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Abstract

In two earlier studies of lattice sums arising from the Poisson equation of mathematical
physics, it was established that the lattice sum 1/π·

∑
m,n odd cos(mπx) cos(nπy)/(m2+n2) =

logA, where A is an algebraic number, and explicit minimal polynomials associated with A
were computed for a few specific rational arguments x and y. Based on these results, one
of us (Kimberley) conjectured a number-theoretic formula for the degree of A in the case
x = y = 1/s for some integer s.

These earlier studies were hampered by the enormous cost and complexity of the requisite
computations. In this study, we address the Poisson polynomial problem with significantly
more capable computational tools. As a result of this improved capability, we have confirmed
that Kimberley’s formula holds for all integers s up to 52 (except for s = 41, 43, 47, 49, 51,
which are still too costly to test), and also for s = 60 and s = 64. As far as we are aware,
these computations, which employed up to 64,000-digit precision, producing polynomials
with degrees up to 512 and integer coefficients up to 10229, constitute the largest successful
integer relation computations performed to date.

By examining the computed results, we found connections to a sequence of polynomials
defined in a 2010 paper by Savin and Quarfoot. These investigations subsequently led to a
proof, given in the Appendix, of Kimberley’s formula and the fact that when s is even, the
polynomial is palindromic (i.e., coefficient ak = am−k, where m is the degree).
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1 Introduction
Lattice sums [9] and the Poisson equation, which naturally arise in studies of gravitational
and electrostatic potentials, have been studied for many years in the mathematical physics
community, for example in [9, 17, 18] and also in a 2011 study of cyclotomic polylogarithms
and corresponding multiple harmonic sums [1]. Recently interest in this topic has been rekin-
dled in light of some intriguing applications to practical image processing [15, 5] (although
not needed for his deblurring algorithm, Crandall observed that each pixel had the form (1)
below). These developments have underscored the need to better understand the underlying
theory behind both lattice sums and the associated Poisson potential functions.

In two earlier studies [5, 6] and [9, §7.2], two of the present authors, together with
Richard Crandall (deceased 2012) and I. J. Zucker, analyzed the simple and accessible two-
dimensional case:

φ2(x, y) = 1
π2

∑
m,n odd

cos(mπx) cos(nπy)
m2 + n2 . (1)

By employing a computational approach [5, 6], these studies empirically discovered and then
proved the intriguing fact that when x and y are rational numbers,

φ2(x, y) = 1
π

logA, (2)

where A is algebraic (i.e., A is the root of an m-th degree polynomial with integer coefficients,
for some integer m). In particular, given rationals x and y, the constant α = exp(8πφ2(x, y))
was computed to high precision (an ‘8’ was inserted here in light of formulas such as (48)
and (49) of [5], which made it significantly easier to recover the polynomial). Then for a
given m, the (m + 1)-long vector (1, α, α2, · · · , αm) was computed to high precision, and a
version of the PSLQ algorithm was used to discover the coefficients of the polynomial.

In Table 1 we present a few of the results from [5]. Among other things, note that for s
even, the resulting polynomial is always palindromic (i.e., coefficient ak = am−k, where m is
the degree). Does this pattern extend to higher cases?

s ps, the minimal polynomial corresponding to x = y = 1/s:
5 1 + 52α− 26α2 − 12α3 + α4

6 1− 28α+ 6α2 − 28α3 + α4

7 −1− 196α+ 1302α2 − 14756α3 + 15673α4 + 42168α5 − 111916α6 + 82264α7

−35231α8 + 19852α9 − 2954α10 − 308α11 + 7α12

8 1− 88α+ 92α2 − 872α3 + 1990α4 − 872α5 + 92α6 − 88α7 + α8

9 −1− 534α+ 10923α2 − 342864α3 + 2304684α4 − 7820712α5 + 13729068α6

−22321584α7 + 39775986α8 − 44431044α9 + 19899882α10 + 3546576α11

−8458020α12 + 4009176α13 − 273348α14 + 121392α15

−11385α16 − 342α17 + 3α18

10 1− 216α+ 860α2 − 744α3 + 454α4 − 744α5 + 860α6 − 216α7 + α8

Table 1: Sample of polynomials produced in earlier study [5].

In another observation from this data, one of us (Kimberley) observed that the degree
m(s) of the minimal polynomial associated with the case x = y = 1/s appears to be given
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by the following formula. Set m(2) = 1/2. Otherwise for primes p congruent to 1 modulo
4, set m(p) = (p− 1)2/4, and for primes p congruent to 3 modulo 4, set m(p) = (p2 − 1)/4.
Then for any other positive integer s whose prime factorization is s = pe1

1 p
e2
2 · · · perr ,

m(s) ?= 4r−1
r∏
i=1

p
2(ei−1)
i m(pi). (3)

This sequence now appears as http://oeis.org/A218147 in the Online Encyclopedia of
Integer Sequences. Does Kimberley’s formula hold for any or all higher s?

The earlier studies were hampered by the enormous cost and complexity of the requisite
computations, which in some cases required up to 12,000-digit precision, and in numerous
other cases, such as when x = y = 1/31, failed altogether. These computations were ex-
tremely demanding on hardware, multiprecision software and application code, since the
slightest error or inaccuracy (except for a few trailing bits) at any stage of the computation
almost certainly results in failure to recover the polynomial. Can these computations be
done better or faster?

In this study, we address the Poisson polynomial problem with significantly more capable
tools: (a) a new thread-safe, high-level arbitrary precision package, which is approximately
3X faster than the package used by the previous studies; (b) a new three-level multipair
PSLQ integer relation scheme, which is approximately 4X faster than the scheme used in the
previous studies; and (c) a parallel implementation on a 16-core system. These enhancements
resulted in a combined speedup of approximately 156X over the software used in the previous
studies (based on one typical case, running on common hardware). As a result of this
improved capability, we have confirmed that Kimberley’s formula holds for all integers s up
to 52 (except for s = 41, 43, 47, 49, 51, which are still too costly to test), and also for s = 60
and s = 64. As far as we are aware, these computations, which employed up to 64,000-digit
precision, producing polynomials with degrees up to 512 and integer coefficients up to 10229,
constitute the largest successful integer relation computations performed to date.

By examining the computed results, we found connections to a sequence of polynomials
defined in a 2010 paper by Savin and Quarfoot. These investigations subsequently led to a
proof, given in the Appendix, of Kimberley’s formula and the fact that when s is even, the
polynomial is palindromic (i.e., coefficient ak = am−k, where m is the degree).

2 Computational software
Scientific computing is moving rapidly into multicore and multi-node parallel computing,
because the performance of individual processors is no longer rapidly increasing [3]. Thus
future improvements in performance will require aggressive exploitation of parallelism. In
high-precision computing, it is difficult to achieve significant parallel speedup within a single
high-precision arithmetic operation, but parallelization at the application level (e.g., paral-
lelizing a DO loop containing multiprecision operations) is an attractive option.

On modern systems that feature multicore processors, parallel computing is more effi-
ciently performed using a shared memory, multithreaded environment such as OpenMP, even
if the Message Passing Interface (MPI) is employed between nodes [3, p. 11–33]. Further-
more, algorithms such as multipair PSLQ can only be parallelized efficiently at a rather low
loop level. Computations that use a thread-parallel environment such as OpenMP must be
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entirely “thread-safe,” which means, among other things, that there are no read/write global
variables or arrays, because otherwise there may be difficulties during parallel execution.

Many high-precision software packages employ global read/write data, such as the current
working precision and data to support transcendental functions. The working precision is
particularly troublesome, since in many cases it is dynamically changed by both users and
the software package itself. Until recently, only one high-level arbitrary precision floating-
point package was certified thread-safe, namely the MPFR C++ package [19], which is built
upon the low-level MPFR package [16] (presuming MPFR is installed using the thread-safe
build option). The MPFR package is very well-designed, features correct rounding, includes
numerous transcendental and special functions, and achieves the the fastest overall timings
among currently available arbitrary precision floating-point packages [14].

