2, we see that PA+B(x, x∗) = 〈x, x∗〉.
Consequently, an appeal to Theorem 3 shows VA,B(x, x∗) = 〈x, x∗〉 and so that
x∗ ∈ (A + B)(x), which completes the proof. 2.

The next corollary shows that topologically A + B is close-to-maximal. By
‘bdw∗’ we denote weak∗-convergence for bounded nets (and hence include all weak∗-
convergent sequences).

Corollary 6. (Graph Closedness.) Suppose that A and B are maximal monotone
in Banach space and that the transversality condition (1) holds. Then A + B has a
‖ · ‖ × bdw∗ closed graph and consequently has weak∗-closed convex images.

Proof. Clearly,

{(x, x∗) : VA,B(x, x∗)− 〈x, x∗〉 ≤ 0} = Gr(A + B)

is ‖ · ‖ × bdw∗ closed in the product space, since VA,B is ‖ · ‖ × bdw∗ lower-
semicontinuous while the bilinear form is ‖ · ‖ × bdw∗ continuous. 2

Observe that the graph of a maximal monotone operator need not be ‖‖̇ × w∗

closed (or even bw∗) already for a subgradient [4, Example 5.2.31]. The w∗ closure
of (A + B)(x) was first proven in [11].

3. Our Main Results

We first provide two useful criteria for almost maximality.

Proposition 7. Assume that S is monotone and that either S is surjective or has
full domain. Then S is almost maximal.

Proof. Fix x∗ ∈ X∗ and x ∈ X. Suppose S is surjective and write x∗ = s∗ ∈ S(s).
Then, by definition

FS(x, x∗) ≥ 〈x, s∗〉+ 〈s, x∗〉 − 〈s, s∗〉 = 〈x, x∗〉.
The other case is similar. 2

We denote the algebraic closure of a set at x ∈ C by Calg(x) := {d : tnd + (1−
tn)x ∈ C,∃tn < 1, tn → 1}. We write Calg :=

⋂
x∈C Calg(x).

Proposition 8. Assume that A and B are maximal monotone and that (1) holds.
Assume also that

conv D(A) ∩ conv D(B) = D(A) ∩D(B)
alg

.(2)

Then A + B is almost maximal.

Proof. Assume that 0 ∈ D(A)∩D(B). Let U := conv D(A) and V := conv D(B).
Note also that (1) implies NU + NV = NU∩V . Much as in [12] we argue by maxi-
mality that A = A + NU and B = B + NV . Thus, using (2) shows

A + B = (A + B) + N
D(A+B)

.

Now suppose that FA+B(x, x∗) ≤ 〈x, x∗〉. This implies that for every n∗ ∈
N

D(A+B)
(y) and s∗ ∈ (A + B)(y) we have

〈s∗ + tn∗ − x∗, y − x〉 ≥ 0,
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for all t > 0. Hence 0 ∈ N
D(A+B)

(x) by maximality of the normal cone.

Thus, x ∈ D(A + B). Now (2) implies that x lies in D(A + B)
alg

. Thus we can
select z∗ ∈ (A + B)(α x), for 0 < α < 1. Then, by convexity and by definition

αFA+B(x, x∗) = αFA+B(x, x∗) + (1− α)FA+B(0, 0)
≥ FA+B(α x, α x∗)
≥ 〈α x, α x∗〉+ 〈α x, z∗〉 − 〈α x, z∗〉 = α2 〈x, x∗〉.

Thus FA+B(x, x∗) ≥ α 〈x, x∗〉. Letting α ↑ 1 completes the proof. 2

Theorem 9. (Maximality of Sums, I.) Suppose that A and B are maximal
monotone on a Banach space. Suppose also that either

i.) The set int D(A) ∩ intD(B) is nonempty; or
ii.) D(A) ∩ intD(B) 6= ∅ while D(A) is closed and convex; or
iii.) Both D(A), D(B) are closed and convex and 0 ∈ core conv {D(A)−D(B)} .

Then A + B is maximal monotone.

Proof. Each of the hypotheses leads to conv D(A) ∩ conv D(B) ⊂ D(A + B)
alg

,
since D(A) is convex when D(A) has nonempty interior, see [2, 9, 10]. More over
the hypotheses of i.) and ii.) imply (1). Thus, Proposition 8 applies as then does
Proposition 5. 2

Part iii.) of Theorem 9 is the main result in [12]. In [13] corresponding results
are given for compositions with closed convex domain—such also extend as above.
A quite different proof of the Theorem 9 i.) follows from results in [2]:

Theorem 10. (Maximality of Sums, II.) Suppose A and B are maximal monotone
on a Banach space. Suppose also that core convD(A) ∩ core convD(B) 6= ∅.
Then A + B is maximal monotone.

Proof. Suppose (x, x∗) is monotonically related to the graph of A + B. Let
W be an arbitrary basic weak-star zero neighbourhood. Fix a finite dimensional
subspace F of X containing both x and the vectors defining W . By translation
we may assume that 0 ∈ core conv D(A) ∩ core conv D(B) 6= ∅. Hence, by the
composition result in [2, §5], both AF and BF are maximal monotone; and 0 ∈
core conv {D(AF )−D(BF )}. Thus, by the reflexive (or finite-dimensional) sum
theorem

AF + BF = (A + B)F

is maximal monotone. Since x ∈ F and (x, x∗) is monotonically related to the
graph of (A + B) we observe that (x, x∗|F ) is monotonically related to the graph
of (A + B)F . Hence by maximality x∗|F ∈ (A + B)F (x). In consequence,

x∗ ∈ (A + B)(x) + F⊥ ⊂ (A + B)(x) + W.

