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Abstract

Robust, concrete and abstract, mathematical computation and infer-
ence on the scale now becoming possible should change the discourse about
many matters mathematical. These include: what mathematics is, how
we know something, how we persuade each other, what suffices as a proof,
the infinite, mathematical discovery or invention, and other such issues.

1 Introduction

Like almost every other field of fundamental scientific research, mathe-
matics (both pure and applied) has been significantly changed by the ad-
vent of advanced computer and related communication technology. Many
pure mathematicians routinely employ symbolic computing tools, notably
the commercial products Maple and Mathematica, in a manner that has
become known as experimental mathematics: using the computer as a
“laboratory” to perform exploratory experiments, to gain insight and in-
tuition, to discover patterns that suggest provable mathematical facts, to
test and/or falsify conjectures, and to numerically confirm analytically
derived results.

Applied mathematicians have adopted computation with even more
relish, in applications ranging from mathematical physics to engineering,
biology, chemistry and medicine. Indeed, at this point it is hard to imagine
a study in applied mathematics that does not include some computational
content. While we should distinguish “production” code from code used
in the course of research, the methodology used by applied mathematics
is essentially the same as the experimental approach in pure mathematics:
using the computer as a “laboratory” in much the same way as a physicist,
chemist or biologist uses laboratory equipment (ranging from a simple
test tube experiment to a large-scale analysis of the cosmic microwave
background) to probe nature.

1



This essay addresses how the emergence and proliferation of experi-
mental methods has altered the doing of mathematical research, and how
it raises new and often perplexing questions of what exactly is mathe-
matical truth in the computer age. Following this introduction, the essay
is divided into four sections1: (i) experimental methods in pure mathe-
matics, (ii) experimental methods in applied mathematics, (iii) additional
examples (involving a somewhat higher level of sophistication), and (iv)
concluding remarks.

2 The experimental paradigm in pure math-
ematics

By experimental mathematics we mean the following computationally-
assisted approach to mathematical research [24]:

1. Gain insight and intuition;

2. Visualize mathematical principles;

3. Discover new relationships;

4. Test and especially falsify conjectures;

5. Explore a possible result to see if it merits formal proof;

6. Suggest approaches for formal proof;

7. Replace lengthy hand derivations;

8. Confirm analytically derived results.

We often call this ‘experimental mathodology.’ As noted in [24, Ch. 1],
some of these steps, such as to gain insight and intuition, have been part of
traditional mathematics; indeed, experimentation need not involve com-
puters, although nowadays almost all do. In [20, 22, 21], a more precise
meaning is attached to each of these items. In [20, 21] the focus is on ped-
agogy, while [22] addresses many of the philosophical issues more directly.
We will revisit these items as we continue our essay.

With regards to item 5, we have often found the computer-based tools
useful to tentatively confirm preliminary lemmas; then we can proceed
fairly safely to see where they lead. If, at the end of the day, this line
of reasoning has not led to anything of significance, at least we have
not expended large amounts of time attempting to formally prove these
lemmas (for example, see Section 2.6).

With regards to item 6, our intending meaning here is more along
the lines of “computer-assisted” or “computer-directed proof,” and thus
is distinct from methods of computer-based formal proof. On the other
hand, such methods have been pursued with significant success lately,
such as in Thomas Hales’ proof of the Kepler conjecture [36], a topic that
we will revisit in Section 2.10. With regards to item 2, when the authors
were undergraduates they both were taught to use calculus as a way of

1We borrow heavily from two of our recent prior articles [9] (‘pure’) and [8] (‘applied’).
They are reused with the permission of the American Mathematical Society and of Princeton
University Press respectively.
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making accurate graphs. Today, good graphics tools (item 2) exchanges
the cart and the horse. We graph to see structure that we then analyze
[20, 21].

Before turning to concrete examples, we first mention two of our fa-
vorite tools. They both are essential to the attempts to find patterns, to
develop insight and to efficiently falsify errant conjectures (see items 1, 2,
and 4 in the list above).

Integer relation detection. Given a vector of real or complex num-
bers xi, an integer relation algorithm attempts to find a nontrivial set of
integers ai such that a1x1 + a2x2 + · · · + anxn = 0. One common appli-
cation of such an algorithm is to find new identities involving computed
numeric constants.

For example, suppose one suspects that an integral (or any other nu-
merical value) x1 might be a linear sum of a list of terms x2, x3, . . . , xn.
One can compute the integral and all the terms to high precision, typ-
ically several hundred digits, then provide the vector (x1, x2, . . . , xn) to
an integer relation algorithm. It will either determine that there is an
integer-linear relation among these values, or provide a lower bound on
the Euclidean norm of any integer relation vector (ai) that the input
vector might satisfy. If the algorithm does produce a relation, then solv-
ing it for x1 produces an experimental identity for the original integral.
The most commonly employed integer relation algorithm is the “PSLQ”
algorithm of mathematician-sculptor Helaman Ferguson [24, 230–234], al-
though the Lenstra-Lenstra-Lovasz (LLL) algorithm can also be adapted
for this purpose. In 2000, integer relation methods were named one of
the top ten algorithms of the twentieth century by Computing in Science
and Engineering. In our experience, the rapid falsification of hoped-for
conjectures (item #4) is central to the use of integer relation methods.

High-precision arithmetic. One fundamental issue that arises in
discussions of “truth” in mathematical computation, pure or applied, is
the question of whether the results are numerically reliable, i.e., whether
the precision of the underlying floating-point computation was sufficient.
Most work in scientific or engineering computing relies on either 32-bit
IEEE floating-point arithmetic (roughly seven decimal digit precision) or
64-bit IEEE floating-point arithmetic (roughly 16 decimal digit precision).
But for an increasing body of studies, even 16-digit arithmetic is not
sufficient. The most common form of high-precision arithmetic is “double-
double” (equivalent to roughly 31-digit arithmetic) or “quad-precision”
(equivalent to roughly 62-digit precision). Other studies require very high
precision—hundreds or thousands of digits.

A premier example of the need for very high precision is the application
of integer relation methods. It is easy to show that if one wishes to
recover an n-long integer relation whose coefficients have maximum size d
digits, then both the input data and the integer relation algorithm must
be computed using at somewhat more than nd-digit precision, or else the
underlying relation will be lost in a sea of numerical noise.

Algorithms for performing arithmetic and evaluating common tran-
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scendental functions with high-precision data structures have been known
for some time, although challenges remain. Computer algebra software
packages such as Maple and Mathematica typically include facilities for
arbitrarily high precision, but for some applications researchers rely on
internet-available software, such as the GNU multiprecision package. In
many cases the implementation and high-level auxiliary tools provided in
commercial packages are more than sufficient and easy to use, but ‘caveat
emptor’ is always advisable.

2.1 Digital integrity, I

With regards to #8 above, we have found computer software to be par-
ticularly effective in ensuring the integrity of published mathematics.
For example, we frequently check and correct identities in mathemati-
cal manuscripts by computing particular values on the left-hand side and
right-hand side to high precision and comparing results—and then, if nec-
essary, use software to repair defects—often in semi-automated fashion.
As authors, we often know what sort of mistakes are most likely, so that
is what we hunt for.

As a first example, in a study of “character sums” we wished to use
the following result derived in [28]:

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(1)

?
= 4 Li4

(
1

2

)
− 51

2880
π4 − 1

6
π2 log2(2) +

1

6
log4(2) +

7

2
log(2)ζ(3).

Here Li4(1/2) is a 4-th order polylogarithmic value. However, a sub-
sequent computation to check results disclosed that whereas the left-
hand side evaluates to −0.872929289 . . ., the right-hand side evaluates
to 2.509330815 . . .. Puzzled, we computed the sum, as well as each of
the terms on the right-hand side (sans their coefficients), to 500-digit
precision, then applied the PSLQ algorithm. PSLQ quickly found the
following:

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(2)

= 4 Li4

(
1

2

)
− 151

2880
π4 − 1

6
π2 log2(2) +

1

6
log4(2) +

7

2
log(2)ζ(3).

In other words, in the process of transcribing (1) into the original manuscript,
“151” had become “51.” It is quite possible that this error would have
gone undetected and uncorrected had we not been able to computation-
ally check and correct such results. This may not always matter, but it
can be crucial.

Along this line, Alexander Kaiser and the present authors [13] have
developed some prototype software to refine and automate this process.
Such semi-automated integrity checking becomes pressing when verifiable
output from a symbolic manipulation might be the length of a Salinger
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novel. For instance, recently while studying expected radii of points in a
hypercube [26], it was necessary to show existence of a “closed form” for

J(t) :=

∫
[0,1]2

log(t+ x2 + y2)

(1 + x2)(1 + y2)
dxdy. (3)

The computer verification of [26, Thm. 5.1] quickly returned a 100, 000-
character “answer” that could be numerically validated very rapidly to
hundreds of places (items #7 and #8). A highly interactive process re-
duced a basic instance of this expression to the concise formula

J(2) =
π2

8
log 2− 7

48
ζ(3) +

11

24
πCl2

(π
6

)
− 29

24
πCl2

(
5π

6

)
, (4)

where Cl2 is the Clausen function Cl2(θ) :=
∑
n≥1 sin(nθ)/n2 (Cl2 is the

simplest non-elementary Fourier series). Automating such reductions will
require a sophisticated simplification scheme with a very large and exten-
sible knowledge base, but the tool described in [13] provides a reasonable
first approximation. At this juncture, the choice of software is critical for
such a tool. In retrospect, our Mathematica implementation would have
been easier in Maple, due to its more flexible facility for manipulating
expressions, while Macsyma would have been a fine choice were it still
broadly accessible.

2.2 Discovering a truth

Giaquinto’s [32, p. 50] attractive encapsulation

In short, discovering a truth is coming to believe it in an inde-
pendent, reliable, and rational way.

has the satisfactory consequence that a student can legitimately discover
things already “known” to the teacher. Nor is it necessary to demand
that each dissertation be absolutely original—only that it be indepen-
dently discovered. For instance, a differential equation thesis is no less
meritorious if the main results are subsequently found to have been ac-
cepted, unbeknown to the student, in a control theory journal a month
earlier—provided they were independently discovered. Near-simultaneous
independent discovery has occurred frequently in science, and such in-
stances are likely to occur more and more frequently as the earth’s “new
nervous system” (Hillary Clinton’s term in a policy address while Secre-
tary of State) continues to pervade research.