2.1 A new arbitrary precision package
The previous two studies employed the ARPREC arbitrary precision software [2], which is
not thread-safe and thus cannot be used for multithreaded parallel runs. For this study
(and future use), we employed a new package developed by one of us for arbitrary preci-
sion floating-point computation. The package, known as MPFUN2015 [4] is available in
two versions, which are “plug-compatible” with each other: (a) a self-contained, all-Fortran
version; and (b) a version that calls the MPFR package for low-level operations, which is
approximately 3X faster. This package is targeted to Fortran applications (since many of
our high-precision codes are in Fortran), but a C++ version is also being developed.

A key design goal for this package is thread safety. This is achieved by studiously avoiding
any global read/write data, and by incorporating the current working precision into the data
structure of each multiprecision variable and array element (this is also a feature of MPFR).
When an operation or function is performed involving two or more operands, the working
precision of the result is assigned to be the maximum of the precision levels of the operands.
Special functions are provided to inquire the working precision assigned to a particular
variable or array element, or to change the assigned level when needed.

Both versions include a full-featured Fortran interface (via custom datatypes and operator
overloading), which supports multiprecision real and complex data, numerous transcendental
and special functions, as well as a wide variety of mixed mode operations (e.g., double
precision times multiprecision real, multiprecision complex to an integer power, etc.). Thus,
for example, one can write

d = a + b(i) * cos(3.d0 + c(i,j))

where a, b, c and d are multiprecision real, and the appropriate underlying multiprecision
routines are automatically called by the compiler.

Both versions also detect, and provide means to overcome, accuracy problems rooted in
the usage of inexact double-precision constants and expressions, which is a problem that
has plagued high-precision computation for years. For example, if a user code includes a
statement such as a = b + d / 3.d0, where a and b are multiprecision real and d is
double precision, then by established language conventions in Fortran, C, C++ and most
other languages, the division is only performed to double precision accuracy, and this low
accuracy propagates to the result a. Our package employs special software that detects such
instances at execution time.

The package also provides means to correct such usage. For example, to generate the
full-precision conversion of the decimal constant 1.234 and assign it to the multiprecision
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real a, it suffices to enclose the constant in apostrophes, e.g., a = ’1.234’.
In the present study, we employed the faster (MPFR-based) version of the package.

Full details on the algorithms, design, installation and usage of this software are given in a
technical report [4].

2.2 Three-level multipair PSLQ
Given an (m+ 1)-long input vector X = (xi), an integer relation algorithm attempts to find
a nontrivial (m+ 1)-long vector of integers A = (ai) such that

a0x0 + a1x1 + a2x2 + · · ·+ amxm = 0. (4)

If X = (1, α, α2, · · · , αm) for some α, and if an integer relation is found for X, then these
integers are the coefficients of a polynomial of degree m satisfied by α.

The multipair PSLQ algorithm is a more efficient and moderately parallelizable variant of
PSLQ, the most widely used integer relation algorithm (although some use a variant of LLL)
[7, 12]. Iterations of the multipair PSLQ algorithm develop a sequence of invertible integer
matrices An, their inverses Bn and real matrices Hn (in lower quadrature form), so that the
reduced vector Y = Bn ·X has steadily smaller entries, until one entry of Y is smaller than
the epsilon specified for detection. Integer relation detection (by any algorithm) requires
very high precision: at least (m+ 1) ·maxk log10 |ak| digits, or there is no chance of finding
the underlying relation. Multipair PSLQ is extremely efficient with precision, compared with
other integer relation algorithms, in the sense that it can typically detect a relation when
the numeric precision is only a few percent higher than this minimum level [7].

The earlier studies [5, 6] employed a two-level version of the multipair PSLQ algorithm.
For this study, we employed a three-level version, based on a scheme sketched (with scant
details) in [7]: (a) double precision; (b) medium precision, typically 100-2000 digits; and (c)
full precision, typically many thousands of digits. With this scheme, almost all iterations
of the multipair PSLQ algorithm are performed in double precision. When an entry of the
double precision Y vector is smaller than 10−14, or when an entry in the double precision
A or B arrays exceeds 253 ≈ 9.007 · 1015 (so that several iterations must be repeated with
higher precision), the medium precision arrays are updated using matrix multiplication via

Y := B̂ · Y, B := B̂ ·B, A := Â ·A, H := Â ·H, (5)

where the hat notation indicates the double precision arrays. When an entry of the medium
precision Y vector is smaller than an epsilon corresponding to medium precision, then the
full precision arrays are updated using similar formulas. Substantial care must be taken to
manage this three-level hierarchy, and to correctly handle numerous atypical scenarios.

3 Computational algorithm
Here is the specific procedure we employed to discover the Poisson polynomials:

1. Given rationals x = p/s and y = q/s, select a conjectured minimal polynomial degree
m(s) and other parameters for the run. For planning computer runs, we employed these
empirically derived estimates: D is the detection level; P1 is the medium precision level
in digits; P2 is the full precision level in digits; N is the number of multipair PSLQ
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iterations; T is the total run time in core-seconds; and M is the memory requirement
in Mbytes:

m (s) = 4r−1
r∏
i=1

p
2(ei−1)
i m(pi) i.e., the Kimberley formula (3),

log10 D = −0.462m2(s), P1 = 5m(s), P2 = 5m(s) + 0.462m2(s),
log10 N = 105.278/m2(s)− 33.1073/m(s) + 4.01963 + 0.00696322m(s),
log10 T = 374.411/m2(s)− 79.2388/m(s) + 1.93981 + 0.0176301m(s),

M = 1.6 · 10−7 ·m2(s)(5m(s) + 0.462m2(s)). (6)

2. Calculate φ2(x, y) to P2-digit precision using the following Jacobian formula from [5]:

φ2(x, y) = 1
2π log

∣∣∣∣θ2(z, q)θ4(z, q)
θ1(z, q)θ3(z, q)

∣∣∣∣ , (7)

where q = e−π and z = π
2 (y+ix). Compute the four theta functions using the following

rapidly convergent definitional formulas from [8, p. 52]:

θ1(z, q) = 2
∞∑
k=1

(−1)k−1q(2k−1)2/4 sin((2k − 1)z),

θ2(z, q) = 2
∞∑
k=1

q(2k−1)2/4 cos((2k − 1)z),

θ3(z, q) = 1 + 2
∞∑
k=1

qk
2

cos(2kz),

θ4(z, q) = 1 + 2
∞∑
k=1

(−1)kqk
2

cos(2kz). (8)

When done, calculate α = exp(8πφ2(x, y)) and generate the (m + 1)-long vector
X = (1, α, α2, · · · , αm), to P2-digit precision. Note that formulas (7) and (8) involve
sines and cosines of complex arguments, since z is complex. However, our multipreci-
sion software includes full support for the multiprecision complex datatype, so these
formulas were implemented simply as stated in (7) and (8).

3. Apply the three-level multipair PSLQ algorithm to X. For larger problems, em-
ploy a parallel version of the three-level multipair PSLQ code, using the OpenMP
DO PARALLEL construct to perform certain time-intensive loops in parallel.

4. If a numerically significant relation (i.e., a relation that holds to at least 100 digits
beyond the level needed to discover it) is not found, try again with a larger degree m or
higher precision P2. If a relation is found, employ the polynomial factorization facilities
in Mathematica or Maple to ensure that the resulting polynomial is irreducible.

The high-level program that includes the computation of φ2(x, y) and the three-level
multipair PSLQ scheme, as specified in steps 1 through 4 above, is approximately 2,300 lines
of Fortran; it calls our multiprecision package (approximately 12,000 lines of Fortran); it
calls the MPFR package (approximately 93,000 lines of C); and it calls the GMP package
(approximately 83,000 lines of C); for a total of approximately 190,000 lines of code.

