
Chapter 1
Reflection methods for inverse problems with
applications to protein conformation
determination

Jonathan M. Borwein and Matthew K. Tam

Abstract The Douglas–Rachford reflection method is a general purpose algorithm
useful for solving the feasibility problem of finding a point in the intersection of
finitely many sets. In this chapter we demonstrate that applied to a specific prob-
lem, the method can benefit from heuristics specific to said problem which exploit
its special structure. In particular, we focus on the problem of protein conforma-
tion determination formulated within the framework of matrix completion, as was
considered in a recent paper of the present authors.
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1.1 Techniques of Variational Analysis

This chapter builds on a series of seven lectures titled Techniques of Variational
Analysis given by the first author at the CIMPA school Generalized Nash Equilib-
rium Problems, Bilevel Programming and MPEC held November 25 to December
6, 2013, University of Delhi, New Delhi, India. In this written presentation we focus
on reflection methods for protein conformation determination, as was discussed in
the seventh and final lecture of the series. The complete lectures — one through six
taken from [13] — can be found online at:
http://www.carma.newcastle.edu.au/jon/ToVA/links.html

Before turning our attention to reflection methods, we briefly outline the content
of the first six lectures.
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• Lectures 1 & 2 provided an introduction to variational analysis and variational
principles [13, §1-§2].

• Lectures 3 & 4 introduced nonsmooth analysis: normal cones and subdifferen-
tials of lower semi-continuous functions, Fréchet and limiting calculus [13, §3.1-
§3.4], and discussed convex functions and their calculus rules [13, §4.1-§4.4].

• Lecture 5 turned to multifunction analysis: sequences of sets, continuity of maps,
minimality and maximal monotonicity, and distance functions [13, §5.1-§5.3].

• Lecture 6 focussed on convex feasibility problems and the method of alternating
projections [13, §4.7], and therefore providing the preliminary background for
the rest of this chapter.

1.2 Introduction to Reflection Methods

Given a (finite) family of sets, the corresponding feasibility problem is to find a point
contained in their intersection. Douglas–Rachford reflection methods form a class
of general-purpose iterative algorithms which are useful for solving such problems.
At each iteration, these methods perform (metric) reflections and (metric/nearest
point) projections with respect to the individual constraint sets in a prescribed fash-
ion. Such methods are most useful when applied to feasibility problems whose con-
straint sets have more easily computable reflections and projections than does the
intersection.

When the underlying constraint sets are all convex, Douglas–Rachford methods
are relatively well understood [6, 12, 11, 7] — their behaviour can be analysed using
nonexpansivity properties of convex projections and reflections. In the absence of
convexity, recent result have assumed the constraint sets to possess other structural
and regularity properties [10, 1, 20]. However, at present, this developing theoretical
foundation is not sufficiently rich to explain many of the successful applications in
which one or more of the constraint sets lacks convexity [3, 2, 17, 18]. In these
cases, the method can be viewed as a heuristic inspired by its behaviour within fully
convex settings.

More generally, with any algorithm there is typically a trade-off between the
scope of their applicability and tailoring of performance to particular instances.
Douglas–Rachford reflection methods are no different. Owing to these methods’
broad applicability, potential for further problem specific refinements when applied
to special classes of feasibility problems is possible.

In this chapter, we investigate and develop one such refinement with a focus on
application of the Douglas–Rachford method to protein conformation determina-
tion. This application was previously considered as part of [3]. We now propose
problem specific heuristics, and also study the effect of increasing problem size. We
finish by demonstrating a complementary application of the approach arising in the
context of ionic liquid chemistry.

The remainder of this chapter is organized as follows. In Sections 1.3, 1.4, 1.5 &
1.6 we introduce the necessary mathematical preliminaries along with the Douglas–
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Rachford reflection method, before formulating the protein conformation determi-
nation problem. Substantial numerical and graphical results are given in Section 1.7,
and concluding remarks in Section 1.8.

1.3 Mathematical Preliminaries

Let E denote a Euclidean space, that is, a finite dimensional Hilbert space. We will
mainly be concerned with the space Rm×m (i.e., real m×m matrices) equipped with
the inner-product given by

〈A,B〉 := tr(AT B).