Despite the conventional identification of mathematics with deductive
reasoning, In his 1951 Gibbs lecture, Kurt Gödel (1906-1978) said:

If mathematics describes an objective world just like physics,
there is no reason why inductive methods should not be applied
in mathematics just the same as in physics.

He held this view until the end of his life despite—or perhaps because
of—the epochal deductive achievement of his incompleteness results.

Also, we emphasize that many great mathematicians from Archimedes
and Galileo—who reputedly said “All truths are easy to understand once
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they are discovered; the point is to discover them.”—to Gauss, Poincaré,
and Carleson have emphasized how much it helps to “know” the answer
beforehand. Two millennia ago, Archimedes wrote, in the Introduction to
his long-lost and recently reconstituted Method manuscript,

For it is easier to supply the proof when we have previously
acquired, by the method, some knowledge of the questions than
it is to find it without any previous knowledge.

Archimedes’ Method can be thought of as a precursor to today’s interac-
tive geometry software, with the caveat that, for example, Cinderella, as
opposed to Geometer’s SketchPad, actually does provide proof certificates
for much of Euclidean geometry.

As 2006 Abel Prize winner Lennart Carleson describes, in his 1966
speech to the International Congress on Mathematicians on the positive
resolution of Luzin’s 1913 conjecture (namely, that the Fourier series of
square-summable functions converge pointwise a.e. to the function), after
many years of seeking a counterexample, he finally decided none could
exist. He expressed the importance of this confidence as follows:

The most important aspect in solving a mathematical problem
is the conviction of what is the true result. Then it took 2 or
3 years using the techniques that had been developed during
the past 20 years or so.

In similar fashion, Ben Green and Terry Tao have commented that
their proof of the existence of arbitrarily long sequence of primes in arith-
metic progression was undertaken only after extensive computational evi-
dence (experimental data) had been amassed by others [24]. Thus, we see
in play the growing role that intelligent large-scale computing can play in
providing the needed confidence to attempt a proof of a hard result (see
item 4 at the start of Section 2).

2.3 Digital assistance

By digital assistance, we mean the use of:

1. Integrated mathematical software such as Maple and Mathematica,
or indeed Matlab and their open source variants such as SAGE and
Octave.

2. Specialized packages such as CPLEX (optimization), PARI (com-
puter algebra), SnapPea (topology), OpenFoam (fluid dynamics),
Cinderella (geometry) and MAGMA (algebra and number theory).

3. General-purpose programming languages such as Python, C, C++,
and Fortran-2000.

4. Internet-based applications such as: Sloane’s Encyclopedia of Integer
Sequences, the Inverse Symbolic Calculator,2 Fractal Explorer, Jeff
Weeks’ Topological Games, or Euclid in Java.

2Most of the functionality of the ISC, which is now housed at http://carma-lx1.

newcastle.edu.au:8087, is now built into the “identify” function of Maple starting with
version 9.5. For example, the Maple command identify(4.45033263602792) returns

√
3 + e,

meaning that the decimal value given is simply approximated by
√

3 + e.
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5. Internet databases and facilities including Excel (and its competi-
tors) Google, MathSciNet, arXiv, Wikipedia, Wolfram Alpha, Math-
World, MacTutor, Amazon, Kindle, GitHub, iPython, IBM’s Wat-
son, and many more that are not always so viewed.

A cross-section of Internet-based mathematical resources is available
at http://www.experimentalmath.info. We are of the opinion that it is
often more realistic to try to adapt resources being built for other purposes
by much-deeper pockets, than to try to build better tools from better first
principles without adequate money or personnel.

Many of the above tools entail data-mining in various forms, and, in-
deed, data-mining facilities can broadly enhance the research enterprise.
The capacity to consult the Oxford dictionary and Wikipedia instantly
within Kindle dramatically changes the nature of the reading process.
Franklin [31] argues that Steinle’s “exploratory experimentation” facili-
tated by “widening technology” and “wide instrumentation,” as routinely
done in fields such as pharmacology, astrophysics, medicine, and biotech-
nology, is leading to a reassessment of what legitimates experiment. In
particular, a “local theory” (i.e., a specific model of the phenomenon being
investigated) is not now a prerequisite. Thus, a pharmaceutical company
can rapidly examine and discard tens of thousands of potentially active
agents, and then focus resources on the ones that survive, rather than
needing to determine in advance which are likely to work well. Similarly,
aeronautical engineers can, by means of computer simulations, discard
thousands of potential designs, and submit only the best prospects to
full-fledged development and testing.

Hendrik Sørenson [50] concisely asserts that experimental mathematics—
as defined above—is following a similar trajectory, with software such as
Mathematica, Maple and Matlab playing the role of wide instrumenta-
tion:

These aspects of exploratory experimentation and wide instru-
mentation originate from the philosophy of (natural) science
and have not been much developed in the context of exper-
imental mathematics. However, I claim that e.g. the impor-
tance of wide instrumentation for an exploratory approach to
experiments that includes concept formation also pertain to
mathematics.

In consequence, boundaries between mathematics and the natural sci-
ences, and between inductive and deductive reasoning are blurred and
becoming more so (see also [4]). This convergence also promises some
relief from the frustration many mathematicians experience when at-
tempting to describe their proposed methodology on grant applications
to the satisfaction of traditional hard scientists. We leave unanswered
the philosophically-vexing if mathematically-minor question as to whether
genuine mathematical experiments (as discussed in [24]) truly exist, even
if one embraces a fully idealist notion of mathematical existence. It surely
seems to the two of us that they do.

7



Figure 1: Plots of a 25× 25 Hilbert matrix (L) and a matrix with 50% sparsity
and random [0, 1] entries (R).

2.4 Pi, partitions and primes

The present authors cannot now imagine doing mathematics without a
computer nearby. For example, characteristic and minimal polynomials,
which were entirely abstract for us as students, now are members of a
rapidly growing box of concrete symbolic tools. One’s eyes may glaze over
trying to determine structure in an infinite family of matrices including

M4 =


2 −21 63 −105

1 −12 36 −55

1 −8 20 −25

1 −5 9 −8

 M6 =



2 −33 165 −495 990 −1386

1 −20 100 −285 540 −714

1 −16 72 −177 288 −336

1 −13 53 −112 148 −140

1 −10 36 −66 70 −49

1 −7 20 −30 25 −12


but a command-line instruction in a computer algebra system will reveal
that both M3

4 − 3M4 − 2I = 0 and M3
6 − 3M6 − 2I = 0, thus illustrating

items 1 and 3 at the start of Section 2. Likewise, more and more matrix
manipulations are profitably, even necessarily, viewed graphically. As is
now well known in numerical linear algebra, graphical tools are essential
when trying to discern qualitative information such as the block structure
of very large matrices, thus illustrating item 2 at the start of Section 2.
See, for instance, Figure 1.

Equally accessible are many matrix decompositions, the use of Groeb-
ner bases, Risch’s decision algorithm (to decide when an elementary func-
tion has an elementary indefinite integral), graph and group catalogues,
and others. Many algorithmic components of a computer algebra sys-
tem are today extraordinarily effective compared with two decades ago,

8



when they were more like toys. This is equally true of extreme-precision
calculation—a prerequisite for much of our own work [19, 24, 25, 23]. As
we will illustrate, during the three decades that we have seriously tried to
integrate computational experiments into research, we have experienced
at least twelve Moore’s law doublings of computer power and memory ca-
pacity, which when combined with the utilization of highly parallel clus-
ters (with thousands of processing cores) and fiber-optic networking, has
resulted in six to seven orders of magnitude speedup for many operations.

2.5 The partition function

Consider the number of additive partitions, p(n), of a natural number,
where we ignore order and zeroes. For instance, 5 = 4 + 1 = 3 + 2 =
3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1, so p(5) = 7. The
ordinary generating function (5) discovered by Euler is

∞∑
n=0

p(n)qn =

∞∏
k=1

(
1− qk

)−1

. (5)

(This can be proven by using the geometric formula for 1/(1 − qk) to
expand each term and observing how powers of qn occur.)

The famous computation by Percy MacMahon of p(200) = 3972999029388
at the beginning of the 20th century, done symbolically and entirely
naively from (5) in Maple on a laptop, took 20 minutes in 1991 but only
0.17 seconds in 2010, while the many times more demanding computation

p(2000) = 4720819175619413888601432406799959512200344166

took just two minutes in 2009 and 40.7 seconds in 2014.3 Moreover, in
December 2008, the late Richard Crandall was able to calculate p(109)
in three seconds on his laptop, using the Hardy-Ramanujan-Rademacher
‘finite’ series for p(n) along with FFT methods. Using these techniques,
Crandall was also able to calculate the probable primes p(1000046356)
and p(1000007396), each of which has roughly 35000 decimal digits.4

Such results make one wonder when easy access to computation dis-
courages innovation: Would Hardy and Ramanujan have still discovered
their marvelous formula for p(n) if they had powerful computers at hand?

2.6 Reciprocal series for π

Truly novel series for 1/π, based on elliptic integrals, were discovered by
Ramanujan around 1910 [11, 55]. One is:

1

π
=

2
√

2

9801

∞∑
k=0

(4k)! (1103 + 26390k)

(k!)43964k
. (6)

3The difficulty of comparing timings and the growing inability to look under the hood
(bonnet) in computer packages, either by design or through user ignorance, means all such
comparisons should be taken with a grain of salt.

4See http://fredrikj.net/blog/2014/03/new-partition-function-record/ for a lovely
description of the computation of p(1020), which has over 11 billion digits and required know-
ing π to similar accuracy.