6



4 Results and analysis
Table 2 shows results for our attempts to find the minimal polynomial associated with x =
y = 1/s, for various positive integers s. Table 3 shows results for the cases x = 1/s, y = q/s,
where q > 1 is the smallest integer that is relatively prime to s (our experimentation indicated
that all q relatively prime to s have similar behavior). In Table 3, where the resulting degree
m differs from the corresponding entry in Table 2, the degree is shown in italics.

It is clear from these tables that computational costs (more than 99% of which is due to
multipair PSLQ) increase very rapidly with the polynomial degree m. Timings range from
a fraction of a second for x = y = 1/10, to 7.74 million core-seconds for x = y = 1/37. For
those cases that were also computed in [5], these timings represent significant speedups. For
example, in the case x = y = 1/32, the authors of [5] reported 163,663 seconds, whereas here
we report 5,126 seconds, which is 31.9X faster; for the case x = y = 1/23, the authors of [5]
reported 212,635 seconds, whereas here we report 5,063 seconds, which is 42X faster (single
core timings). However, these speedups are due in part to different software.

In Table 5, we present more carefully controlled comparative timings for the particular
case x = y = 1/35, using (a) a 2-level multipair PSLQ scheme with the ARPREC multi-
precision software, as used in [5], using code available at [2]; (b) the same 2-level code, but
with our new multiprecision software; and (c) our 3-level multipair PSLQ code, with our new
multiprecision package and with 1, 2, 4, 8, and 16 cores. Each run was performed on a 2.4
GHz Apple MacPro system with 16 cores (it is advertised as an 8-core system, but since it
can handle 16 simultaneous threads, we consider it to be a 16-core system). The runs were
executed in a typically busy environment with similar jobs running on other cores, using
a common version (5.1.0) of the GNU gfortran and gcc compilers. We observe a speedup
of approximately 3X for switching from ARPREC to our new arbitrary precision software,
an additional speedup of approximately 4.2X for switching to our 3-level multipair PSLQ
algorithm, and an additional speedup of approximately 12.1X for running in parallel on 16
cores, thus yielding an overall speedup of approximately 156X.

While a parallel speedup of 12X and an overall speedup of 156X are certainly most
welcome (and we are trying to further accelerate these codes), it does not appear possible at
the present time to efficiently employ hundreds or thousands of processors on these problems.
It is fairly easy to achieve large parallel speedups in the multiprecision portions of the code
(e.g., the multiprecision matrix multiply routine), but it is not easy to achieve large speedups
within the double precision portion (e.g., the double precision multipair PSLQ iteration
routine, which is called many thousands of times). Thus the double precision portions limit
overall parallel scalability, as a consequence of Amdahl’s law [3, p. 348]. It would be easy
to exhibit large parallel speedups by starting, say, with the one-level multipair PSLQ code,
which performs all iterations using full precision, but this would violate the principle that
parallel implementations and speedup figures should be based on the most efficient single-
threaded algorithm available; otherwise speedup results can be highly misleading [3, p. 1–9].

4.1 Minimal polynomials
As mentioned earlier, these computations, which employed up to 64,000-digit precision, pro-
ducing polynomials with degrees up to 512 and integer coefficients up to 10229, constitute the
largest successful integer relation computations performed to date (as far as we are aware).

Maple 18 quickly confirmed irreducibility for each of the polynomials produced by our
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program, and found that each of the polynomials splits in some small quadratic extension
field (which is strong evidence that the polynomials are error-free). Mathematica 10.2 also
confirmed irreducibility in each case, although it took an unusually large amount of time to
handle the cases x = y = 1/48 and x = y = 1/64. (Wolfram Research staff informed us that
this problem is resolved in their development code, and so it may be faster in the future.)

Table 4 shows one representative minimal polynomial, namely the 192-degree minimal
polynomial found by our program for the case x = y = 1/35, in a very tiny font. It is en-
tirely typical of Poisson minimal polynomials, in that the initial coefficient is -1, subsequent
coefficients ascend to a maximum size (in this case roughly 1085), and then descend back to
-1. This semi-elliptical pattern, with 1 or -1 at the ends, is very strong numerical evidence
that the polynomial produced by the computer program is the true mathematical minimal
polynomial associated with this case, and, by implication, that all hardware, software and
application code performed flawlessly, since otherwise it is exceedingly unlikely that the re-
sulting coefficients would have this distinctive pattern. (In cases where the multipair PSLQ
program fails to find a numerically significant relation, the resulting coefficients typically are
all roughly the same size.) This neatly illustrates the role of visual output for large data.

With regards to the key objective mentioned above, namely to test Kimberley’s formula
for significantly higher arguments, we note that this formula was affirmed in every case
x = y = 1/s, for s up to 52 (except for s = 41, 43, 47, 49, 51, which are still too costly to
test), and also for s = 60 and s = 64.

5 Initial observations regarding Poisson polynomials
One observation from our computational results is that in each case where x = y = 1/s for s
even, the corresponding Poisson polynomial ps(α) is palindromic, namely ak = am−k, where
ak is the coefficient of αk. Here, for instance, is p16:

p16(α) = 1− 1376α− 12560α2 − 3550496α3 + 81241720α4 − 169589984α5

+ 1334964944α6 − 24307725984α7 + 238934926108α8 − 1043027124704α9

+ 2328675366384α10 − 3219896325280α11 + 4238551472456α12

− 10247414430048α13 + 28552105805904α14 − 55832851687968α15

+ 70020268309062α16

− 55832851687968α17 + 28552105805904α18 − 10247414430048α19

+ 4238551472456α20 − 3219896325280α21 + 2328675366384α22

− 1043027124704α23 + 238934926108α24 − 24307725984α25 + 1334964944α26

− 169589984α27 + 81241720α28 − 3550496α29 − 12560α30 − 1376α31 + α32, (9)

where we have grouped the terms so that the palindromic pattern is evident.
Following one of our first presentations of these results, Nitya Mani, a student at Stanford

University, reminded us that if α is a root of a palindromic polynomial such as this, then
α+ 1/α is a root of a transformed polynomial of half the degree. For example, if α is a root
of the degree-32 polynomial p16 given in (9), then β = α + 1/α is a root of the degree-16

8



polynomial

17211171340288− 34105850331136β + 28763468201984β2 − 8030085316608β3

− 5013017608192β4 + 3437397704704β5 + 454816964608β6 − 831166291968β7

+ 229974967808β8 − 22672640000β9 + 359096832β10 − 123557376β11

+ 81417664β12 − 3529856β13 − 12576β14 − 1376β15 + β16. (10)

Since the computational cost scales very rapidly as the degree of the polynomial is increased
(see formula (6)), this palindromic property, which appears to hold for all even s, can be
used to significantly accelerate the computation of ps when s is large. In particular, the
computational algorithm as given in Section 3 only needs to be changed in Step 2, where one
computes β = α + 1/α and X = (1, β, β2, · · · , βm), and in Step 3, where after recovering a
polynomial in β, one must then expand the polynomial to obtain the equivalent polynomial
in α. We implemented this scheme to obtain Poisson polynomials for the cases s = 60 and
s = 64, and again found that the degree as predicted by Kimberley’s formula matched the
degrees (256 and 512, respectively) of the polynomials produced by the program. See Table
2 for details.

After some additional examination of our computer output, we observed

Conjecture 1. For the case x = y = 1/s:
• The algebraic number αs is the largest real root of the associated polynomial ps(α);
• That polynomial has ϕ(s) real roots, where ϕ is the Euler totient function.
• αs appears to be monotone in s.