Here the symbol tr(X) (resp. XT ) denotes the trace (resp. transpose) of the matrix
X . The induced norm is the Frobenius norm and can be expressed as

‖A‖F :=
√

tr(AT A) =

√
m

∑
i=1

m

∑
j=1

a2
i j.

The subspace of real symmetric m×m matrices is denoted Sm, and the cone of
positive semi-definite m×m matrices by Sm

+.
Given sets C1,C2, . . . ,CN ⊆ E, the feasibility problem is

find x ∈
N⋂

i=1

Ci. (1.1)

When the intersection in (1.1) is empty, one often seeks a “good” surrogate for a
point in the intersection. When N = 2, a useful surrogate is a pair of points, one
from each set, which minimize the distance between the sets – a best approximation
pair [6].

1.4 Matrix Completion

A partial (real) matrix is an m×m array for which entries only in certain locations
are known. Given a partial matrix A = (ai j) ∈ Rm×m, a matrix B = (bi j) ∈ Rm×m is
a completion of A if bi j = ai j whenever ai j is known. The problem of (real) matrix
completion is the following: Given a partial matrix find a completion belonging to
a specified family of matrices.

Matrix completion can be naturally formulated as a feasibility problem. Let A be
the partial matrix to be completed. Choose C1,C2, . . . ,CN such that their intersection
is equal to the intersection of completions of A with the specified matrix family.
Then (1.1) is precisely the problem of matrix completion for A. The simplest such
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case is when C1 is the set of all completions of A and the intersection of C2, . . . ,CN
equals the desired matrix class.

Remark 1. More generally, one may profitably consider matrix completion for rect-
angular matrices [3], for example with doubly stochastic matrices. However, since
the partial matrices in the discussed protein application are always square, for the
purposes of this discussion, we only concern ourselves with the square case.

1.5 The Douglas–Rachford Reflection Method

The projection onto C ⊆ E is the set-valued mapping PC : E⇒ C which maps any
point x ∈ E to its sets of nearest points in C. More precisely,

PC(x) =
{

c ∈C : ‖x− c‖ ≤ inf
y∈C
‖x− y‖

}
.

The reflection with respect to C is the set-valued mapping RC : E ⇒ E given by
RC = 2PC− I, where I denotes the identity mapping.

When C is non-empty, closed, and convex, its corresponding projection operator
(and hence its reflection) is single-valued (see, for example, [15, Ch. 1.2]).

x1

p1

r1

x2

p2

r2

x

p1

p2

r1

r2

Fig. 1.1 (Left) The (single-valued) projection, pi, and reflection, ri, of the point xi onto a convex
set, for i = 1,2. (Right) The (set-valued) projection, {p1, p2}, and reflection, {r1,r2}, of the point
x onto a non-convex set. Note the non-expansivity of the reflection in the convex case.

Given A,B⊆ E and x0 ∈ E, the Douglas–Rachford reflection method is the fixed
point iteration given by

xn+1 ∈ TA,Bxn where TA,B =
I +RBRA

2
. (1.2)

We refer to the sequence (xn)
∞
n=1 as a Douglas–Rachford sequence, and to the map-

ping TA,B as the Douglas–Rachford operator.
We now recall the behavior of the Douglas–Rachford method in the classical

convex setting. In this case, TA,B is single-valued as a consequence of the single-
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valuedness of each of PA,PB,RA and RB. We denote the set of fixed points of a
single-valued mapping T by FixT = {x ∈ E : T x = x}, and the normal cone of a
convex set C at the point x by

NC(x) =

{
{y ∈ E : 〈C− x,u〉 ≤ 0} if x ∈C,

/0 otherwise.

For convenience, we also introduce the two sets

E =

{
x ∈ A : inf

a∈A
‖a− x‖ ≤ inf

a∈A,b∈B
‖a−b‖

}
,

F =

{
x ∈ B : inf

b∈B
‖x−b‖ ≤ inf

a∈A,b∈B
‖a−b‖

}
,

and the vector v = PB−A(0). Here the overline denotes the closure of the set.