9



Each term of (6) adds eight correct digits. Gosper used (6) for the compu-
tation of a then-record 17 million digits of π in 1985—thereby completing
the first proof of (6) [24, Ch. 3]. Shortly thereafter, David and Gre-
gory Chudnovsky found the following variant, which lies in the quadratic
number field Q(

√
−163) rather than Q(

√
58):

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (7)

Each term of (7) adds 14 correct digits. The brothers used this formula
several times, culminating in a 1994 calculation of π to over four billion
decimal digits. Their remarkable story was told in a prizewinning New
Yorker article [48]. Remarkably, as we already noted earlier, (7) was used
again in 2013 for the current record computation of π.

A few years ago Jésus Guillera found various Ramanujan-like identities
for π, using integer relation methods. The three most basic—and entirely
rational—identities are:

4

π2
=

∞∑
n=0

(−1)nr(n)5(13 + 180n+ 820n2)

(
1

32

)2n+1

(8)

2

π2
=

∞∑
n=0

(−1)nr(n)5(1 + 8n+ 20n2)

(
1

2

)2n+1

(9)

4

π3

?
=

∞∑
n=0

r(n)7(1 + 14n+ 76n2 + 168n3)

(
1

8

)2n+1

, (10)

where r(n) := (1/2 · 3/2 · · · · · (2n− 1)/2)/n! .
Guillera proved (8) and (9) in tandem, by very ingeniously using the

Wilf-Zeilberger algorithm [53, 46] for formally proving hyper-geometric-
like identities [24, 25, 35, 55]. No other proof is known, and there seem
to be no like formulae for 1/πN with N ≥ 4. The third, (10), is almost
certainly true. Guillera ascribes (10) to Gourevich, who used integer
relation methods to find it.

We were able to “discover” (10) using 30-digit arithmetic, and we
checked it to 500 digits in 10 seconds, to 1200 digits in 6.25 minutes, and
to 1500 digits in 25 minutes, all with naive command-line instructions in
Maple. But it has no proof, nor does anyone have an inkling of how to
prove it. It is not even clear that proof techniques used for (8) and (9) are
relevant here, since, as experiment suggests, it has no “mate” in analogy
to (8) and (9) [11]. Our intuition is that if a proof exists, it is more a
verification than an explication, and so we stopped looking. We are happy
just to “know” that the beautiful identity is true (although it would be
more remarkable were it eventually to fail). It may be true for no good
reason—it might just have no proof and be a very concrete Gödel-like
statement.

There are other sporadic and unexplained examples based on other
Pochhammer symbols, most impressively there is an unproven 2010 integer
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relation discovery by Cullen:

211/π4 ?
= (11)

∞∑
n=0

( 1
4
)n( 1

2
)7n( 3

4
)n

(1)9n
(21 + 466n+ 4340n2 + 20632n3 + 43680n4)

(
1

2

)12n

2.7 π without reciprocals

In 2008 Guillera [35] produced another lovely pair of third-millennium
identities—discovered with integer relation methods and proved with cre-
ative telescoping—this time for π2 rather than its reciprocal. They are

∞∑
n=0

1

22n

(
x+ 1

2

)3
n

(x+ 1)3n
(6(n+ x) + 1) = 8x

∞∑
n=0

(
1
2

)2
n

(x+ 1)2n
, (12)

and
∞∑
n=0

1

26n

(
x+ 1

2

)3
n

(x+ 1)3n
(42(n+ x) + 5) = 32x

∞∑
n=0

(
x+ 1

2

)2
n

(2x+ 1)2n
. (13)

Here (a)n = a(a + 1) · ·(a + n − 1) is the rising factorial. Substituting
x = 1/2 in (12) and (13), he obtained respectively the formulae

∞∑
n=0

1

22n

(1)3n(
3
2

)3
n

(3n+ 2) =
π2

4
,

∞∑
n=0

1

26n

(1)3n(
3
2

)3
n

(21n+ 13) = 4
π2

3
.

2.8 Quartic algorithm for π

One measure of the dramatic increase in computer power available to ex-
perimental mathematicians is the fact that the record for computation of
π has gone from 29.37 million decimal digits in 1986 to 12.1 trillion digits
in 2013. These computations have typically involved Ramanujan’s for-
mula (6), the Chudnovsky formula (7), the Salamin-Brent algorithm [24,
Ch. 3] or the Borwein quartic algorithm. The Borwein quartic algorithm,
which was discovered by one of us and his brother Peter in 1983, with
the help of a 16 Kbyte Radio Shack portable system, is the following: Set
a0 := 6− 4

√
2 and y0 :=

√
2− 1, then iterate

yk+1 =
1− (1− y4k)1/4

1 + (1− y4k)1/4
,

ak+1 = ak(1 + yk+1)4 − 22k+3yk+1(1 + yk+1 + y2k+1). (14)

Then ak converges quartically to 1/π: each iteration approximately quadru-
ples the number of correct digits. Twenty-two full-precision iterations of
(14) produce an algebraic number that coincides with π to well more than
24 trillion places. Here is a highly abbreviated chronology of compu-
tations of π (based on http://en.wikipedia.org/wiki/Chronology_of_

computation_of_pi).
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• 1986: One of the present authors used (14) to compute 29.4 million
digits of π. This required 28 hours on one CPU of the new Cray-2
at NASA Ames Research Center. Confirmation using the Salamin-
Brent scheme took another 40 hours. This computation uncovered
hardware and software errors on the Cray-2.

• Jan. 2009: Takahashi used (14) to compute 1.649 trillion digits
(nearly 60,000 times the 1986 computation), requiring 73.5 hours
on 1024 cores (and 6.348 Tbyte memory) of a Appro Xtreme-X3
system. Confirmation via the Salamin-Brent scheme took 64.2 hours
and 6.732 Tbyte of main memory.

• Apr. 2009: Takahashi computed 2.576 trillion digits.

• Dec. 2009: Bellard computed nearly 2.7 trillion decimal digits (first
in binary), using (7). This required 131 days on a single four-core
workstation armed with large amounts of disk storage.

• Aug. 2010: Kondo and Yee computed 5 trillion decimal digits using
(7). This was first done in binary, then converted to decimal. The
binary digits were confirmed by computing 32 hexadecimal digits of
π ending with position 4,152,410,118,610, using BBP-type formulas
for π due to Bellard and Plouffe (see Section 2.9). Additional de-
tails are given at http://www.numberworld.org/misc_runs/pi-5t/
announce_en.html. These digits appear to be “very normal.”

• Dec. 2013: Kondo and Yee extended their computation to 12.1
trillion digits.5

Daniel Shanks, who in 1961 computed π to over 100,000 digits, once
told Phil Davis that a billion-digit computation would be “forever impos-
sible.” But both Kanada and the Chudnovskys achieved that in 1989.
Similarly, the intuitionists Brouwer and Heyting appealed to the “impos-
sibility” of ever knowing whether and where the sequence 0123456789
appears in the decimal expansion of π, in defining a sequence (xk)k∈N
which is zero in each place except for a one in the n-th place where the
sequence first starts to occur if at all.

This sequence converges to zero classically but was not then well
formed intuitionistically. Yet it was found in 1997 by Kanada, beginning
at position 17387594880. Depending on ones ontological perspective, ei-
ther nothing had changed, or the sequence had always converged but we
were ignorant of such fact, or perhaps the sequence became convergent in
1997.

As late as 1989, Roger Penrose ventured, in the first edition of his
book The Emperor’s New Mind, that we likely will never know if a string
of ten consecutive sevens occurs in the decimal expansion of π. Yet this
string was found in 1997 by Kanada, beginning at position 22869046249.

Figure 2 shows the progress of π calculations since 1970, superimposed
with a line that charts the long-term trend of Moore’s Law. It is worth
noting that whereas progress in computing π exceeded Moore’s Law in
the 1990s, it has lagged a bit in the past decade.

5See “12.1 Trillion Digits of Pi And we’re out of disk space...” at http://www.numberworld.
org/misc_runs/pi-12t/.
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Figure 2: Plot of π calculations, in digits (dots), compared with the long-term
slope of Moore’s Law (line).

2.9 Digital integrity, II

There are many possible sources of errors in large computations of this
type:

• The underlying formulas and algorithms used might conceivably be
in error, or have been incorrectly transcribed.

• The computer programs implementing these algorithms, which nec-
essarily employ sophisticated algorithms such as fast Fourier trans-
forms to accelerate multiplication, may contain subtle bugs.

• Inadequate numeric precision may have been employed, invalidating
some key steps of the algorithm.

• Erroneous programming constructs may have been employed to con-
trol parallel processing. Such errors are very hard to detect and
rectify, since in many cases they cannot easily be replicated.

• Hardware errors may have occurred in the middle of the run, ren-
dering all subsequent computation invalid. This was a factor in the
1986 computation of π, as noted above.

• Quantum-mechanical errors may have corrupted the results, for ex-
ample when a stray sub-atomic particle interacts with a storage reg-
ister [51].

So why should anyone believe the results of such calculations? The
answer is that such calculations are always double-checked with an inde-
pendent calculation done using some other algorithm, sometimes in more
than one way. For instance, Kanada’s 2002 computation of π to 1.3 trillion
decimal digits involved first computing slightly over one trillion hexadec-
imal (base-16) digits, using (14). He found that the 20 hex digits of π
beginning at position 1012 + 1 are B4466E8D21 5388C4E014.
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Kanada then calculated these same 20 hex digits directly, using the
“BBP” algorithm [18]. The BBP algorithm for π is based on the formula

π =

∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
, (15)

which was discovered via the PSLQ integer relation algorithm [24, 232–
234]. In particular, PSLQ discovered the formula

π = 4 2F1

(
1, 1

4
5
4

∣∣∣∣− 1

4

)
+ 2 tan−1

(
1

2

)
− log 5, (16)

where 2F1

(
1, 1

4
5
4

∣∣∣∣− 1
4

)
= 0.955933837 . . . is a Gaussian hypergeometric

function. From (16), the series (15) almost immediately follows. The
BBP algorithm, which is based on (15), permits one to calculate binary or
hexadecimal digits of π beginning at an arbitrary starting point, without
needing to calculate any of the preceding digits, by means of a simple
scheme that requires only modest-precision arithmetic.