6 Further observations regarding Poisson polynomials
Following examination of the polynomials p11 and p13, namely

p11(α) = 1 + 1210α− 33033α2 + 2923492α3 + 5093605α4 − 385382514α5

+ 3974726283α6 − 14323974808α7 + 57392757037α8 − 291359180310α9

+ 948497199067α10 − 1642552094436α11 + 1084042069649α12

+ 1890240552750α13 − 6610669151537α14 + 9712525647792α15

− 8608181312269α16 + 5384207244702α17 − 3223489742187α18

+ 2175830922716α19 − 1197743580033α20 + 387221579866α21

− 50897017743α22 − 7864445336α23 + 5391243935α24 − 815789634α25

+ 28366041α26 − 5092956α27 + 207691α28 + 2794α29 − 11α30 (11)
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p13(α) = −1− 2388α+ 61098α2 − 19225300α3 − 606593049α4 + 1543922656α5

− 7856476560α6 + 221753896032α7 − 1621753072244α8

+ 4542779886736α9 − 2731418674664α10 − 36717669656304α11

+ 200879613202428α12 − 547249607666784α13 + 934179604482832α14

− 1235038888776160α15 + 1788854212778642α16 − 3018407750933816α17

+ 4349780716415868α18 − 4419228090228152α19 + 2899766501472914α20

− 931940880451552α21 − 413258559018224α22 + 857795672629664α23

− 659989056851972α24 + 304241349909008α25 − 87636987790824α26

+ 14593362219920α27 − 1073204980340α28 − 45138167200α29

+ 23660433008α30 − 2028597792α31 + 29540327α32 − 3238420α33 + 73386α34

+ 492α35 − α36, (12)

and after doing some Google searches on these coefficients, we found that the coefficient
387221579866 in p11 appears in a 2010 preprint by Savin and Quarfoot of the University of
Utah [20], and the coefficient 221753896032 in p13 appears in a manuscript, also dated 2010,
by Bostan, Boukraa, Hassani, Maillard, Weil, Zenine and Abarenkova [10], subsequently
published as [11]. This is a dramatic illustration of how advanced computation can facilitate
data mining of the literature.

Savin and Quarfoot [20], define a sequence ψn of polynomials in x and y, based on the
curve y2 = x3 + x, as follows:

ψ1 := 1
ψ2 := 2y
ψ3 := 3x4 + 6x2 − 1
ψ4 := 2y(2x6 + 10x4 − 10x2 − 2), (13)

and, recursively,

ψ2n+1 := ψn+2 · ψ3
n − ψn−1 · ψ3

n+1 for n ≥ 2
ψ2n := 1/(2y) · ψn(ψn+2 · ψ2

n−1 − ψn−2 · ψ2
n+1) for n ≥ 3. (14)

We construct a related sequence Js of integer coefficient polynomials in a by setting
x =
√
−a, and so y2 = x(x2 + 1) =

√
−a(1− a); we also remove the leading 2y from ψ2n:

J2n+1(a) := ψ2n+1(x, y)
J2n(a) := 1/(2y) · ψ2n(x, y) (15)

Substituting (15) into (13), the initial values of Js(a) are

J1 = 1
J2 = 1
J3 = 3a2 − 6a− 1
J4 = 2a3 − 10a2 − 10a+ 2. (16)

10



Substituting (15) into (14), we obtain these three recursive formulae

J2n = Jn(Jn+2 · J2
n−1 − Jn−2 · J2

n+1);
J4k+1 = 16a(a− 1)2 · J2k+2 · J3

2k − J2k−1 · J3
2k+1;

J4k+3 = J2k+3 · J3
2k+1 − 16a(a− 1)2 · J2k · J3

2k+2. (17)

After computation in Magma of Js for some further values of s, we were motivated to
prove

Lemma 2. The leading term of Js is js where

j2k := ka(k−1)(k+1), and
j2k+1 := (2k + 1)ak(k+1).

(The leading coefficient and degree are given by OEIS sequences A026741 and A198442
respectively.)

Proof. Each of j1, . . . , j4 has the required form. Using (17) we compute by induction:

j4k = j2k ·
(
j2k+2 · j2

2k−1 − j2k−2 · j2
2k+1

)
= kak

2−1 ·
(

(k + 1)ak
2+2k · (2k − 1)2a2(k2−k) − (k − 1)ak

2−2k · (2k + 1)2a2(k2+k)
)

= kak
2−1 ·

(
(4k3 − 3k + 1)a3k2

− (4k3 − 3k − 1)a3k2
)

= kak
2−1 · 2a3k2

= 2ka4k2−1.

j4k+1 = 16a3 · j2k+2 · j3
2k − j2k−1 · j3

2k+1

= 16a3 · (k + 1)ak
2+2k · k3a3(k2−1) − (2k − 1)ak

2−k · (2k + 1)3a3(k2+k)

= (16k4 + 16k3)a4k2+2k − (16k4 + 16k3 − 4k − 1)a4k2+2k

= (4k + 1)a2k(2k+1).

j4k+2 = j2k+1 ·
(
j2k+3 · j2

2k − j2k−1 · j2
2k+2

)
= (2k + 1)ak

2+k ·
(

(2k + 3)ak
2+3k+2 · k2a2k2−2 − (2k − 1)ak

2−k · (k + 1)2a2(k2+2k)
)

= (2k + 1)ak
2+k ·

(
(2k3 + 3k2)a3k2+3k − (2k3 + 3k2 − 1)a3k2+3k

)
= (2k + 1)a(2k+1)2−1.

j4k+3 = j2k+3 · j3
2k+1 − 16a3 · j2k · j3

2k+2

= (2k + 3)ak
2+3k+2 · (2k + 1)3a3(k2+k) − 16a3 · kak

2−1 · (k + 1)3a3(k2+2k)

= (16k4 + 48k3 + 48k2 + 20k + 3)a4k2+6k+2 − (16k4 + 48k3 + 48k2 + 16k)a4k2+6k+2

= (4k + 3)a(2k+1)(2k+2).

Note that the first equality in each of the four cases is valid (the leading term of the difference
is the difference of the leading terms) because in each case the polynomials being subtracted
have matching degrees.
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Corollary 3. For each prime q ≡ 3 mod 4 the polynomial Jq has degree m(q) = (q2 − 1)/2.

In fact, our computations support the following:

Conjecture 4. For each prime q ≡ 3 mod 4, the polynomial Jq is precisely pq as computed
by PSLQ.

More generally, for all s given in Table 2 we have confirmed more detailed structure, as
we shall summarize in the next few conjectures.

Conjecture 5. For each integer s ≥ 1, ps is the unique degree m(s) prime factor of Js.

What are some other factors of Js? Notice in (17) that Jn is a factor of J2n. This appears
to extend to other multiples of n:

Conjecture 6. The {Jn} values form a divisibility sequence: m | n implies Jm | Jn.

Conjecture 6 has been confirmed for all n ≤ 256 which was the largest case that the free
online Magma calculator could handle.

Lemma 7. For each positive integer s, 4m(s) < s2.

Proof. We first consider prime cases.

4m(2) = 2 < 22;
4m(q) = (q − 1)2 < q2, for prime q ≡ 1 mod 4;
4m(q) = q2 − 1 < q2, for prime q ≡ 3 mod 4;

4m(q2n) = 4q2m(qn) < q2(qn)2 = (q2n)2, for any prime q.

Hence for any integers j, k we have

4m(jk) = 4m(j) · 4m(k) < j2k2 = (jk)2.

This completes the proof.

Lending support to Conjecture 5 we have

Lemma 8. For s > 2, m(s) ≤ deg Js.

Proof. We compute as follows. First, for even s

m(2k) < k2, so
m(2k) ≤ k2 − 1 = deg J2k.

Likewise for odd s we write

4m(2k + 1) < (2k + 1)2 = 4 deg J2k+1 + 1, so
m(2k + 1) ≤ deg J2k+1,

and we are done.