Theorem 1 (Convex Douglas–Rachford in finite dimensions [6]). Suppose A,B⊆ E
are closed and convex. For any x0 ∈E define xn+1 = TA,Bxn. Then there is some v∈E
such that:

(i) xn+1− xn = PBRAxn−PAxn→ v and PBPAxn−PAxn→ v.
(ii) If A∩B 6= /0 then (xn)

∞
n=1 converges to a point in

Fix(TA,B) = (A∩B)+NA−B(0);

otherwise, ‖xn‖→+∞.
(iii) Exactly one of the following two alternatives holds.

(a) E = /0, ‖PAxn‖→+∞, and ‖PBPAxn‖→+∞.
(b) E 6= /0, the sequences (PAxn)

∞
n=1 and (PBPAxn)

∞
n=1 are bounded, and their

cluster points belong to E and F, respectively; in fact, the cluster points of

((PAxn,PBRAxn))
∞
n=1 and ((PAxn,PBPAxn))

∞
n=1

are a best approximation pairs relative to (A,B).

Theorem 1 provides the template for application of the Douglas–Rachford method
as a heuristic for non-convex feasibility problems. Furthermore, this theorem also
shows that for the Douglas–Rachford method the sequence of primary interest is not
the fixed point iterates (xn)

∞
n=1 themselves, but their shadows (PAxn)

∞
n=1.

Remark 2 (Douglas–Rachford splitting). The Douglas–Rachford reflection method
can be viewed as a special case of the Douglas–Rachford splitting algorithm for
finding a zero of the sum of two maximally monotone operators. This more general
splitting method iterates by using resolvents of the given maximally monotone op-
erators rather than projection operators of sets. The reflection method is obtained in
the special case in which the maximal monotone operators are normal cones to the
feasibility problem sets. For details, we refer the reader to [5].
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xn

RAxn

RBRAxn

xn+1 = TA,Bxn

A

B

Fig. 1.2 One iteration of the Douglas–Rachford method for the sets A = {x ∈ E : ‖x‖ ≤ 1} and
B = {x ∈ E : 〈a,x〉= b}.

Within an implementation of the Douglas–Rachford method, computation of the
projection operators are the component typically requiring the most resources. It
is therefore beneficial to store two additional sequences in memory; the shadow
sequence (PAxn)

∞
n=1, and the sequence (PBRAxn)

∞
n=1. This is because iteration (1.2)

is expressible as

xn+1 ∈ xn +PBRAxn−PAxn

= xn +PB(2PAxn− xn)−PAxn.
(1.3)

An implementation utilizing this approach is given in Algorithm 1.3. The stopping
criterion uses a relative error and is discussed in Section 1.7.

Fig. 1.3 Implementation of the basic Douglas–Rachford algorithm.

Input: x0 ∈ E and ε > 0
n = 0;
p0 ∈ PA(x0);
while n = 0 or ‖rn− pn‖> ε‖pn‖ do

rn ∈ PB(2pn− xn);
xn+1 = xn + rn− pn;
pn+1 ∈ PA(xn+1);
n = n+1;

end
Output: pn ∈ E
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1.6 Protein Conformation Determination

Proteins are large biomolecules which are comprised of multiple amino acid residues,1

each of which typically consists of between 10 and 25 atoms. Proteins participate is
virtually every cellar process, and knowledge of their structural conformation gives
insight into the mechanisms by which they perform.

One of many techniques that can be used to determine conformation is nuclear
magnetic resonance (NMR). Currently NMR is only able to non-destructively re-
solve relatively short distances (i.e., those less than ∼ 6Å). In the proteins we con-
sider, this corresponds to less than 9% of all non-zero inter-atom distances.

We now formulate the problem of protein conformation determination as a com-
putationally tractable matrix completion problem. In fact, our formulation is a low-
rank Euclidean distance matrix completion problem. We next introduce the neces-
sary definitions.

We say that a matrix D = (Di j) ∈Rm×m is a Euclidean distance matrix (EDM) if
there exists points z1,z2, . . . ,zn ∈ Rm such that

Di j = ‖zi− z j‖2 for i, j = 1,2, . . . ,m. (1.4)

Clearly any EDM is symmetric, non-negative, and hollow (i.e., contains only zeros
along its main diagonal). When (1.4) holds for a set of points in Rq, we say D is
embeddable in Rq. If D is embeddable in Rq but not in Rq−1, then we say that D is
irreducibly embeddable in Rq.