The result of the BBP calculation was B4466E8D21 5388C4E014. Need-
less to say, in spite of the many potential sources of error in both computa-
tions, the final results dramatically agree, thus confirming in a convincing
albeit heuristic sense that both results are almost certainly correct. Al-
though one cannot rigorously assign a “probability” to this event, note
that the probability that two 20-long random hex digit strings perfectly
agree is one in 1620 ≈ 1.2089× 1024.

This raises the following question: Which is more securely established,
the assertion that the hex digits of π in positions 1012+1 through 1012+20
are B4466E8D21 5388C4E014, or the final result of some very difficult work
of mathematics that required hundreds or thousands of pages, that relied
on many results quoted from other sources, and that (as is frequently the
case) has been read in detail by only only a relative handful of math-
ematicians besides the author? (See also [24, §8.4]). In our opinion,
computation often trumps cerebration.

In a 2010 computation using the BBP formula, Tse-Wo Zse of Yahoo!
Cloud Computing calculated 256 binary digits of π starting at the two
quadrillionth bit. He then checked his result using the following variant
of the BBP formula due to Bellard:

π =
1

64

∞∑
k=0

(−1)k

1024k

(
256

10k + 1
+

1

10k + 1
− 64

10k + 3
− 4

10k + 5

− 4

10k + 7
− 32

4k + 1
− 1

4k + 3

)
. (17)

In this case, both computations verified that the 24 hex digits begin-
ning immediately after the 500 trillionth hex digit (i.e., after the two
quadrillionth binary bit) are: E6C1294A ED40403F 56D2D764.

In 2012 Ed Karrel using the BBP formula on the CUDA6 system with
processing to determine that starting after the 1015 position the hex-bits

6See http://en.wikipedia.org/wiki/CUDA.
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are E353CB3F7F0C9ACCFA9AA215F2. This was done on four NVIDIA GTX
690 graphics cards (GPUs) installed in CUDA. Yahoo! ’s run took 23 days;
this took 37 days.7

Some related BBP-type computations of digits of π2 and Catalan’s
constant G =

∑
n≥1(−1)n/(2n + 1)2 = 0.9159655941 . . . are described

in [17]. In each case, the results were computed two different ways for
validation. These runs used 737 hours on a 16384-CPU IBM Blue Gene
computer, or, in other words, a total of 1378 CPU-years.

2.10 Formal verification of proof

In 1611, Kepler described the stacking of equal-sized spheres into the fa-
miliar arrangement we see for oranges in the grocery store. He asserted
that this packing is the tightest possible. This assertion is now known
as the Kepler conjecture, and has persisted for centuries without rigorous
proof. Hilbert implicitly included the irregular case of the Kepler con-
jecture in problem 18 of his famous list of unsolved problems in 1900:
whether there exist non-regular space-filling polyhedra? the regular case
having been disposed of by Gauss in 1831.

In 1994, Thomas Hales, now at the University of Pittsburgh, proposed
a five-step program that would result in a proof: (a) treat maps that only
have triangular faces; (b) show that the face-centered cubic and hexagonal-
close packings are local maxima in the strong sense that they have a higher
score than any Delaunay star with the same graph; (c) treat maps that
contain only triangular and quadrilateral faces (except the pentagonal
prism); (d) treat maps that contain something other than a triangular or
quadrilateral face; and (e) treat pentagonal prisms.

In 1998, Hales announced that the program was now complete, with
Samuel Ferguson (son of mathematician-sculptor Helaman Ferguson) com-
pleting the crucial fifth step. This project involved extensive computation,
using an interval arithmetic package, a graph generator, and Mathematica.
The computer files containing the source code and computational results
occupy more than three Gbytes of disk space. Additional details, including
papers, are available at http://www.math.pitt.edu/~thales/kepler98.
For a mixture of reasons—some more defensible than others—the Annals
of Mathematics initially decided to publish Hales’ paper with a cautionary
note, but this disclaimer was deleted before final publication.

Hales [36] has now embarked on a multi-year program to certify the
proof by means of computer-based formal methods, a project he has
named the “Flyspeck” project.8 As these techniques become better under-
stood, we can envision a large number of mathematical results eventually
being confirmed by computer, as instanced by other articles in the same
issue of the Annals as Hales’ article. But this will take decades.

7See www.karrels.org/pi/.
8He reported in December 2012 at an ICERM workshop that this was nearing completion.
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3 The experimental paradigm in applied
mathematics

The field of applied mathematics is an enormous edifice, and we cannot
possibly hope, in this short essay, to provide a comprehensive survey of
current computational developments. So we shall limit our discussion to
what may be termed “experimental applied mathematics,” namely employ
methods akin to those mentioned above in pure mathematics to problems
that had their origin in an applied setting. In particular, we will touch
mainly on examples that employ either high-precision computation or
integer relation detection, as these tools lead to issues similar to those
already highlighted above.

First we will examine some historical examples of this paradigm in
action.

3.1 Gravitational boosting or “slingshot magic”

One interesting space-age example is the unexpected discovery of grav-
itational boosting by Michael Minovitch, who at the time (1961) was a
student working on a summer project at the Jet Propulsion Laboratory
in Pasadena, California. Minovitch found that Hohmann transfer ellipses
were not, as then believed, the minimum-energy way to reach the outer
planets. Instead, he discovered, by a combination of clever analytical
derivations and heavy-duty computational experiments on IBM 7090 com-
puters (which were the world’s most powerful systems at the time), that
spacecraft orbits which pass close by other planets could gain a “slingshot
effect” substantial boost in speed, compensated by an extremely small
change in the orbital velocity of the planet, on their way to a distant loca-
tion. Some of his earlier computation was not supported enthusiastically
by NASA. As Minovitz later wrote,

Prior to the innovation of gravity-propelled trajectories, it
was taken for granted that the rocket engine, operating on
the well-known reaction principle of Newton’s Third Law of
Motion, represented the basic, and for all practical purposes,
the only means for propelling an interplanetary space vehicle
through the Solar System.9

Without such a boost from Jupiter, Saturn, and Uranus, the Voyager
mission would have taken more than 30 years to reach Neptune; instead,
Voyager reached Neptune in only ten years. Indeed, without gravitational
boosting, we would still be waiting! We would have to wait much longer
for Voyager to leave the solar system as it now apparently is.

9There are differing accounts of how this principle was discovered; we rely on the first-
person account at http://www.gravityassist.com/IAF1/IAF1.pdf. Additional information
on “slingshot magic” is given at http://www.gravityassist.com/ and http://www2.jpl.

nasa.gov/basics/grav/primer.php.
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3.2 Fractals and chaos

One premier example of 20th century applied experimental mathematics
is the development of fractal theory, as exemplified by the works of Benoit
Mandelbrot. Mandelbrot studied many examples of fractal sets, many of
them with direct connections to nature. Applications include analyses of
the shapes of coastlines, mountains, biological structures, blood vessels,
galaxies, even music, art and the stock market. For example, Mandelbrot
found that the coast of Australia, the West Coast of Britain and the
land frontier of Portugal all satisfy shapes given by a fractal dimension of
approximately 1.75.

In the 1960s and early 1970s, applied mathematicians began to compu-
tationally explore features of chaotic iterations that had previously been
studied by analytic methods. May, Lorenz, Mandelbrot, Feigenbaum, Ru-
elle, York and others led the way in utilizing computers and graphics to
explore this realm, as chronicled for example in Gleick’s book Chaos: Mak-
ing a New Science. By now fractals have found nigh countless uses. In our
own research [12] we have been looking at expectations over self-similar
fractals, motivated by modelling rodent brain-neuron geometry.

3.3 The uncertainty principle

Here we examine a principle that, while discovered early in the 20th cen-
tury by conventional formal reasoning, could have been discovered much
more easily with computational tools.

Most readers have heard of the uncertainty principle from quantum
mechanics, which is often expressed as the fact that the position and mo-
mentum of a subatomic-scale particle cannot simultaneously be prescribed
or measured to arbitrary accuracy. Others may be familiar with the un-
certainty principle from signal processing theory, which is often expressed
as the fact that a signal cannot simultaneously be “time-limited” and
“frequency-limited.” Remarkably, the precise mathematical formulations
of these two principles are identical (although the quantum mechanics
version presumes the existence of de Broglie waves).

Consider a real, continuously differentiable, L2 function f(t), which
further satisfies |t|3/2+εf(t) → 0 as |t| → ∞ for some ε > 0. (This
assures convergence of the integrals below.) For convenience, we assume
f(−t) = f(t), so the Fourier transform f̂(x) of f(t) is real, although this
is not necessary. Define

E(f) =

∫ ∞
−∞

f2(t) dt V (f) =

∫ ∞
−∞

t2f2(t) dt

f̂(x) =

∫ ∞
−∞

f(t)e−itx dt Q(f) =
V (f)

E(f)
· V (f̂)

E(f̂)
. (18)

Then the uncertainty principle is the assertion that Q(f) ≥ 1/4, with

equality if and only if f(t) = ae−(bt)2/2 for real constants a and b. The
proof of this fact is not terribly difficult but is hardly enlightening—see,
for example [24, pg. 183–188].

17



f(t) Interval f̂(x) Q(f)

1− t sgn t [−1, 1] 2(1− cosx)/x2 3/10

1− t2 [−1, 1] 4(sinx− x cosx)/x3 5/14

1/(1 + t2) [−∞,∞] π exp(−x sgnx) 1/2

e−|t| [−∞,∞] 2/(1 + x2) 1/2

1 + cos t [−π, π] 2 sin(πx)/(x− x3) (π2 − 15/2)/9

Table 1: Q values for various functions.

Let us approach this problem as an experimental mathematician might.
As mentioned, it is natural when studying Fourier transforms (particu-
larly in the context of signal processing) to consider the “dispersion” of
a function and to compare this with the dispersion of its Fourier trans-
form. Noting what appears to be an inverse relationship between these
two quantities, we are led to consider Q(f) in (18). With the assistance
of Maple or Mathematica, one can explore examples, as shown in Table 1.
Note that each of the entries in the last column is in the range (1/4, 1/2).
Can one get any lower?

To further study this problem experimentally, note that the Fourier
transform f̂ of f(t) can be closely approximated with a fast Fourier trans-
form, after suitable discretization. The integrals V and E can be similarly
evaluated numerically.