Since W is arbitrary, applying Corollary 6, we deduce that

x∗ ∈ (A + B)(x)
∗

= (A + B)(x),

by the Veronas’ part of Corollary 6, and we are done. 2



6 JONATHAN BORWEIN

Remark 11. This argument works under the Brezis-Attouch condition (1) if we
can ensure that for each finite dimensional space F there is a reflexive superspace,
R, such that AR and BR are both maximal. This is the case, for example, if after
translation 0 ∈ D(A) ∩ core D(B) 6= ∅ and for each finite dimensional F there is a
reflexive subspace R containing F such that A|R is maximal. Thus, any counter-
example to the sum theorem has to have quite messy domains.

Another proof of this result can be obtained from Asplund’s decomposition of a
maximal monotone operator as the sum of cyclic and acyclic operators, as described
in [2, §3].

Note also that maximality of TY and that of T + ∂ιY are equivalent for a closed
subspace Y . 2

Remark 12. Suppose f is lower-semicontinuous, proper and convex in Banach
space. We observe—without appealing to maximality—that the representative
function (f ⊕ f∗)(x, x∗) := f(x) + f∗(x∗) coincides with 〈x, x∗〉 exactly for x∗

in ∂f(x). As in Proposition 5, to prove ∂f maximal it thus suffices to show ∂f
is almost maximal. Can this be done any more efficiently than directly proving
maximality via an approximate mean-value theorem, as say in [4, Thm. 3.4.6]?

Remark 13. We can probably significantly improve the result in the case where
one operator is a subgradient because the representative function (f⊕f∗)(x, x∗) :=
f(x) + f∗(x∗) is exact. We define

FT,f (x, x∗) := f(x) + sup
y∗∈T (y)

{〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉 − f(y)},

with conjugate

PT,f (x, x∗) := f(x) + convy∗i ∈T (yi){〈yi, y
∗
i 〉 − f(yi)},

and note that FT,0 = FT and PT,0 = PT , and as before P∗T,f = FT,f ≤ PT,f .
Likewise, F0,f = f ⊕ f∗.

I conjecture that

FT,f (x, x∗) ≤ 〈x, x∗〉(3)

for (x, x∗) monotonically related to Gr(T + ∂f) as holds in the extreme cases. 2

Theorem 14. (Maximality of Sums, III.) Suppose T is maximal monotone and
f is convex and closed. Suppose that (3) holds and that

dom f ∩ core conv D(T )(4)

is nonempty. Then T + ∂f is maximal.

Proof. We define

VT,f (x, x∗) := f(x) + (FT,f (x, ·)�f∗)(x∗).

Then
VT,f (x, x∗) ≤ PT,f (x, x∗).

By assumption FT,f (x, x∗) ≤ 〈x, x∗〉 for (x, x∗) monotonically related to Gr(T +∂f)
while, as in Proposition 3, VT,f (x, x∗) is an exact representative for T + ∂f . Now
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the weakened constraint qualification (4) still ensures FT,f represents T + ∂f as it

implies that dom f ∩ convD(T ) ⊆ dom f ∩ convD(T )
alg

. Much as before

FT,f (x, x∗) = 〈x, x∗〉 ⇒ PT,f (x, x∗) = 〈x, x∗〉 ⇒ VT,f (x, x∗) = 〈x, x∗〉,

and we are done. 2

We finish with two especially nice consequences of part ii.) of Theorem 9.

Corollary 15. (Normal Cones.) Suppose in an arbitrary Banach space that T
is maximal monotone and C is closed and convex while C ∩ intD(T ) 6= ∅. Then
T + NC is maximal monotone.

Proof. The maximality of T + NC is an immediate consequence of part ii.) of
Theorem 9. 2

Recall that a maximal monotone mapping T is maximal monotone locally [11],
or type (FPV), if for every open convex set V in X with V ∩D(T ) 6= ∅ the following
holds for every x ∈ V : 〈y∗ − x∗, y − x〉 ≥ 0 for all y∗ ∈ T (y), and all y ∈ V implies
that x∗ ∈ T (x).

Corollary 16. Suppose in an arbitrary Banach space that T is maximal monotone
and D(T ) has nonempty interior, or is closed and convex, then T is of type (FPV).

Proof. We argue as follows. Fix x, V and x∗ as in the definition of (FPV). We may
select a closed convex set C such that x ∈ int C ⊂ V and int D(T )∩C 6= ∅. It follows
from Corollary 15 that T + NC is maximal. Let y∗ ∈ T (y), n∗ ∈ NC(y), y ∈ Y be
given. Then 〈y∗ + n∗ − x∗, y − x〉 = 〈y∗ − x∗, y − x〉+ 〈n∗, y − x〉 ≥ 0 since x ∈ C.
By maximality x∗ ∈ T (x) + NC(x) = T (x) since x ∈ intC.

The same argument shows that every maximal monotone mapping with closed
convex domain is type (FPV). 2

The case D(T ) = X of Corollary 16 was first established in [7].

4. Final Remarks

As distinct from the reflexive case, we note that our arguments make no use of
the duality map. Indeed, outside of reflexive space, the Rockafellar-Minty approach
via surjectivity of T +J is of little use, see [2, §6] and [4, §5.1]. That said, Theorem
9 certainly suggests that A+B may well be maximal given only (1) and no auxiliary
conditions.
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