We now recall a useful characterization of EDMs, due to Hayden and Wells [19].
In what follows, the matrix Q ∈ Rm×m is the Householder matrix given by

Q = I− 2vvT

vT v
, where v =

[
1, 1, . . . 1, 1+

√
m
]T ∈ Rm.

Theorem 2 (EDM characterization [19, Th. 3.3]). A non-negative, symmetric,
hollow matrix X ∈ Rm×m is a Euclidean distance matrix if and only if the block
X̂ ∈ R(m−1)×(m−1) in

Q(−X)Q =

[
X̂ d
dT δ

]
(1.5)

is positive semi-definite. In this case, X is irreducibly embeddable in Rq where
q = rank(X̂)≤ m−1.

The problem of low-rank Euclidean distance matrix completion can now be for-
mulated. Let D denote a partial Euclidean distance matrix, with entry Di j known
whenever (i, j) ∈Ω for some index set Ω , which is embeddable in Rq. Without loss
of generality, we make the following three simplifying assumptions on the partial
matrix D and index set Ω .

1. (non-negative) D≥ 0 (i.e., Di j ≥ 0 for all i, j = 1,2, . . . ,m);

1 When two amino acids form a peptide bond, a water molecule is formed. An amino acid residue
is what remains of each amino acid after this reaction.
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2. (hollow) Dii = 0 and (i, i) ∈Ω for i = 1,2, . . . ,m;
3. (symmetric) (i, j) ∈Ω ⇐⇒ ( j, i) ∈Ω , and Di j = D ji for all (i, j) ∈Ω .

We define two constraint sets

C1 =
{

X ∈ Sm : X ≥ 0, Xi j = Di j for all (i, j) ∈Ω
}
,

C2 =

{
X ∈ Sm : Q(−X)Q =

[
X̂ d
dT δ

]
,

X̂ ∈ Sm−1
+ , d ∈ Rm−1

rank X̂ ≤ q, δ ∈ R

}
.

(1.6)

In light of Theorem 2, the problem of low-rank Euclidean distance matrix comple-
tion can be cast as the two-set feasibility problem

find X ∈C1∩C2.

That is, a matrix X is a low-rank Euclidean distance matrix which completes D if
and only if X ∈C1 ∩C2. Some comments regarding the constraint sets in (1.6) are
in order.

The set C1 encodes the experimental data obtained from NMR, and the a priori
knowledge that the matrix is non-negative, symmetric and hollow. Its projection has
a simple formulae, as we now show.

Proposition 1 (Projection onto C1). Let X ∈ Rm×m. Then PC1X is given element-
wise by

(PC1X)i j =

{
Di j, (i, j) ∈Ω

max{0,Xi j}, (i, j) 6∈Ω
for i, j = 1,2, . . . ,m.

Proof. Let Y be any matrix in C1. We have

‖X−Y‖2
F = ∑

(i, j)∈Ω

(Xi j−Yi j)
2 + ∑

(i, j)6∈Ω

s.t. Xi j<0

(Xi j−Yi j)
2 + ∑

(i, j)6∈Ω

s.t. Xi j≥0

(Xi j−Yi j)
2

= ∑
(i, j)∈Ω

(Xi j−Di j)
2 + ∑

(i, j)6∈Ω

s.t. Xi j<0

X2
i j + ∑

(i, j)6∈Ω

s.t. Xi j≥0

(Xi j−Yi j)
2.

(1.7)

Let P be the matrix given by the proposed projection formula (clearly P∈C1). Then

∑
(i, j)6∈Ω

s.t. Xi j≥0

(Xi j−Yi j)
2 ≥ ∑

(i, j)6∈Ω

s.t. Xi j≥0

(Xi j−Xi j)
2 = ∑

(i, j)6∈Ω

s.t. Xi j≥0

(Xi j−Pi j)
2. (1.8)

By combining (1.7) and (1.8) we see that

‖X−Y‖2
F ≥ ‖X−P‖2

F for all Y ∈C1.