Then one can adopt a search strategy to minimize Q(f), starting, say,
with a “tent function,” then perturbing it up or down by some ε on a
regular grid with spacing δ, thus creating a continuous, piecewise linear
function. When for a given δ, a minimizing function f(t) has been found,
reduce ε and δ, and repeat. Terminate when δ is sufficiently small, say
10−6 or so. (For details, see [24].)

The resulting function f(t) is shown in Figure 3. Needless to say, its
shape strongly suggests a Gaussian probability curve. Figure 3 actually

shows both f(t) and the function e−(bt)2/2, where b = 0.45446177: they
are identical to the resolution of the plot!

In short, it is a relatively simple matter, using 21st-century computa-
tional tools, to numerically “discover” the signal-processing form of the
uncertainty principle. Doubtless the same is true of many other historical
principles of physics, chemistry and other fields, thus illustrating items 1,
2, 3 and 4 at the start of Section 2.

3.4 Chimera states in oscillator arrays

It is fair to say that the computational-experimental approach in applied
mathematics has greatly accelerated in the 21st century. We show here
a few specific illustrative examples. These include several by the present
authors, because we are familiar with them. There are doubtless many
others that we are not aware of that are similarly exemplary of the exper-
imental paradigm.

One interesting example was the 2002 discovery by Kuramoto, Bat-
togtokh, and Sima of “chimera” states, which arise in arrays of identical
oscillators, where individual oscillators are correlated with oscillators some
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Figure 3: Q-minimizer and matching Gaussian (identical to the plot resolution).

distance away in the array. These systems can arise in a wide range of
physical systems, including Josephson junction arrays, oscillating chem-
ical systems, epidemiological models, neural networks underlying snail
shell patterns, and “ocular dominance stripes” observed in the visual cor-
tex of cats and monkeys. In chimera states, named for the mythological
beast that incongruously combines features of lions, goats and serpents,
the oscillator array bifurcates into two relatively stable groups, the first
composed of coherent, phased-locked oscillators, and the second composed
of incoherent, drifting oscillators.

According to Abrams and Strogatz, who subsequently studied these
states in detail, most arrays of oscillators quickly converge into one of four
typical patterns: (a) synchrony, with all oscillators moving in unison; (b)
solitary waves in one dimension or spiral waves in two dimensions, with
all oscillators locked in frequency; (c) incoherence, where phases of the
oscillators vary quasi-periodically, with no global spatial structure; and (d)
more complex patterns, such as spatiotemporal chaos and intermittency.
But in chimera states, phase locking and incoherence are simultaneously
present in the same system.

The simplest governing equation for a continuous one-dimensional
chimera array is

∂φ

∂t
= ω −

∫ 1

0

G(x− x′) sin
[
φ(x, t)− φ(x′, t) + α

]
dx′, (19)

where φ(x, t) specifies the phase of the oscillator given by x ∈ [0, 1) at
time t, and G(x − x′) specifies the degree of nonlocal coupling between
the oscillators x and x′. A discrete, computable version of (19) can be
obtained by replacing the integral with a sum over a 1-D array (xk, 0 ≤
k < N), where xk = k/N . Kuramoto and Battogtokh took G(x − x′) =
C exp(−κ|x− x′|) for constant C and parameter κ.

Specifying κ = 4, α = 1.457, array size N = 256 and time step size
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Figure 4: Phase of oscillations for a chimera system. The x-axis runs from 0 to
1 with periodic boundaries.

∆t = 0.025, and starting from φ(x) = 6 exp
[
−30(x− 1/2)2

]
r(x), where

r is a uniform random variable on [−1/2, 1/2), gives rise to the phase
patterns shown in Figure 4. Note that the oscillators near x = 0 and
x = 1 appear to be phase-locked, moving in near-perfect synchrony with
their neighbors, but those oscillators in the center drift wildly in phase,
both with respect to their neighbors and to the locked oscillators.

Numerous researchers have studied this phenomenon since its initial
numerical discovery. Abrams and Strogatz studied the coupling function
is given G(x) := (1 + A cosx)/(2π), where 0 ≤ A ≤ 1, for which they
were able to solve the system analytically, and then extended their meth-
ods to more general systems. They found that chimera systems have a
characteristic life cycle: a uniform phase-locked state, followed by a spa-
tially uniform drift state, then a modulated drift state, then the birth of
a chimera state, followed a period of stable chimera, then a saddle-node
bifurcation, and finally an unstable chimera.10

3.5 Winfree oscillators

One closely related development is the resolution of the Quinn-Rand-
Strogatz (QRS) constant. Quinn, Rand and Strogatz had studied the
Winfree model of coupled nonlinear oscillators, namely

θ̇i = ωi +
κ

N

N∑
j=1

−(1 + cos θj) sin θi (20)

for 1 ≤ i ≤ N , where θi(t) is the phase of oscillator i at time t, the
parameter κ is the coupling strength, and the frequencies ωi are drawn
from a symmetric unimodal density g(w). In their analyses, they were led

10Various movies can be found on line. For example, http://dmabrams.esam.

northwestern.edu/pubs/ngeo-video1.mov and http://dmabrams.esam.northwestern.edu/

pubs/ngeo-video2.mov show two for groundwater flow.
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to the formula

0 =

N∑
i=1

(
2
√

1− s2(1− 2(i− 1)/(N − 1))2

− 1√
1− s2(1− 2(i− 1)/(N − 1))2

)
,

implicitly defining a phase offset angle φ = sin−1 s due to bifurcation. The
authors conjectured, on the basis of numerical evidence, the asymptotic
behavior of the N -dependent solution s to be

1− sN ∼
c1
N

+
c2
N2

+
c3
N3

+ · · · ,

where c1 = 0.60544365 . . . is now known as the QRS constant.
In 2008, the present authors together with Richard Crandall computed

the numerical value of this constant to 42 decimal digits, obtaining

c1 ≈ 0.60544365719673274947892284244 . . . .

With this numerical value in hand, they were able to demonstrate that c1
is the unique zero of the Hurwitz zeta function ζ(1/2, z/2) on the interval
0 ≤ z ≤ 2. What’s more, they found that c2 = −0.104685459 . . . is given
analytically by

c2 = c1 − c21 − 30
ζ(−1/2, c1/2)

ζ(3/2, c1/2)
.

In this case experimental computation led to a closed form which could
then be used to establish the existence and form of the critical point, thus
engaging at the very least each of items #1 through #6 of our ‘mathodol-
ogy’, and highlighting the interplay between computational discovery and
theoretical understanding.

3.6 High precision dynamics

Periodic orbits form the “skeleton” of a dynamical system and provide
much useful information, but when the orbits are unstable, high-precision
numerical integrators are often required to obtain numerically meaningful
results.

For instance, Figure 5 shows computed symmetric periodic orbits for
the (7 + 2)-Ring problem using double and quadruple precision. The
(n + 2)-body Ring problem describes the motion of an infinitesimal par-
ticle attracted by the gravitational field of n + 1 primary bodies, n of
them at the vertices of a regular n-gon rotating in its own plane about
the central body with constant angular velocity. Each point corresponds
to the initial conditions of one symmetric periodic orbit, and the grey
area corresponds to regions of forbidden motion (delimited by the limit
curve). To avoid “false” initial conditions it is useful to check if the initial
conditions generate a periodic orbit up to a given tolerance level; but for
highly unstable periodic orbits double precision is not enough, resulting in
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Figure 5: Symmetric periodic orbits (m denotes multiplicity of the periodic orbit) in

the most chaotic zone of the (7 + 2)-Ring problem using double (A) and quadruple

(B) precision. Note “gaps” in the double precision plot. (Reproduced by permission.)

gaps in the figure that are not present in the more accurate quad precision
run.

Hundred-digit precision arithmetic plays a fundamental role in a 2010
study of the fractal properties of the Lorenz attractor [3.xy] (see
Figure 6). The first plot shows the intersection of an arbitrary trajectory
on the Lorenz attractor with the section z = 27, in a rectangle in the x−y
plane. All later plots zoom in on a tiny region (too small to be seen by
the unaided eye) at the center of the red rectangle of the preceding plot
to show that what appears to be a line is in fact many lines.

Figure 6: Fractal property of the Lorenz attractor. (Reproduced by permission.)

The Lindstedt-Poincaré method for computing periodic orbits is based
on the Lindstedt-Poincaré perturbation theory, Newton’s method for solv-
ing nonlinear systems, and Fourier interpolation. Viswanath has used this
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in combination with high-precision libraries to obtain periodic orbits for
the Lorenz model at the classical Saltzman’s parameter values. This pro-
cedure permits one to compute, to high accuracy, highly unstable periodic
orbits more efficiently than with conventional schemes, in spite of the addi-
tional cost of high-precision arithmetic. For these reasons, high-precision
arithmetic plays a fundamental role in the study of the fractal properties
of the Lorenz attractor (see Figures 6 and 7), and in the consistent formal
development of complex singularities of the Lorenz system using infinite
series. For additional details and references, see [5].
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(Reproduced by permission.)

3.7 Snow crystals

Computational experimentation has even been useful in the study of
snowflakes. In a 2007 study, Janko Gravner and David Griffeath used a
sophisticated computer-based simulator to study the process of formation
of these structures, known in the literature as snow crystals and infor-
mally as snofakes. Their model simulated each of the key steps, including
diffusion, freezing, and attachment, and thus enabled researchers to study,
dependence on melting parameters. Snow crystals produced by their sim-
ulator vary from simple stars, to six-sided crystals with plate-ends, to
crystals with dendritic ends, and look remarkably similar to natural snow
crystals. Among the findings uncovered by their simulator is the fact that
these crystals exhibit remarkable overall symmetry, even in the process of
dynamically changing parameters. Their simulator is publicly available
at http://psoup.math.wisc.edu/Snofakes.htm.

The latest developments in computer and video technology
have provided a multiplicity of computational and symbolic
tools that have rejuvenated mathematics and mathematics ed-
ucation. Two important examples of this revitalization are
experimental mathematics and visual theorems. [38]

3.8 Visual mathematics

J. E. Littlewood (1885-1977) wrote [41]
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Figure 8: Seeing often can and should be believing.