Generalizing Conjecture 4 we empirically observe

12



Conjecture 9. For each prime q ≡ 3 mod 4:
• J2q = Jq · J∗q · p2q = pq · p∗q · p2q, where p∗(x) := xdp(1/x) denotes the reciprocal

polynomial of a polynomial p of degree d;
• Jqi = Jqi−1pqi for any positive integer i;
• Jqr = Jq · Jr · pqr for any distinct prime r ≡ 3 mod 4.
We next define another sequence of polynomials Hs(a) identical to the substitution

H(s,
√
a) where H(n, x) is a sequence of polynomials defined in A154305 by Clark Kim-

berling. Specifically,

H3 := a+ 1
H4 := a2 − 6a+ 1
Hn := 2H4

n−2 −H2
n−1 (18)

The sequence Hn lets us give precise results about p2i .
Lemma 10. For each positive integer i,

deg(J2i) = deg J2i−1 + degH2i−1 +m(2i).

Proof. We have

4i−1 − 1 = 4i−2 − 1 + 4i−2 + 1
24i−1

because 4 = 1 + 1 + 2.

For i ∈ {2, . . . , 5} we have determined the following
Conjecture 11. For all integers i ≥ 2,

J2i = 2 · J2i−1 ·H2i−1 · p2i .

This was also confirmed in our largest computation, for s = 64.
In Conjecture 1, at the end of the previous section, we observed that αs is the largest

real root of ps. This also appears to be the case for Js:
Conjecture 12. For each integer s > 2, both Js and ps have their largest real root at αs.

It also seems that
Conjecture 13. The number of real roots of Jn is given by entry A195013(n − 2), in the
Online Encyclopedia of Integer Sequences, where

A195013(2n− 1) = 2n, and
A195013(2n) = 3n.

Finally, from Conjectures 1, 5, and 13, we would have
Conjecture 14. For any odd prime q, both pq and Jq have the same set of ϕ(q) = q − 1
real roots. This means for q ≡ 1 mod 4, the non-trivial quotient Jq

pq
has no real roots.

For example,

J5 = (5a2 − 2a+ 1) · p5

= (5a2 − 2a+ 1) · (a4 − 12a3 − 26a2 + 52a+ 1). (19)

13



7 Proofs of Kimberley’s formula and the palindromic
property
As noted above, our computations confirmed Kimberley’s formula in every instance tested,
and we concluded that a primary objective for future studies in this area was to understand
and prove why this formula holds. Our computations also confirmed that whenever s is even,
the polynomial for the case x = y = 1/s is palindromic.

After the first three authors first wrote up the results presented above, Watson Ladd,
who attended a presentation of the results at the University of California, Berkeley, brought
to our attention the fact that some of our conjectures should follow from known results in
the theory of elliptic curves, Gaussian integers and ideals. After some effort, Ladd produced
proofs of Kimberley’s formula and the palindromic property for s even, which proofs we
present below in an Appendix.

8 Conclusions and future research
While these results substantially aid in understanding this problem, additional research
remains to be done to fully understand the many other combinations, in other words x = p/s
and y = q/s, for different values of p, q and s. For example, it appears, from this and earlier
studies, that Kimberley’s formula also holds whenever x = y = q/s, where q is relatively
prime to s. It also appears that for a fixed s, all the cases 0 < p < q < s/2, where p and s,
q and s, and p and q are relatively prime, share the same minimal polynomial. But, absent
a proof, these conjectures need to be tested rigorously over a large set of p, q and s, which
will require even more extreme amounts of computation.

In light of these challenges, research is needed in how to efficiently perform PSLQ-type
integer relation computations on a highly parallel platform. As mentioned above, while a 12X
parallel speedup is certainly welcome, a scheme to efficiently employ hundreds or thousands
of cores is needed. A fundamentally new integer relation algorithm may well be required.
Acknowledgements. The authors wish to acknowledge computer equipment provided for
our use by Apple, Inc. and by the Lawrence Berkeley National Laboratory.
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s m log10(D) P1 P2 N M C T (sec.) C · T (sec.)
10 8 -27.62 100 200 38 0.01 1 9.71 · 10−3 9.71 · 10−3

11 30 -406.33 150 600 1865 0.64 1 1.67 · 100 1.67 · 100

12 16 -112.78 100 200 304 0.06 1 8.16 · 10−2 8.16 · 10−2

13 36 -586.76 180 800 2681 1.26 1 4.02 · 100 4.02 · 100

14 24 -253.16 120 400 998 0.28 1 5.16 · 10−1 5.16 · 10−1

15 32 -459.83 160 700 2041 0.81 1 2.18 · 100 2.18 · 100

16 32 -462.31 160 700 1993 0.81 1 2.21 · 100 2.21 · 100

17 64 -1861.15 320 2200 9411 11.33 1 7.56 · 101 7.56 · 101

18 36 -579.56 180 800 2550 1.26 1 3.82 · 100 3.82 · 100

19 90 -3732.91 450 4200 20320 42.46 1 4.94 · 102 4.94 · 102

20 32 -463.84 160 700 1967 0.81 1 2.19 · 100 2.19 · 100

21 96 -4231.61 480 4800 23269 54.60 1 7.11 · 102 7.11 · 102

22 60 -1634.93 300 2000 8042 8.84 1 5.46 · 101 5.46 · 101

23 132 -8088.30 660 8800 50768 189.79 1 5.06 · 103 5.06 · 103

24 64 -1883.78 320 2200 9297 11.33 1 7.73 · 101 7.73 · 101

25 100 -4624.71 400 5200 25744 64.03 1 9.19 · 102 9.19 · 102

26 72 -2374.91 360 2800 11997 17.86 1 1.66 · 102 1.66 · 102

27 162 -12136.17 810 13000 88525 424.52 1 1.97 · 104 1.97 · 104

28 96 -4253.81 480 4800 23082 54.60 1 7.11 · 102 7.11 · 102

29 196 -17732.44 1000 19000 160824 899.74 8 2.03 · 104 1.62 · 105

30 64 -1868.01 350 2300 9064 11.33 1 1.02 · 102 1.02 · 102

31 240 -26653.98 1200 28000 325169 2003.33 8 8.47 · 104 6.78 · 105

32 128 -7577.07 650 8200 45893 168.20 1 5.13 · 103 5.13 · 103

33 240 -26621.93 1200 28000 326616 2003.33 8 8.51 · 104 6.81 · 105

34 128 -7574.93 650 8200 45914 168.20 1 5.16 · 103 5.16 · 103

35 192 -17044.00 1000 18000 149577 829.41 8 2.48 · 104 1.98 · 105

36 144 -9570.86 750 10300 62282 267.10 1 9.54 · 103 9.54 · 103

37 324 -48431.32 1650 51000 931254 6579.66 16 4.84 · 105 7.74 · 106

38 180 -14951.64 900 16000 120984 642.98 1 3.88 · 104 3.88 · 104

39 288 -38330.14 1450 40000 667153 4124.24 16 2.68 · 105 4.29 · 106

40 128 -7580.00 650 8200 45655 168.20 1 5.02 · 103 5.02 · 103

42 192 -16993.99 1000 18000 150364 829.41 8 1.57 · 104 1.26 · 105

44 240 -26604.14 1200 28000 323762 2003.33 8 7.43 · 104 5.94 · 105

45 288 -38315.08 1450 40000 660001 4124.24 16 2.09 · 105 3.35 · 106

46 264 -32036.34 1350 34000 476902 2921.57 16 1.06 · 105 1.70 · 106

48 256 -30248.55 1350 32000 415316 2586.39 16 8.98 · 104 1.44 · 106

50 200 -18421.18 1000 20000 168947 974.44 8 2.12 · 104 1.69 · 105

52 288 -38414.49 1550 41000 655291 4124.24 16 2.12 · 105 3.40 · 106
∗60 256 -14477.99 800 16000 90371 336.41 1 5.28 · 103 5.28 · 103
∗64 512 -57816.90 1600 64000 802361 5172.79 16 3.78 · 105 2.42 · 106