Since C1 is closed and convex, P is the unique nearest point to X in C1. ut
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Remark 3. Since C1 is a closed convex set, an alternative (less direct) proof of Propo-
sition 1 can be given using the standard variational characterization of convex pro-
jections [15, Th. 1.2.4].

Using the necessary condition given by Theorem 2, the non-convex set C2 en-
codes the a priori knowledge that the matrix of interest is a EDM together with the
dimension of the space in which the corresponding points generating the matrix are
contained. We now derive the projection onto C2.

Theorem 3 (Nearest low-rank EDMs [3]). Let X ∈ Sm be a non-negative, hollow
matrix. Then

PC2(X) =

{
−Q

[
Ŷ d
dT δ

]
Q : Q(−X)Q =

[
X̂ d
dT δ

]
,

X̂ ∈ R(m−1)×(m−1),
d ∈ Rm−1, δ ∈ R, Ŷ ∈ PMX̂

}
,

where M is the set of positive semi-definite matrices with rank q or less. In particular,
PC2(X) is a singleton if and only if PMX̂ is a singleton.

Proof. Let Y be any matrix in C2. That is,

Y =

[
Ŷ c
cT β

]
, for some c ∈ Rm−1, β ∈ R, Ŷ ∈ S.

Using the orthogonality of Q, we compute

‖X−Y‖2
F = ‖Q(X−Y )Q‖2

F = ‖Q(−X)Q−Q(−Y )Q‖2
F

=

∥∥∥∥[ X̂ d
dT δ

]
−
[

Ŷ c
cT β

]∥∥∥∥2

F
=

∥∥∥∥[ X̂− Ŷ (d− c)
(d− c)T (δ −β )

]∥∥∥∥2

F

= ‖X̂− Ŷ‖2
F +2‖d− c‖2 + |γ−β |2.

(1.9)

To complete the proof we observe that (1.9) is minimized if and only if c = d,γ = β

and Ŷ ∈ PMX̂ . ut

The set M in Theorem 3 is a set of low-rank positive semi-definite matrices. One
method to compute its projection (and the one we will use) is by exploiting the
eigen-decomposition of X̂ . Denote by diag(λ ) the diagonal matrix given by placing
the elements of the vector λ ∈ Rm along the main diagonal. Let X̂ =U diag(λ )UT

be an eigen-decomposition (of X̂) with

λ1 ≥ λ2 ≥ ·· · ≥ λ
+
q ≥ ·· · ≥ λm.

A projection onto the set is then given by

U diag((λ+
1 ,λ+

2 , . . . ,λ+
q ,0 . . . ,0,0))UT ,

where x+ denotes max{0,x}.
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1.7 Computational Experiments

We apply the formulation of Section 1.6 to six proteins, shown in Table 1.1, obtained
from the RCSB Protein Data Bank2. As part of [3], reconstructions of the same six
proteins were attempted using a partial EDM containing only distances less than
6Å. Here we attempt reconstructions using partial EDMs which, in addition to these
short-range distances, incorporate other a priori information. In particular, we in-
clude inter-atomic distances greater than 6Å for atoms from within the same residue
in the partial EDM. This is reasonable since the structure of the individual residues
is known. For 1PTQ, this information gives approximately a further 0.2% of the
total non-zero inter-atomic distances.

Table 1.1 Number of atoms, residues, known, and total non-zero inter-atomic distances in our six
test proteins.

Protein Atoms Residues Total Non-Zero Distances Known Non-Zero Distances

1PTQ 404 50 81,406 8.9207%
1HOE 581 74 168,490 6.4105%
1LFB 641 99 205,120 5.6362%
1PHT 988 85 236,328 4.6501%
1POA 1067 118 568,711 3.6375%
1AX8 1074 146 576,201 3.5606%

Our experiments were implemented in Cython and performed on a machine hav-
ing an Intel Xeon E5540 @ 2.83GHz running Red Hat Enterprise Linux 6.5. A
combination of the Cython platform, and optimized code gave approximately a ten-
fold speed up compared to [3]. This allowed for a greater number of iterations to
be performed and hence the use of the more robust (albeit still heuristic) stopping
criterion given in Algorithm 1.3 as opposed to simply performing a fixed number
of iterations. The reconstructed EDM, x, was converted to points z1,z2, . . . ,zm ∈ R3

using Algorithm 1.4.