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has per-
manently frightened its victims into playing for safety. Some
pictures, of course, are not rigorous, but I should say most are
(and I use them whenever possible myself).

This was written in 1953, long before the current graphics, visualization
and dynamic geometric tools (such as Cinderella or Geometer’s Sketch-
pad) were available.

The ability to “see” mathematics and mathematical algorithms as im-
ages, movies or simulations is more-and-more widely used (as indeed we
have illustrated in passing), but is still under appreciated. This is true
for algorithm design and improvement and even more fundamentally as
a tool to improve intuition, and as a resource when preparing or giving
lectures.

3.9 Iterative methods for protein confirmation

In [2] we applied continuous convex optimization tools (alternating pro-
jection and alternating reflection algorithms) to a large class of nonconvex
and often highly combinatorial image or signal reconstruction problems.
The underlying idea is to consider a feasibility problem that asks for a
point in the intersection C := C1 ∩C2 of two sets C1 and C2 in a Hilbert
space.

The method of alternating projections (MAP) is to iterate

xn 7→ yn = PC1(xn) 7→ PC2(yn) =: xn+1.

24



Here PA(x) := {y ∈ A : ‖x − y‖ = infa∈A ‖x − a‖ := dA(x)} is the
nearest point (metric) projection. The reflection is given by RA(x) :=

2x − PA(x), (PA(x) = x+RA(x)
2

), and the most studied Douglas-Rachford
reflection method (DR) can be described by

xn 7→ yn = RC1(xn) 7→ zn = RC2(yn) 7→ zn + xn
2

=: xn+1

This is nicely captured as ‘reflect-reflect-average.’
In practice, for any such method, one set will be convex and the other

sequesters non-convex information.11 It is most useful when projections
on the two sets are relatively easy to estimate but the projection on the
intersection C is inaccessible. The methods often work unreasonably well
but there is very little theory unless both sets are convex. For example, the
optical aberration problem in the original Hubble telescope was ‘fixed’ by
an alternating projection phase retrieval method (by Fienup and others),
before astronauts could actually physically replace the mis-ground lens.

3.9.1 Protein confirmation

We illustrate the situation with reconstruction of protein structure using
only the short distances below about six Angstroms12 between atoms that
can be measured by nondestructive MRI techniques. This can viewed as a
Euclidean distance matrix completion problem [2], so that only geometry
(and no chemistry) is directly involved. That is, we ask the algorithm to
predict a configuration in 3-space that is consistent with the given short
distances.

Average (maximum) errors from five replications with re-
flection methods of six proteins taken from a standard database.

Protein # Atoms Rel. Error (dB) RMSE Max Error

1PTQ 404 -83.6 (-83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

What do the reconstructions look like? We turn to graphic
information for 1PTQ and 1POA which were respectively our most and
least successful cases.

11When the set A is non-convex the projection PA(x) may be a set and we must instead
select some y ∈ PA(x).

12Interatomic distances below 6Å typically constitute less than 8% of the total distances
between atoms in a protein.
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1PTQ (actual) 5,000 steps, -83.6dB (perfect)

1POA (actual) 5,000 steps, -49.3dB (mainly good!)

Note that the failure (and large mean or max error) is caused by a
very few very large spurious distances. The remainder is near perfect.
Below we show the radical visual difference in the behavior of reflection
and projection methods on IPTQ.

While traditional numerical measures (relative error in decibels, root
mean square error, and maximum error) of success held some informa-
tion, graphics-based tools have been dramatically more helpful. It is visu-
ally obvious that this method has successfully reconstructed the protein
whereas the MAP reconstruction method, shown below, has not. This dif-
ference is not evident if one compares the two methods in terms of decibel
measurement (beloved of engineers).

Douglas–Rachford reflection (DR) reconstruction: (of IPTQ13)

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

After 1000 steps or so, the protein shape is becoming apparent. After 2000
steps only minor detail is being fixed. Decibel measurement really does
not discriminate this from the failure of the MAP method below which
after 5000 steps has made less progress than DR after 1000.

Alternating projection (MAP) reconstruction: (of IPTQ)

13The first 3,000 steps of the 1PTQ reconstruction are available as a movie at http://

carma.newcastle.edu.au/DRmethods/1PTQ.html.
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500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.

Yet MAP works very well for optical abberation correction of the Hub-
ble telescope and the method is now built in to amateur telescope soft-
ware. This problem-specific variation in behavior is well observed but
poorly understood; it is the heart of our current studies.

3.10 Mathematical finance

Coincident with the rise of powerful computational hardware, sophisti-
cated mathematical techniques are now being employed to analyze mar-
ket data in real-time and generate profitable investment strategies. This
approach, commonly known as “quantitative” or “mathematical” finance,
often involves computationally exploring a wide range of portfolio options
or investment strategies [40, 30].

One interesting aspect of these studies is the increasing realization of
how easy it is to “over-compute” an investment strategy, in a statistical
sense. For example, one common approach to finding an effective quan-
titative investment strategy is to tune the strategy on historical data (a
“backtest”). Unfortunately, financial mathematicians are finding that be-
yond a certain point, examining thousands or millions of variations of an
investment strategy (which is certainly possible with today’s computer
technology) to find the optimal strategy may backfire, because the result-
ing scheme may “overfit” the backtest data—the optimal strategy will
work well only with a particular set of securities or over a particular time
frame (in the past!). Indeed, backtest overfitting is now thought to be one
of the primary reasons that an investment strategy which looks promising
on paper often falls flat in real-world practice [15, 16].

3.11 Digital integrity III

Difficulties with statistical overfitting in financial mathematics can be
seen as just one instance of the larger challenge of ensuring that results of
computational experiments are truly valid and reproducible, which, after
all, is the bedrock of all scientific research. We discussed these issues in
the context of pure mathematics in Section 2.9, but there are numerous
analogous concerns in applied mathematics:

• Whether the calculation is numerically reproducible, i.e., whether
or not the computation produces results acceptably close to those
of an equivalent calculation performed using different hardware or
software. In some cases, more stable numerical algorithms or higher-
precision arithmetic may be required for certain portions of the com-
putation to ameliorate such difficulties.

• Whether the calculation has been adequately validated with inde-
pendently written programs or distinct software tools.
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• Whether the calculation has been adequately validated by compari-
son with empirical data (where possible).

• Whether the algorithms and computational techniques used in the
calculation have been documented sufficiently well in journal articles
or publicly accessible repositories, so that an independent researcher
can reproduce the stated results.

• Whether the code and/or software tool itself has been secured in a
permanent repository.

These issues were addressed in a 2012 workshop held at the Institute
for Computational and Experimental Research in Mathematics (ICERM).
See [51] for details.

4 Additional examples of the experimen-
tal paradigm in action

4.1 Giuga’s conjecture

As another measure of what changes over time and what doesn’t, consider
Giuga’s conjecture:

Giuga’s conjecture (1950): An integer n > 1, is a prime if and only
if Gn :=

∑n−1
k=1 k

n−1 ≡ n− 1 mod n.
This conjecture is not yet proven. But it is known that any counterex-

amples are necessarily Carmichael numbers—square free ‘pseudo-prime
numbers’—and much more. These rare birds were only proven infinite in
number in 1994. In [25, pp. 227], we exploited the fact that if a number
n = p1 · · · pm with m > 1 prime factors pi is a counterexample to Giuga’s
conjecture (that is, satisfies Gn ≡ n − 1 mod n), then for i 6= j we have
that pi 6= pj , that

m∑
i=1

1

pi
> 1,

and that the pi form a normal sequence: pi 6≡ 1 mod pj for i 6= j.
Thus, the presence of ‘3’ excludes 7, 13, 19, 31, 37, . . . , and of ‘5’ excludes
11, 31, 41, . . ..

This theorem yielded enough structure, using some predictive exper-
imentally discovered heuristics, to build an efficient algorithm to show—
over several months in 1995—that any counterexample had at least 3459
prime factors and so exceeded 1013886, extended a few years later to 1014164

in a five-day desktop computation. The heuristic is self-validating every
time that the programme runs successfully. But this method necessarily
fails after 8135 primes; at that time we hoped to someday exhaust its use.

In 2010, one of us was able to obtain almost as good a bound of 3050
primes in under 110 minutes on a laptop computer, and a bound of 3486
primes and 14,000 digits in less than 14 hours; this was extended to 3,678
primes and 17,168 digits in 93 CPU-hours on a Macintosh Pro, using
Maple rather than C++, which is often orders-of-magnitude faster but
requires much more arduous coding. In 2013, the same one of us with his
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students revisited the computation and the time and space requirements
for further progress [27]. Advances in multi-threading tools and good
Python tool kits, along with Moore’s law, made the programming much
easier and allowed the bound to be increased to 19,908 digits. This study
also indicated that we are unlikely to exhaust the method in our lifetime.

4.2 Lehmer’s conjecture

An equally hard number-theory related conjecture, for which much less
progress can be recorded, is the following. Here φ(n) is Euler’s totient
function, namely the number of positive integers less than or equal to n
that are relatively prime to n:

Lehmer’s conjecture (1932). φ(n)
∣∣(n − 1) if and only if n is prime.

Lehmer called this “as hard as the existence of odd perfect numbers.”
Again, no proof is known of this conjecture, but it has been known

for some time that the prime factors of any counterexample must form
a normal sequence. Now there is little extra structure. In a 1997 Simon
Fraser M.Sc. thesis, Erick Wong verified the conjecture for 14 primes,
using normality and a mix of PARI, C++ and Maple to press the bounds
of the “curse of exponentiality.” This very clever computation subsumed
the entire scattered literature in one computation, but could only extend
the prior bound from 13 primes to 14.

For Lehmer’s related 1932 question: when does φ(n) | (n+ 1)?, Wong
showed there are eight solutions with no more than seven factors (six-
factor solutions are due to Lehmer). Let

Lm :=

m−1∏
k=0

Fk

with Fn := 22n + 1 denoting the Fermat primes. The solutions are

2,L1,L2, . . . ,L5,

and the rogue pair 4919055 and 6992962672132095, but analyzing just
eight factors seems out of sight. Thus, in 70 years the computer only
allowed the exclusion bound to grow by one prime.