Table 2: Computer runs to discover minimal polynomials for the cases x = y = 1/s. Here m is
the degree; D is the detection level; P1 is the medium precision, in digits; P2 is the full precision,
in digits; N is the number of multipair PSLQ iterations; M is the memory, in Mbytes; C is the
number of processor cores; T is the wall-clock run time, in seconds; and the last column is the
total core-seconds. In the rows labeled ∗, the palindromic principle of Section 5 was applied.
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s q m log10(D) P1 P2 N M C T (sec.) C · T (sec.)
10 3 4 -4.94 100 200 10 0.01 1 9.88 · 10−3 9.88 · 10−3

11 2 30 -302.77 150 600 1428 0.64 1 2.25 · 100 2.25 · 100

12 5 8 -24.88 100 200 69 0.06 1 1.53 · 10−2 1.53 · 10−2

13 2 36 -443.77 180 800 2060 1.26 1 5.56 · 100 5.56 · 100

14 3 24 -187.79 120 400 849 0.28 1 7.27 · 10−1 7.27 · 10−1

15 2 32 -342.14 160 700 1513 0.81 1 2.87 · 100 2.87 · 100

16 3 32 -345.22 160 700 1636 0.81 1 2.91 · 100 2.91 · 100

17 2 64 -1410.53 320 2200 7146 11.33 1 1.08 · 102 1.08 · 102

18 5 36 -579.56 180 800 2550 1.26 1 4.88 · 100 4.88 · 100

19 2 90 -2743.27 450 4200 14825 42.46 1 6.20 · 102 6.20 · 102

20 3 32 -359.23 160 700 1637 0.81 1 3.06 · 100 3.06 · 100

21 2 96 -3098.89 480 4800 16837 54.60 1 8.95 · 102 8.95 · 102

22 3 60 -1184.89 300 2000 5991 8.84 1 6.99 · 101 6.99 · 101

23 2 132 -5935.65 660 8800 36880 189.79 1 4.63 · 103 4.63 · 103

24 5 32 -336.46 320 2200 1613 11.33 1 2.83 · 100 2.83 · 100

25 2 100 -3425.99 400 5200 18934 64.03 1 1.16 · 103 1.16 · 103

26 3 72 -1714.50 360 2800 8763 17.86 1 1.93 · 102 1.93 · 102

27 2 162 -8994.33 810 13000 64954 424.52 1 1.34 · 104 1.34 · 104

28 3 96 -3133.10 480 4800 17150 54.60 1 9.39 · 102 9.39 · 102

29 2 196 -30287.93 1000 19000 118623 899.74 8 1.25 · 104 1.00 · 105

30 7 64 -1291.21 350 2300 6867 11.33 1 1.01 · 102 1.01 · 102

31 2 240 -19498.68 1200 28000 238779 2003.33 8 5.65 · 104 4.52 · 105

32 3 128 -5578.06 650 8200 33829 168.20 1 4.16 · 103 4.16 · 103

33 2 240 -19341.77 1200 28000 234732 2003.33 8 5.69 · 104 4.55 · 105

34 3 128 -5411.70 650 8200 32842 168.20 1 2.53 · 103 2.53 · 103

35 2 192 -12551.58 1000 18000 110693 829.41 8 1.17 · 104 9.36 · 104

36 5 144 -6831.83 750 10300 45559 267.10 1 6.93 · 103 6.93 · 103

37 2 324 -35412.09 1650 51000 691277 6579.66 16 3.42 · 105 5.47 · 106

38 3 180 -11011.83 900 16000 89722 642.98 1 7.42 · 103 7.42 · 103

39 2 288 -27943.70 1450 40000 458238 4124.24 16 1.84 · 105 2.94 · 106

40 3 128 -5674.61 650 8200 34273 168.20 1 4.13 · 103 4.13 · 103

42 5 192 -12183.50 1000 18000 106770 829.41 8 1.16 · 104 9.27 · 104

44 3 240 -19581.93 1200 28000 232713 2003.33 8 6.18 · 104 4.95 · 105

45 2 288 -27857.00 1450 40000 482959 4124.24 16 1.47 · 105 2.35 · 106

46 3 264 -23318.37 1350 34000 346987 2921.57 16 7.28 · 104 1.17 · 106

48 5 256 -21480.15 1350 32000 292974 2586.39 16 5.93 · 104 9.50 · 105

50 3 200 -13409.44 1000 20000 122468 974.44 8 1.63 · 104 1.30 · 105

Table 3: Computer runs to discover minimal polynomials for the cases x = 1/s, y = q/s, where
q > 1 is the smallest integer relatively prime to s. See caption to Table 2 for notation.
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−1
−127936α1

−119729568α2

+86259615424α3

−63414593420752α4

−23761356230294720α5

−21521006149475920864α6

+611939502140287079872α7

−368241444434585386649704α8

+34534137997535622208800832α9

+190487328667825240861480928α10

+70731866698900460686569086656α11

−30639321248717091789168538879600α12

+1922209242084456061370070376570688α13

−92225937246234731111918315818791008α14

+5237085972458845348795423777776516544α15

−235187168740813424983476512954481139732α16

+7429223399159195923652315325576416851776α17

−183888805409443551177519325744878574722592α18

+3271185405201792963719366162166966763587520α19

−30299858585212592953207274837044089721625936α20

−359992131877582010695076712447360628122541504α21

+21102025339314733846086441916632636325491195040α22

−476414747523697562008419279360098519444810134848α23

+7169682338305684610208768903330082567075749930088α24

−77147038334570163492295981291240215533152479746240α25

+576164594448741453064385715717563185909190291963744α26

−2736845608824484767533372475869861068967680432337984α27

+14259726273826198867906144815986191950918103600120720α28

−418898418536517746458185180042147268305073686192184768α29

+11576727630588055309375415098495616370526328495842993184α30

−215864800528660839585002162871715414654518484882221347136α31

+2990075428515164844805618172618994337159659201108555443326α32

−32103405822691698883721869657536188329165809065032597536320α33

+266563559238616545234045835785848715794979563412588549450912α34

−1588318769762074127932309766905276050093368042694667151097024α35

+4203983024865006644081516487096952711041894782888827508128720α36

+45741795572596990194281792252600295928845217432176402329342656α37

−888295322846459251495779433538199608179522746791003115766467360α38

+9318868074863097497435367536227145321575550333899160360356887616α39

−75360568030730663716613169159158032198635749984420852664531432312α40

+511904470165868318936871843389229757000581029769096726546021748160α41

−3023546278817700158319248501909046229060364677626955289951128897760α42

+15762439699463291788277556458704672972787957041647009977980115608384α43

−72736254087237112123433235647299134668422519990232924303557659578512α44

+294655977143150502457165877012542972911987116693855121083332478262976α45

−1023418666617067140855492177628022043641503497647927192890895515496096α46

+2872077837131433597858520147550093715024860106120898508958083768560704α47

−5244656757384067630568130031166724732476128944651080774800327815250116α48

−4375176099824059357126327245955265067024929918868045662842672259365696α49

+106846263928061290720995820179791755195031418846948198250527939644422688α50

−723639781157123885224054475278025279616831219096501715148796353565656000α51

+3859388734169523941501510320228124865152568559427283813598867448036672464α52

−18252524309522593867333335673661626604394606878814374964432136569382704704α53

+77801314121940709085266334072671847312436136451041737155601244216316832608α54

−295924487894698517430363594146438746974018698578472622597771256623091267264α55

+990883094386701201740101120896676716687418747972363663196338999871139087736α56

−2890647897108739627601089028825831836951153432467718962671967596342224331584α57

+7329280206578701233923536747523603867159738577214393279268225554697992024224α58

−16529926761499923756105727653427646107756611125773189972311741253023019544512α59

+36621401257350141587688985844214102107297318891842289523223570545646432107248α60