Remark 4. It is worth emphasing that our primary concern is the quality of the re-
construction, rather than the time required to perform the reconstruction. This is
because, if done well, one only needs to determine the conformation once.

We report two error metrics, which we now explain. Denote the actual EDM by
xactual. The first error metric is a measure of the error in the reconstructed EDM, and
is given by

EDM-error = ‖xactual− x‖F =

√
m

∑
i, j=1

∣∣∣xactual
i j − xi j

∣∣∣2.
2 RCSB Protein Data Bank: www.rcsb.org/pdb
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Fig. 1.4 Conversion of EDM to points in Rq.

Input: x ∈ X ; /* a Euclidean distance matrix */

L = I− eeT /n where e = (1,1, . . . ,1)T ;
τ =−LDL/2;
USV T = SingularValueDecomposition(τ);
Z = first q columns of U

√
S;

zi = ith row of Z for i = 1,2, . . . ,m;
Output: z1,z2, . . . ,zq ∈ Rq ; /* points corresponding to x */

Denote the actual atom positions by zactual
1 ,zactual

2 , . . . ,zactual
m ∈ R3. The second

error metric measures the error in the reconstructed atom positions z1,z2, . . . ,zm ∈
R3. Since EDMs are invariant under translation, reflection, and rotation of the points
by which they are induced, we first perform a Procrustes analysis [16] to obtain
z̃1, z̃2, . . . , z̃m ∈ R3. These points are a best fit of the reconstructed points when the
aforementioned transformations are allowed. The second error metric is given by

Position-error =

√
m

∑
k=1
‖zactual

k − z̃k‖2
2.

When comparing the relative size of these two errors, it is worth noting that the sum-
mation in the EDM-error contains m2 terms whereas the summation in the position-
error contains only 3m.

Remark 5 (Decibel error). It is also common to consider the relative error in decibels
(dB), as was reported in [3]. That is,

Relative error (dB) = 10log10

(
‖PBRAx−PAx‖2

F

‖PAx‖2
F

)
.

In this study the relative error in decibels is not reported. This is unnecessary be-
cause the stopping criterion used in Algorithm 1.3 is equivalent to requiring that
the decibel error be less than 10log10(ε

2). Requiring that ε = 10−5 corresponds to
aiming at a relative error of −100dB.

Remark 6 (Stopping criterion and tolerance). In the computational experiments that
follow, the stopping tolerance is taken to be ε = 10−5. We now provide some justi-
fication for this choice.

For each of the six proteins, Figure 1.5 shows the relative error as a function of
the number of iterations starting from a given initial point for the Douglas–Rachford
method.

• When the number of iteration is less than 5000 the relative error exhibits non-
monotone oscillatory behaviour — which seems to provide much of the potency
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Fig. 1.5 The relative error as a function of iterations (vertical axis is logarithmic).

of the method. It seems to allow the reflection method to sample regions and
avoid settling at an inferior local minimum of the configuration space. In [3]
we observed that the alternating projection method, which is monotonic, fails to
produce good reconstructions.

• When the relative error is between 10−3 and 10−4, it decreases sharply after
which a period of more predictable decrease is observed.

• Beyond this point slower progress is made. We therefore choose our stopping
tolerance to be ε = 10−5 so that the algorithm will terminate in this region.

The change in successive iterates was found to also exhibit similar behavior (not
shown), so is another suitable candidate for a stopping criterion.

It is worth noting that there are many other techniques for solving (variants of) the
protein conformation problem (see for instance [21]). Such a discussion, however,
is beyond the scope of this chapter.

1.7.1 Basic Douglas–Rachford Algorithm Results

Table 1.2 gives results for the basic Douglas–Rachford algorithm presented in Al-
gorithm 1.3. We make some comments regarding these results.