In 1932 Lehmer couldn’t factor 6992962672132097. If it had been
prime, a ninth solution would exist: since φ(n)|(n + 1) with n + 2 prime
implies that N := n(n+2) satisfies φ(N)|(N+1). We say couldn’t because
the number is divisible by 73; which Lehmer—a father of much factoriza-
tion literature–could certainly have discovered had he anticipated a small
factor. Today, discovering that

6992962672132097 = 73 · 95794009207289

is nearly instantaneous, while fully resolving Lehmer’s original question
remains as hard as ever.
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4.3 Inverse computation and Apéry-like series

Three intriguing formulae for the Riemann zeta function are

(a) ζ(2) = 3

∞∑
k=1

1

k2
(
2k
k

) , (b) ζ(3) =
5

2

∞∑
k=1

(−1)k+1

k3
(
2k
k

) , (21)

(c) ζ(4) =
36

17

∞∑
k=1

1

k4
(
2k
k

) .
Binomial identity (21)(a) has been known for two centuries, while (b)—
exploited by Apéry in his 1978 proof of the irrationality of ζ(3)—was
discovered as early as 1890 by Markov, and (c) was noted by Comtet [11].

Using integer relation algorithms, bootstrapping, and the “Pade” func-
tion (Mathematica and Maple both produce rational approximations well),
in 1996 David Bradley and one of us [11, 25] found the following unantic-
ipated generating function for ζ(4n+ 3):

∞∑
k=0

ζ(4k + 3)x4k =
5

2

∞∑
k=1

(−1)k+1

k3
(
2k
k

)
(1− x4/k4)

k−1∏
m=1

(
1 + 4x4/m4

1− x4/m4

)
. (22)

Note that this formula permits one to read off an infinity of formulas
for ζ(4n + 3), for n = 0, 1, 2, . . . beginning with (21)(b), by comparing
coefficients of x4k on both sides of the identity.

A decade later, following a quite analogous but much more deliberate
experimental procedure, as detailed in [11], we were able to discover a
similar general formula for ζ(2n+ 2) that is pleasingly parallel to (22):

∞∑
k=0

ζ(2k + 2)x2k = 3

∞∑
k=1

1

k2
(
2k
k

)
(1− x2/k2)

k−1∏
m=1

(
1− 4x2/m2

1− x2/m2

)
. (23)

As with (22), one can now read off an infinity of formulas, beginning with
(21)(a). In 1996, the authors could reduce (22) to a finite form (24) that
they could not prove,

n∑
k=1

2n2

k2

n−1∏
i=1

(4k4 + i4)∏n
i=1
i6=k

(k4 − i4)
=

(
2n

n

)
, (24)

but Almqvist and Granville did find a proof a year later. Both Maple and
Mathematica can now prove identities like (24). Indeed, one of the values
of such research is that it pushes the boundaries of what a CAS can do.

Shortly before his death, Paul Erdős was shown the form (24) at a
meeting in Kalamazoo. He was ill and lethargic, but he immediately
perked up, rushed off, and returned 20 minutes later saying excitedly that
he had no idea how to prove (24), but that if proven it would have impli-
cations for the irrationality of ζ(3) and ζ(7). Somehow in 20 minutes an
unwell Erdős had intuited backwards our whole discovery process. Sadly,
no one has yet seen any way to learn about the irrationality of ζ(4n+ 3)
from the identity, and Erdős’s thought processes are presumably as dissim-
ilar from computer-based inference engines as Kasparov’s are from those
of the best chess programs.
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A decade later, the Wilf-Zeilberger algorithm [53, 46]—for which the
inventors were awarded the Steele Prize—directly (as implemented in
Maple) certified (23) [24, 25]. In other words, (23) was both discovered
and proven by computer. This is the experimental mathematician’s “holy
grail” (item 6 in the list at the beginning of Section 2), though it would
have been even nicer to be led subsequently to an elegant human proof.
That preference may change as future generations begin to take it for
granted that the computer is a collaborator.

We found a comparable generating function for ζ(2n+ 4), giving (21)
(c) when x = 0, but one for ζ(4n+ 1) still eludes us.

4.4 Ising integrals

High-precision has proven essential in studies with Richard Crandall (see
[24, 9]) of the following integrals:

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

1(∑n
j=1(uj + 1/uj)

)2 dU,

Dn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

∏
i<j

(
ui−uj

ui+uj

)2
(∑n

j=1(uj + 1/uj)
)2 dU,

En = 2

∫ 1

0

· · ·
∫ 1

0

 ∏
1≤j<k≤n

uk − uj
uk + uj

2

dT,

where dU = du1
u1
· · · dun

un
, dT = dt2 · · ·dtn, and uk =

∏k
i=1 ti. Note that

En ≤ Dn ≤ Cn.
The Dn arise in the Ising theory of mathematical physics and the

Cn in quantum field theory. As far as we know the En are an entirely
mathematical construct introduced to study Dn. Direct computation of
these integrals from their defining formulas is very difficult, but for Cn it
can be shown that

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp,

where K0 is the modified Bessel function. Indeed, it is in this form that
Cn arises in quantum field theory, as we subsequently learned from David
Broadhurst. We had introduced it to studyDn. Again an uncanny parallel
arises between mathematical inventions and physical discoveries.

Then 1000-digit numerical values so computed were used with PSLQ
to deduce results such as C4 = 7ζ(3)/12, and furthermore to discover that

lim
n→∞

Cn = 0.63047350 . . . = 2e−2γ ,

with additional higher-order terms in an asymptotic expansion. One in-
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triguing experimental result (not then proven) is the following:

E5
?
= 42− 1984 Li4

(
1

2

)
+

189π4

10
− 74ζ(3)

− 1272ζ(3) log 2 + 40π2 log2 2− 62π2

3

+
40π2 log 2

3
+ 88 log4 2 + 464 log2 2− 40 log 2, (25)

found by a multi-hour computation on a highly parallel computer system,
and confirmed to 250-digit precision. Here Li4(z) =

∑
k≥1 z

k/k4 is the
standard order-4 polylogarithm. We also provided 250 digits of E6.

In 2013 Erik Panzer was able to formally evaluate all the En in terms
of the alternating multi zeta values [45]. In particular, the experimental
result for E5 was confirmed, and our high precision computation of E6

was used to confirm Panzer’s evaluation

E6 = 86− 88 log 2 + 768 log4 2 +
704

3
log3 2 + 1360 log2 2− 13964 ζ2ζ3

− 348 ζ2 − 6048 ζ1,−3 + 134 ζ3 +
53775

2
ζ5 + 27904 ζ1,1,−3 + 830 ζ2

2

− 2632 log 2 ζ3 − 272 log 2ζ2 + 512 log2 2 ζ2 +
1024

3
log3 2 ζ2 + 384 log2 2 ζ3

− 3216

5
log 2 ζ22 + 11520 log 2ζ1,−3 −

4096

15
log5 2, (26)

where ζ3 is a short hand for ζ(3) etc.
Here again we see true experimental applied mathematics, wherein our

conjecture (25) and our numerical data for (26) (think of this as prepared
biological sample) was used to confirm further discovery and proof by
another researcher. Equation (26) was automatically converted to Latex
from Panzer’s Maple worksheet.

Maple does a lovely job of producing correct but inelegant TEX. In
our experience many (largely predictable) errors creep in while trying to
prettify such output. For example, as in (1), while 704/3 might have been
70/43, it is less likely that a basis element is entirely garbled (although
a power might be wrong). Errors are more likely to occur in trying to
directly handle the TEX for complex expressions produced by computer
algebra systems.

4.5 Ramble integrals and short walks

Consider, for complex s, the n-dimensional ramble integrals [10]

Wn(s) =

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx, (27)

which occur in the theory of uniform random walk integrals in the plane,
where at each step a unit-step is taken in a random direction as first
studied by Pearson (who did discuss ‘rambles’), Rayleigh and others a
hundred years ago. Integrals such as (27) are the s-th moment of the
distance to the origin after n steps. As is well known, various types of
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random walks arise in fields as diverse as aviation, ecology, economics,
psychology, computer science, physics, chemistry, and biology.

In 2010–2012 work (by J. Borwein, A. Straub , J. Wan and W. Zudilin),
using a combination of analysis, probability, number theory and high-
precision numerical computation, produced results such as

W ′n(0) = −n
∫ ∞
0

log(x)Jn−1
0 (x)J1(x)dx,

were obtained, where Jn(x) denotes the Bessel function of the first kind.
These results, in turn, lead to various closed forms and have been used to
confirm, to 600-digit precision, the following Mahler measure conjecture
adapted from Villegas:

W
′
5(0)

?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t)

+η3(e−t)η3(e−15t)
}
t3 dt,

where the Dedekind eta-function can be computed from: η(q) =

q1/24
∏
n≥1

(1− qn) = q1/24
∞∑

n=−∞

(−1)nqn(3n+1)/2.

There are remarkable and poorly understood connections between di-
verse parts of pure, applied and computational mathematics lying be-
hind these results. As often there is a fine interplay between devel-
oping better computational tools—especially for special functions and
polylogarithms—and discovering new structure.

4.6 Densities of short walks

One of the deepest 2012 discoveries is the following closed form for the
radial density p4(α) of a four step uniform random walk in the plane: For
2 ≤ α ≤ 4 one has the real hypergeometric form:

p4(α) =
2

π2

√
16− α2

α
3F2

(
1
2
, 1
2
, 1
2

5
6
, 7
6

∣∣∣∣
(
16− α2

)3
108α4

)
.

Remarkably, p4(α) is equal to the real part of the right side of this iden-
tity everywhere on [0, 4] (not just on [2, 4]), as plotted in Figure 9. This
was an entirely experimental discovery—involving at least one fortunate
error—but is now fully proven.