−97806177157646206090474078202543089426709440278475346399840243186928760712768α61

+342578593578669077931375617617876157438332517966938868387799492392630391951328α62

−1318494126999138496197980784859753020673610723076044612133782854663456341738176α63

+4770648039063802379141989053619421884321933507524681278243277292208295535890193α64

−15472388710953109453763060955215809455238864792962040591046439233238251454944640α65

+44993126133327412718394996675533962755303579158603905782013384675151509701621696α66

−118993678023270686331414029749780909390537125214711043931901528442137124714048640α67

+291344068959030996949609862561213601556661749401236700666696596438800158224020448α68

−672232544304160020140857460151229781783982323755372371953704546852887742475693952α69

+1483756546102154371991621621590988762258290163435879224071206411473630010421819712α70

−3160698702072288781771809020419553277725945343183442108817290538424291765729105536α71

+6501409535318122589047227869235783252522832570490016457500770280864513874652673648α72

−12819483008841743167047686498254296089188806357669061135254105501043843161878338944α73

+23940036962388573943673383046497610566473660443396196928270109685668366770350448320α74

−41783013070841149166516454269070382975961508352312427230333483156459522180289158272α75

+67368007706334464267463678880196649459723255934263643619439168617608299192825564576α76

−99642265418236291841000783588241107943576928164973329187609122090423042369846900608α77

+135684188062925983721829145899247186881926375911313411751554577363782314702542167104α78

−175027359690635875118927274192015444148378662148930449526142186378361018115616958080α79

+230610470370976022179942433042240414747465002830049591030281645554186668837721744600α80

−345422259636540072058441736406800364089516876786410123401855696720824391150388817792α81

+607137279243399399687877325853919130478767608151821751113771985567328949196202362560α82

−1146510481188778693690480353627945407015450534575302104964676472156118460868902533760α83

+2105965918280150700239337266375899616661414836881685735099986426462071874731653407456α84

−3578099460146102835319749769961500032509484008579871514018505538256220639466406781312α85

+5536176932749319486998056607166537426841616046655786532661950492192459385736417266240α86

−7794809387121374412027723614750591530039194538680900530684292991362557543590881311872α87

+10030481053829943456941341746197226060710869001059273241750964485149858086288306297744α88

−11855047237622313521872161223741536919023583101964392808122345150250641280790373298048α89

+12893688641739677210122894074867960717441055755861579189125047363100403706385492504000α90

−12809768930934167317548440121172865343713268055679115994897043173034752329114006909568α91

+11262021213965304198804174698825443038955997004185306033241807189003803427064173678496α92

−7849339137067651884501051001175657872891640580392350339448446525146908046759472284032α93

+2136636160531235808486132100072698791511127607341553178572108601522645635713639494976α94

+6182245041445709382582906443600895624739514751663138744452121338925118726793099119488α95

−17027139906672640329386998091617550180769534392263392331607751724460799383582736580380α96

+29712689442226074490778272413199981836245382131442863784077108073804247980419140795264α97

−42913200159533980876837680464079550150161925164315385234076771249584133995790605789888α98

+54875995472202404064433213065393198278520963443598737304851154803060885419026758577792α99

−63825924492815000947804006660643589720936270079124038361274887833762135234355101020256α100

+68414285135348430004939705729313406303651902455163077326777079330134700391931405532544α101

−68052822555902228583831595467842429584162408591782046566558459654662872517242957132352α102

+63030283713395534150979634221684031444907507016820847420753457009176282665669129552000α103

−54395011700122510436311965134146069935113985222440557617340304628640177217303223510128α104

+43661984233468332856484141573706612495184170864395287152161473759679906830742322508672α105

−32445083300862179709263952078603686506241016652233926920050485448240544236200991135168α106

+22121488216739201475462682897890849680076071306863200873172222890471168791244013948544α107

−13610378673217079648813094175609528224090224497348403954492135388377641815307093302560α108

+7303046170572758067914716975092412590455319569015290620012702916095079596345712424320α109

−3131236977889234295288739605819294961076022655796155501587485430182196310350741412160α110

+722365801671568238376537172560503547318051932349906390028021898906118213151314346112α111

+423601672347880485375916854724736111845460547572098224965700862087464288437477713112α112

−789372219071689131389195080081110795264640291084303894471284509727586944366644459136α113

+754844732770124186279971574591381270567329047796107073522275693379041299799000185920α114

−570721609484121135843526600643872181106278042023747642137438316501500109706499901312α115

+373431689502164436293456395379326584419834315995264527851770397586202342215482658208α116

−218828293376534306771048774311447660676991404850097946000689151980961553792808627328α117

+116819901747981791438375631794807731777629646639313589196533853783698354327272619712α118

−57453490833130202085276802289813871676642923245392648322689802787108386720310373760α119

+26322973910217009898036214368526156227892184032219090112763726491148743638265345648α120

−11422293344043226356444271083191575214531430352803712260273887252165192023955482240α121

+4829637193522288826261580288388799608086659826584129673254995173846268064699275584α122

−2078817645839949613653484866883184944970522163048142353896259321595643918566571904α123

+954520484158500566039633963780071095170152665054125308901179320476061925020693472α124

−476059705123351801546660809193814948416900226947841461260532426685030594421013632α125

+251019218316831093023612611636151648630754206670792757985712506316495845522315200α126

−133387943415348693213086926089912666295139757189579549272926455197093747072689536α127

+68669026491757170599503679381653507376133436777604611890688641155842031359807249α128

−33465058649746756993954154200626776375881202657693549363818927924447316311308992α129

+15265533880702809827068316634690758620560027313985769068567445431127044039098336α130

−6486555236218719687502565717159307954250235769707821904032108839967986971592256α131

+2562655019815708913497740003785614466295686123950263933555489655843860264778480α132

−940718343979230237299701844566444332546715633645270453853660861734418393188288α133

+320771113247818349988983708385653420090152866910698288499686276305286454845600α134

−101564452363828199943698157849015312966252040558153110340955250960209509456704α135

+29840961316238615781884908158117270537546621262752881740317094715665305372024α136

−8126376541879784121657187449503319934776774553449947624311536879983067197120α137

+2046994405582919610833914133280166599368341899820908062960382811295175875424α138