The EDM-error increases with increasing problem size; yet the same trend is
not observed for the position-error for which 1PHT reported the largest error. For
all of the proteins studied, the differences between the average and worst case re-
sults for the position-errors were small. This strongly suggests that the method can
consistently produce a EDM which gives the desired atomic positions.
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The second column of Figure 1.6 shows the conformation of the basic Douglas–
Rachford reconstructions, which are visually indistinguishable from the actual con-
formation shown in the first column. This is an improvement from what was reported
in [3] whose Douglas–Rachford reconstructions of two of the larger proteins, 1POA
and 1AX8, gave unrealistic conformations consisting of disjoint blocks of atoms. In
light of Remark 6 it is likely that this was due to premature algorithm termination.

Table 1.2 Average (worst) results from five random replications of the basic Douglas–Rachford
algorithm with ε = 10−5.

Protein EDM-Error Position-Error Iterations Time (h)

1PTQ 3.6816 (4.0938) 0.1307 (0.1457) 4339.6 (4686) 0.28 (0.30)
1HOE 9.7475 (13.8503) 0.1781 (0.2636) 20794.4 (21776) 3.50 (3.67)
1LFB 9.8728 (17.2860) 1.1388 (2.1177) 22346.2 (23295) 4.64 (4.85)
1PHT 10.3709 (12.9557) 12.8782 (13.0056) 20103.0 (20251) 13.90 (14.00)
1POA 25.4225 (46.5804) 0.5844 (1.1639) 28426.0 (29766) 23.33 (24.47)
1AX8 25.7369 (39.4586) 0.6592 (0.9160) 17969.8 (19059) 15.04 (15.95)

1.7.2 Douglas–Rachford Algorithm with Periodic Rank Projections

In our formulation of the protein confirmation problem, the most expensive step
is the computation of the projection onto the rank constraint C2. Thus requires the
eigen-decomposition of a (m− 1)× (m− 1) symmetric matrix. In this section we
propose problem specific heuristics which allow for this computation to sometimes
be avoided.

One idea to avoid performing the eigen-decomposition is to not update the se-
quence (rn)

∞
n=1 in Algorithm 1.3 at every iteration but only periodically. This ap-

proach is described in Algorithm 3, and results, with updates only every third time,
in Table 1.3.

We now compare the results of this section to those of Section 1.7.1. A small in-
crease in the position-errors, and a larger increase in the EDM-errors was observed.
The number of iterations required also increased, with this number almost doubling
for 1PTQ. For all six test proteins, the total time required was less. The biggest
improvement was 1POA whose total time was more than halved. The quality of the
reconstructed conformations seem not to be adversely effected by the use of periodic
rank projections, as can be seen in Figure 1.6.
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Fig. 1.6 The conformations of the six proteins, and their three Douglas–Rachford reconstructions.

Fig. 1.7 The Douglas–Rachford algorithm with T -periodic projections onto the set B.

Input: x0 ∈ X ,T ∈ N and ε > 0
n = 0;
p0 ∈ PA(x0);
while n = 0 or ‖rn− pn‖> ε‖pn‖ do

if n mod T = 0 then
rn ∈ PB(2pn− xn);

else
rn = rn−1;

end
xn+1 = xn + rn− pn;
pn+1 ∈ PA(xn+1);
n = n+1;

end
Output: pn ∈ X
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Table 1.3 Average (worst) results from five random replications of the Douglas–Rachford algo-
rithm with periodic rank projections with T = 3 and ε = 10−5.

Protein EDM-Error Position-Error Iterations Time (h)

1PTQ 4.3709 (4.7200) 0.1919 (0.2240) 7160.6 (7595) 0.16 (0.17)
1HOE 10.1790 (12.1089) 0.2603 (0.2933) 20305.4 (22550) 1.21 (1.35)
1LFB 17.6532 (19.0984) 1.2709 (1.7243) 28983.8 (31211) 2.15 (2.31)
1PHT 23.8594 (25.9794) 13.1358 (13.2805) 20559.2 (20981) 5.03 (5.13)
1POA 49.8406 (51.3411) 1.0948 (1.2084) 33150.8 (39083) 9.55 (11.25)
1AX8 45.5203 (49.1866) 1.1696 (1.4482) 27080.6 (31250) 7.96 (9.20)

1.7.3 Reconstructions with Additional Distance Data

In Sections 1.7.1 & 1.7.2 we considered the physically realistic setting in which
distances below the threshold of 6Å were known. As noted, when the number of
atoms in a protein increases, the proportion of inter-atomic distances below this
threshold compared to the total number of (non-zero) distances decreases.