4.7 Moments of elliptic integrals

The previous study on ramble integrals also led to a comprehensive anal-
ysis of moments of elliptic integral functions of the form:∫ 1

0

xn0Kn1(x)K′n2(x)En3(x)E′n4(x)dx,
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Figure 9: The “shark-fin” density of a four step walk.

where the elliptic functions K,E and their complementary versions are

K(x) =

∫ 1

0

dt√
(1− t2)(1− x2t2)

,

E(x) =

∫ 1

0

√
1− x2t2√
1− t2

dt,

K′(x) = K(
√

1− x2), E′(x) = E(
√

1− x2).

Computations of these integrals to 3200-digit precision, combined with
searches for relations using the PSLQ algorithm, yielded thousands of
unexpected relations among these integrals (see [10]). The scale of the
computation was required by the number of integrals under simultaneous
investigation.

4.8 Computation and Constructivism

The fact that (√
2
√
2
)√2

=
√

2
2

= 2

provides a one line proof that there exist irrational numbers α and β

such that αβ is rational. Indeed, either (a)
√

2
√
2

is rational or (b) it is
irrational; and can play the role of α. This lovely example of the principle
of the excluded middle is rejected by constructivists and intuitionists alike.
Indeed (b) holds but a constructive proof of such fact is quite elaborate.
This is discussed in more detail in [24, §2.9] and [22].

Here we want to make the point that a computational sensibility leads
one to want to know which case occurs, both for existential reasons, and
because any algorithm with a conditional (if–then) step is probably worth-
less if one cannot determine which step to take.

4.9 Limits of computation

As we noted above, experimental studies have raised the question of
whether one can truly trust—in the mathematical sense—the result of
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a computation, since there are many possible sources of errors: unreliable
numerical algorithms; bug-ridden computer programs implementing these
algorithms; system software or compiler errors; hardware errors, either in
processing or storage; insufficient numerical precision; and obscure errors
of hardware, software or programming that surface only in particularly
large or difficult computations. Thus when applying experimental meth-
ods, it is essential to utilize rigorous validity checks, such as computing a
key result by two completely different algorithms, and verifying that they
produce the same result.

Along this line, it is important to keep in mind that even high-precision
numerical evaluations can sometimes mislead. One remarkable example
is the following:∫ ∞

0

cos(2x)

∞∏
n=1

cos(x/n) dx = (28)

0.392699081698724154807830422909937860524645434187231595926 . . .

The computation of this integral to high precision can be performed us-
ing a scheme described in [14]. When we first did this computation, we
thought that the result was π/8, but upon careful checking with the nu-
merical value

0.392699081698724154807830422909937860524646174921888227621 . . . ,

it is clear that the two values disagree beginning with the 43rd digit!
The late Richard Crandall [29, §7.3] later explained this mystery. By

employing a physically motivated analysis of running out of fuel random
walks, he showed that π/8 is given by the following very rapidly convergent
series expansion, of which formula (28) above is merely the first term:

π

8
=

∞∑
m=0

∫ ∞
0

cos[2(2m+ 1)x]

∞∏
n=1

cos(x/n) dx. (29)

Two terms of the series above suffice for 500-digit agreement.
As a final sobering example in this section, we offer the following

“sophomore’s dream” identity

σ29 :=

∞∑
n=−∞

sinc(n) sinc(n/3) sinc(n/5) · · · sinc(n/23) sinc(n/29)

=

∫ ∞
−∞

sinc(x) sinc(x/3) sinc(x/5) · · · sinc(x/23) sinc(x/29) dx,

(30)

where the denominators range over the odd primes, which was first dis-
covered empirically. More generally, consider

σp :=

∞∑
n=−∞

sinc(n) sinc(n/3) sinc(n/5) sinc(n/7) · · · sinc(n/p)

?
=

∫ ∞
−∞

sinc(x) sinc(x/3) sinc(x/5) sinc(x/7) · · · sinc(x/p) dx.

(31)

35



Provably, the following is true: The “sum equals integral” identity,
for σp remains valid at least for p among the first 10176 primes; but stops
holding after some larger prime, and thereafter the “sum less the integral”
is strictly positive, but they always differ by much less than one part in
a googolplex = 10100. An even stronger estimate is possible assuming
the Generalized Riemann Hypothesis (see [29, §7] and [19]).What does it
mean for an identity to be provably false but, assuming that the universe
is finite, at a level that is intrinsically infinitesimal?

As a single example of the sorts of difficulties that can arise even when
one relies on well-maintained commercial software, the present authors
found that neither Maple nor Mathematica was able to numerically eval-
uate constants of the form

1

2π

∫ 2π

0

f(eiθ) dθ

where f(θ) = Li1 (θ)m Li
(1)
1 (θ)p Li1 (θ + π)n Li

(1)
1 (θ − π)q (for m,n, p, q ≥

0 integers) to high precision in reasonable run time. In part this was
because of the challenge of computing polylog and polylog derivatives
(with respect to order) at complex arguments. The version of Mathematica
that we were using was able to numerically compute ∂Lis(z)/∂s to high
precision, which is required here, but such evaluations were not only many
times slower than Lis(z) itself, but in some cases did not even return a
tenth of the requested number of digits correctly [6].

For such reasons, experienced programmers of mathematical or scien-
tific computations routinely insert validity checks in their code. Typically
such checks take advantage of known high-level mathematical facts, such
as the fact that the product of two matrices used in the calculation should
always give the identity, or that the results of a convolution of integer data,
done using a fast Fourier transform, should all be very close to integers.

5 Concluding Remarks

Let us start by reminding ourselves that in matters of practice what we
do and what we say we do are not to be conflated. As Irving Kaplansky
(1917-2006) remarked [37]:

We [Kaplansky and Halmos] share a philosophy about linear
algebra: we think basis-free, we write basis-free, but when the
chips are down we close the office door and compute with ma-
trices like fury.

The central issues of how to view experimentally discovered results
have been discussed before. In 1993, Arthur Jaffe and Frank Quinn
warned of the proliferation of not-fully-rigorous mathematical results and
proposed a framework for a “healthy and positive” role for “speculative”
mathematics [39]. Numerous well-known mathematicians responded [3].
Morris Hirsch, for instance, countered that even Gauss published incom-
plete proofs, and the 15,000 combined pages of the proof of the classifica-
tion of finite groups raises questions as to when we should certify a result.
He suggested that we attach a label to each proof – e.g., “computer-aided,”
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“mass collaboration,” “constructive,” etc. Saunders Mac Lane quipped
that “we are not saved by faith alone, but by faith and works,” meaning
that we need both intuitive work and precision.

At the same time, computational tools now offer remarkable facilities
to confirm analytically established results, as in the tools in development
to check identities in equation-rich manuscripts, and in Hales’ project to
establish the Kepler conjecture by formal methods.

The flood of information and tools in our information-soaked world is
unlikely to abate. Thus in today’s computer-rich world it is essential to
learn and teach judgment when it comes to using what is possible digi-
tally. This means mastering the sorts of techniques we have illustrated
and having some idea why a software system does what it does. It requires
knowing when a computation is or can—in principle or practice—be made
into a rigorous proof and when it is only compelling evidence (or is, in
fact, entirely misleading). For instance, even the best commercial lin-
ear programming packages of the sort used by Hales will not certify any
solution, although the codes are almost assuredly correct.

An effective digital approach to mathematics also requires rearrang-
ing hierarchies of what we view as hard and as easy. Continued fractions,
moderate size integer or polynomial factorization, matrix decompositions,
semi-definite programs, etc. are very different objects in vivo and in sil-
ico (see [24, Ch. 8, ed. 2]). It also requires developing a curriculum that
carefully teaches experimental computer-assisted mathematics, either as
a stand-alone course or as part of a related course in number theory or
numerical methods. Some efforts along this line are already underway,
mostly at the undergraduate level, by Marc Chamberland at Grinnell
(http://www.math.grin.edu/~chamberl/courses/MAT444/syllabus.html),
Victor Moll at Tulane, Jan de Gier in Melbourne, and Ole Warnaar at
University of Queensland.

Judith Grabner has noted that a large impetus for the development
of modern rigor in mathematics came with the Napoleonic introduction
of regular courses: lectures and textbooks force a precision and a codi-
fication that apprenticeship obviates. But it will never be the case that
quasi-inductive mathematics supplants proof. We need to find a new
equilibrium. That said, we are only beginning to tap new ways to enrich
mathematics. As Jacques Hadamard said more eloquently in French [47]:

The object of mathematical rigor is to sanction and legitimize
the conquests of intuition, and there was never any other object
for it.

Often in our experience, we follow a path empirically, computationally
(numerically, graphically and symbolically) to a dead-end with a correct
but unhelpful result. With non-traditional methods of rigor such as we
have illustrated, in those cases we have frequently been spared proving
intermediate results which while hard are ultimately sterile (i.e., item 5
in the list at the start of Section 2).

Never have we had such a cornucopia of ways to generate intuition.
The challenge is to learn how to harness them, how to develop and
how to transmit the necessary theory and practice. The Priority Re-
search Centre for Computer Assisted Research Mathematics and its Appli-
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cations (CARMA), http://www.newcastle.edu.au/research/centres/
carmacentre.html, which one of us directs, hopes to play a lead role in
this endeavor, an endeavor which in our view encompasses an exciting
mix of exploratory experimentation and rigorous proof. And an exciting
development showing the growing centrality of experimental mathematics
is the opening of an NSF funded Institute for Computational and Experi-
mental Research in Mathematics (ICERM), http://icerm.brown.edu/:

The mission of the Institute for Computational and Experi-
mental Research in Mathematics (ICERM) is to support and
broaden the relationship between mathematics and computa-
tion: specifically, to expand the use of computational and ex-
perimental methods in mathematics, to support theoretical ad-
vances related to computation, and address problems posed by
the existence and use of the computer through mathematical
tools, research and innovation.

Finally, it seems clear to us that experimental computation can end
up reinforcing either an idealist or a constructivist approach, largely de-
pending on ones prior inclinations. It is certainly both a supplement and
a complement to traditional post-Cauchy modes of rigor. Experimental
computation is also an interrogable lingua franca, allowing quite disparate
parts of mathematics to more fruitfully entangle. For this we should all
be very grateful.
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