−475319952147035704834648908024038830280982173827054926876842801020099391040α139

+101156139413765995787243855087479738205336119604403640417144416030882137040α140

−19536944183496787665897200701914355830359619924729440672204518600726485952α141

+3365653573540320310956912862417397989082549665698949749718751351520029216α142

−500297582644104844305032452251740515847130656744730715102464280225674048α143

+59315729762438733681847579101255419553245420619721207125629069846855484α144

−4088968402271371424704252106469344820514085294011337888699549616483264α145

−410467411100906673223801525015092827907382852275953565568989408591520α146

+244373061239573525170364306606773136690590544856331578133540062357184α147

−67137173574208581929099251980225280832815704879993996789961828208784α148

+15109453726979262114404719422671376896934991181254480301068783496000α149

−3041110741874930638456938010940447684323532404585513230577319188704α150

+543474006539496836413675511283771054220572953580018501137140774336α151

−82818210860123209370721479679382853454718857015790579069608342392α152

+10208909053669116781213384172905303479740054958245095883752727616α153

−950607878263673381203873433978784840581837837196127719161731872α154

+61537081222427663468738382440653874375219870006734261147376320α155

−3614460685557548015719619196028506524834155796764598110372912α156

+735146337727640447184879802116259476500819273333226229041984α157

−195982957610545601975537049907586449965158403571666750972768α158

+35410924134603994553881822516846688340985279903764142254528α159

−4586047122379261183418802995335871699189992574849634423682α160

+461731528371721725878159689755046846967144056271095432896α161

−39548982563052670609179355793571460666409257926095752160α162

+3249771246267792941295436011847663684436436914874939968α163

−278663520870823657308884684973631236730880421051628656α164

+23298555433192575099637973614016576299882162116142016α165

−1572480211244215449798675303409379604821388457521312α166

+64631732188205970561818215170229051834055602691904α167

−359811432336185820581657539275402497742419221400α168

−81408350985197555231086181640295965142859955520α169

−2670526194482509900914512598125562096574018400α170

+824346510881081434287176385644420962607200832α171

−40421524575366405147127382177082176049208656α172

+859850260877732200189610333732782641323968α173

−21746942237477507610278314875487367745056α174

+1166204976072113679141136387334878097216α175

−16255593447525276321168587153278001172α176

−1031047179999272558707644762054830656α177

+57315125130135149120405695909830560α178

−2190911023714361858443237127579840α179

+42156348386945234230569584900496α180

−400797347138034992145950828864α181

−3239264180104926121034061856α182

+57518923520963556655145024α183

−302326293499892000458856α184

−648961315190292320832α185

+4804670128512328736α186

+97238301302930240α187

−106616047418832α188

−478181605696α189

+208298592α190

+25664α191

−α192

Table 4: 192-degree minimal polynomial found by multipair PSLQ for the case x = y = 1/35.
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Multiprecision software PSLQ code Cores Run time Speedup
ARPREC 2-level 1 1.599 · 106 1.00
New MPFR-based software 2-level 1 5.249 · 105 3.05
New MPFR-based software 3-level 1 1.240 · 105 12.90

2 7.585 · 104 21.08
4 4.121 · 104 38.80
8 2.476 · 104 64.58

16 1.021 · 104 156.61

Table 5: Wall-clock run times (in seconds) and speedup factors for the case x = y = 1/35,
measured in a typically busy environment with similar jobs running on other cores.
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A Proofs of Kimberley’s formula and the palindromic
property
In this section we prove Kimberley’s formula and the reciprocal nature of p2s(x). We begin
by considering

φ2(x, y) = 1
2π log

∣∣∣∣θ2(z, q)θ4(z, q)
θ1(z, q)θ3(z, q)

∣∣∣∣
and

α = e8πφ2(x,y),

which after basic algebra gives

α =
∣∣∣∣θ2(z, q)θ4(z, q)
θ1(z, q)θ3(z, q)

∣∣∣∣4 .
The definitions of the theta functions earlier in this paper agree with those in Whittaker

and Watson in the chapter “Theta Functions” [22] and therefore the identities presented
there can be used with τ = i. We now introduce the function

f(z) = θ2(z)2θ2
4(z)

θ1(z)2θ2
3(z) .

The function f(z) is doubly periodic with periods π/2 + i/2 and π/2 − i/2, and has
a double pole at 0 and a double zero at πi/2. The double periodicity follows from the
quasiperiodicity of the theta functions. The poles and zeros follow from examining the poles
and zeros of the theta functions, as recorded in Whittaker and Watson.

Every holomorphic doubly-periodic function is a constant, by the corollary to Liouville’s
theorem found in [22, Chap. 2]. Consider g(z) = f(π/2(1 + i)z)/℘(z), where ℘(z) is the
Weierstrass ℘ function on the lattice spanned by 1 and i. Then g(z) is doubly periodic with
periods 1 and i, and has no poles or zeros. It is therefore a constant.

Now α = f(π/2(1/s+ i/s))f(π/2(1/s− i/s)), which is a2℘(1/s)℘(−i/s). But ℘(−i/s) =
−℘(1/s),so α = −a2℘(1/s)2, for a constant a independent of s. From any of our examples
we conclude α = −℘(1/s)2.

The Weierstrass ℘ function parametrizes the x-coordinates of points on an elliptic curve.
For the lattice spanned by 1 and i that elliptic curve is y2 = x3+x. For any z, w in the lattice,
(℘(z), ℘′(z)) and (℘(w), ℘′(w)) are points on the elliptic curve, and (℘(z + w), ℘′(z + w)) =
(℘(z), ℘′(z)) + (℘(w), ℘′(z)) where the second sum is the group law on the elliptic curve.

The curve y2 = x3 + x has complex multiplication defined over Q(i). The map i sending
(x, y) to (−x, iy) is a group homomorphism, and when iterated twice is negation. Therefore
the endomorphism ring is the ring of integers in Q(i), and we can define multiplication on
the curve not just for integers, but for Gaussian integers.

The Gaussian integers are a unique factorization domain, in fact a principal ideal domain.
The nonzero prime ideals are maximal, and are either (p) for p a prime 3 mod 4 in the
integers, or (a+ ib) where a2 + b2 = q, a prime 1 mod 4 in the integers, or (1 + i).

In Silverman’s discussion of the theory of complex multiplication in [21, Chap. 2, Thm. 5.6],
he constructs the ray class field for a divisor d in Q(i) by adjoining the squares of the x-
coordinates of points which are d torsion points on y2 = x3 + x to Q(i). The ray class
field has degree equal to the order of the ray class group. We know that α falls in the field
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generated by the s torsion points and not any of the smaller ray class fields. In fact, the
action of the Galois group of the ray class field is given by multiplication by the ray class
group. This action is transitive, and so the minimal polynomial of α over Q(i) has degree
equal to the order of the ray class group.

The ray class group is defined as the set of all ideals relatively prime to s modulo the set
of principal ideals generated by β such that β− 1 is divisible by s. This is isomorphic to the
set of units in Z(i)/sZ(i) modulo the units of Z(i). The size of this group is exactly m(s) by
use of inclusion-exclusion: for a number d in Z(i) there are N(d) elements of Z(i), and we
wish to count the ones which are not divisible by any divisor of d, exactly analgous to the
computation of φ(n) for a regular integer.

More specifically 4m(s) is the number of units in Z(i)/sZ(i). Extend the Mö’bius function
µ to Z(i) with the same definition: 0 for non-squarefree arguments, and (−1)k for numbers
with k prime factors. Define ρ(s) = 4m(s) to be the number of units in Z(i)/sZ(i).

Then ρ(s) =
∑
k|d µ(d/k)N(k). This is a multiplicative function, and so 4m(s) =∏

pei |d ρ(pei). The primes in Z(i) are either a+ bi and a− bi with a2 + b2 a prime 1 mod 4
or ordinary primes which are 3 mod 4, or (1 + i).

If s is divisible by a+ bi with b nonzero it is also divisible by a− bi by the same amount
as it is real. So we can rewrite the product decomposition as a product over ordinary primes,
and then have to evaluate ρ(pei) for an ordinary prime. If the prime is 3 mod 4 this is just
p2ei − p2(ei−1). If the prime is 1 mod 4 this is (pei − pei−1)2. If the prime is 2 this is 2.
Some algebra now shows that this is equvalent to formula 3.

When we consider K/Q we obtain an extension where the subgroup of the Galois group
fixing Q(i) is normal, as it has index 2 in the Galois group, by [13, Thm. 5.5.6]. Because it
is normal it is fixed under conjugation.

Now, α is real, and so writing qs(x) =
∏
τ (x − τα) where τ ranges over the elements of

the Galois group of K/Q fixing Q(i) we see that

σqs(x) =
∏
τ

(x− στα) =
∏
τ

(x− τσα) =
∏
τ

(x− τα) = qs(x)

by the normality of the set of τ . Therefore qs(x) has real coefficients.
Our qs(x) does not have integral coefficients, but merely rational. However, ps(x) is

qs(−x) times some constant, and so Kimberley’s formula is true. Note that if P = (x, y) on
the elliptic curve y2 = x3 + x is a 2s torsion point, so is P + (0, 0) which has x-coordinate
1/x by applying the addition formulas. Furthermore P and P + (0, 0) have the same order.
Therefore q2s(x) is a reciprocal polynomial as conjectured, and so is p2s(x).

We finish by observing that the same building blocks were used in the orginal more
primitive proof [5] of algebraicness of α.
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