To better understand the Douglas–Rachford method applied to larger problem
instances, we performed the same reconstruction as in Section 1.7.1 but with the
percentage of known non-zero distances constant. More precisely, we assumed that
the smallest 10% of inter-atomic distances were known.

Table 1.4 Average (worst) results from five random replications of the basic Douglas–Rachford
algorithm from the smallest 10% of inter-atomic distances with ε = 10−5.

Protein EDM-Error Position-Error Iterations Time (h)

1PTQ 3.1924 (3.5936) 0.0963 (0.1213) 4014.4 (4184) 0.26 (0.27)
1HOE 8.0905 (10.4357) 0.0960 (0.1265) 15110.4 (15709) 2.54 (2.64)
1LFB 7.2941 (13.9893) 0.4647 (0.9182) 11060.6 (11912) 2.29 (2.46)
1PHT 14.1302 (20.2476) 0.3542 (0.4326) 6071.0 (6512) 4.19 (4.49)
1POA 19.5619 (31.1987) 0.1624 (0.2665) 11555.8 (13244) 9.44 (10.81)
1AX8 14.0747 (29.7259) 0.0940 (0.1922) 10099.2 (11125) 8.38 (9.23)

As could perhaps be predicted, when more distance information is incorporated
the error metrics, and the number of iterations decrease. Problem size and EDM-
error do not correlate as strongly compared to the results of Section 1.7.1. However,
the general trend that larger problem sizes give larger EDM-errors is still observed.
The most notable improvement, when compared to Section 1.7.1, is the position-
error for 1PHT. This suggests that in the realistic setting of Section 1.7.1 the un-
derlying protein’s conformation (e.g., a compact or a dispersed conformation) is an
important factor in the difficulty of the reconstruction problem.
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1.7.4 Ionic Liquid Bulk Structure Determination

Ionic liquids (ILs) are salts (i.e., they are comprised of positively and negatively
charged ions) having low melting points, typically occupying the liquid state at room
temperature. An analogous reconstruction problem arising in the context of ionic
liquid chemistry is to determine a given ionic liquid’s bulk structure. That is, the
configuration of its ions with respect to each other (the structure of the individual
ions is known).

In this section, we applied the Douglas–Rachford method to a simplified version
of this problem. Entries of the partial EDM are assumed to be known whenever the
two atoms are bonded (i.e., when their Van der Waals radii taken from [8] overlap).

Table 1.5 reports results for a propylammonium nitrate (PAN) data set consisting
of 180 atoms. The corresponding rank-3 EDM completion problem has a total of
32,220 non-zero inter-atomic distances of which 5.95% form the partial EDM.

Table 1.5 Average (worst) results from five random replications of the basic Douglas–Rachford
algorithm, applied to ionic liquid bulk structure determination, with ε = 10−5.

EDM-Error Position-Error Iterations Time (h)

0.6323 (0.6918) 2.0374 (2.5039) 41553.2 (82062) 0.22 (0.43)

As was the case in the protein conformation application, the difference between
the average and worst case results for the two error metrics is observed to be
small. The actual conformation of PAN, and its Douglas–Rachford reconstruction
are shown in Figure 1.8. A high degree of visual coincidence is observed, although
a small amount of the finer detail is missing.

Fig. 1.8 The actual conformation (left) and Douglas–Rachford reconstruction (right) of PAN. Note
the two poorly reconstructed hydrogen atoms (white) in the left configuration.
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1.8 Concluding Remarks

We have shown that the Douglas–Rachford reflection method can successfully
solve the protein conformation determination problem by directly addressing a non-
convex matrix completion problem. This is also the case for an analogous ionic liq-
uid bulk structure determination problem. It is worth emphasising again that the cur-
rent literature provides no theoretical justification for the method to work at all, let
alone so well. Modifications of the method have also been shown to reduce computa-
tional times without significantly effecting the quality of the results. This promising
demonstration of the method begs further attention, both in improving theoretical
understanding, and in the refinement and investigation of these and further applica-
tions.
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