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Abstract

Computer-based tools for mathematics are changing how mathematics
is researched, taught and communicated to society. Future technology
trends point to ever-more powerful tools in the future. Computation in
mathematics is thus giving rise to a new mode of mathematical research,
where algorithms, datasets and public databases are as significant as the
resulting theorems, and even the definition of what constitutes secure
mathematical knowledge is seen in a new light.

1 Introduction

Like most other fields of scientific research, both pure and applied math-
ematics have been significantly affected in recent years by the introduc-
tion of modern computer technology. Just like their peers in other fields,
mathematicians are using the computer as a “laboratory” to perform ex-
ploratory experiments and test conjectures, in a methodology that has
been termed “experimental mathematics.” The adjective “experimental”
here is entirely appropriate, because, in a fundamental sense, there is lit-
tle difference between a mathematician using a computer to explore the
mathematical universe and an astronomer using a large telescope facility
to explore the physical universe.

By experimental mathematics we mean the following computationally-
assisted approach to mathematical research [11]:

1. Gaining insight and intuition;

2. Visualizing mathematical principles;

3. Discovering new relationships;

4. Testing and especially falsifying conjectures;

5. Exploring a possible result to see if it merits formal proof;
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6. Suggesting approaches for formal proof;

7. Replacing lengthy and error-prone hand derivations;

8. Confirming analytically derived results.

With regards to 6, we have often found that computer-based tools are
useful to tentatively confirm preliminary lemmas; then we can proceed
fairly safely to see where they lead. If, at the end of the day, this line
of reasoning has not led to anything of significance, at least we have
not expended large amounts of time attempting to formally prove these
lemmas. And if computer tests falsify a conjecture, then no need to waste
any time at all seeking a formal proof.

While computation is proving very useful in the exploration phase,
computers are also being employed to produce formal proofs of mathe-
matical results. One notable recent success, just concluded, is Thomas
Hales’ computer-based formal proof of the Kepler conjecture [15], a topic
that we will revisit in Section 4.4.

2 Experimental methods in education

While some still resist, it is clear that computational tools are the wave
of the future for mathematics instruction, certainly not replacing the in-
structor or hand computations and algebraic manipulations, but, instead,
permitting mathematical principles to be taught with less pain and greater
understanding.

To mention just one simple example, many of us recall using algebraic
substitutions to rotate a geometric figure given by a formula. Nowadays
such rotations can be performed easily using computer graphics tools.
Indeed, modern computer technology places the cart before the horse
— rather than using advanced algebra and calculus as tools to graph
functions, instead we can now use computer-based graphics tools to learn
principles of algebra and calculus.

As another simple example, we are taught in elementary calculus that
a definite integral can be seen as the area under a curve, in particular the
limit found by adding the areas of rectangles under a curve, subdividing
the interval into finer and finer parts. While a few very simple examples
of this sort can be done by hand algebra, it is arguably more instructive
for students to let a computer program do the hard work. For example,
by employing a simple trapezoidal approximation to evaluate the integral∫ 1

0
dx/(1+x2), with 10,000 subdivisions, one obtains the numerical result

0.78539815 . . ., which is accurate enough for the Inverse Symbolic Calcu-
lator 2.0, available at http://isc.carma.newcastle.edu.au to identify
as likely to be π/4 (it is, of course, equal to π/4).

In Section 4, we will present a few somewhat more sophisticated ex-
amples of experimental mathematics in action. Here we present two that
require only a very modest background, and are exemplars of how com-
putation can be incorporated into education even at the high school level.
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2.1 A number theory example

Many high school students learn that the sum of the first n integers is
n(n + 1)/2. Indeed, Gauss is reputed to have discovered this formula by
himself in elementary school. What about sums of higher powers? The
simple Mathematica command Sum[k^5,{k,1,n}] returns the formula

15 + 25 + · · ·+ n5 =
1

12
n2(2n2 + 2n− 1)(n+ 1)2. (1)

Note that by typing the command F5[n_]:=n^2(2n^2+2n-1)(n+1)^2;

Simplify[F5[m]-F5[m-1]], one can symbolically determine that the dif-
ference between formula (1) evaluated at an integer n and at n− 1 is n5,
which, since the formula is clearly valid for n = 1, constitutes a proof by
induction that formula (1) is valid for all positive integers n.

In a similar vein, one can use the computer to explore sums of even
higher powers. For example, using either Maple or Mathematica, one
obtains the formula

n∑
k=1

k10 =
1

66
n(2n+ 1)(n+ 1)(n2 + n− 1)

· (3n6 + 9n5 + 2n4 − 11n3 + 3n2 + 10n− 5), (2)

so that, for example,

10,000∑
k=1

k10 = 9095909924242414242424342424241924242425000. (3)

Note the curious pattern of 42 repeated numerous times (except for the
central 3) in the center of this number. What is the explanation? By
using Maple or Mathematica to expand formula (2), one obtains

n∑
k=1

k10 =
1

66

(
6n11 + 33n10 + 55n9 − 66n7 + 66n5 − 33n3 + 5n

)
. (4)

Note that the fourth and fifth terms are -66 and 66, respectively, which,
when divided by 66, are -1 and 1. Also note that without the 1/66, the
sum (3) above would be:

66

10,000∑
k=1

k10 = 600330054999999340000006599999967000000050000. (5)

In this form, the correspondence between (4) and (5) is clear — by ex-
amining (5), one can literally read off the coefficients of (4) term by term
(remembering that 999 . . . is a key for a negative coefficient). When we
evaluate the leading three leading terms of (4) for n = 10, 000, it gives an
integer that, when divided by 66, gives a decimal value that terminates in
4242424242 . . ., which is the source of the 42s above. The central 3 in (3)
is produced by the term 66n5 in (4), which, when divided by 66, is just
n5, adding one to the decimal digit 2 that is normally in this position.
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2.2 An anomaly in computing pi

Gregory’s series, discovered in the 17th century, is arguably the most ele-
mentary infinite series formula for π, although it converges rather slowly.
It can be simply derived by simply noting that

π

4
=

∫ 1

0

dx

1 + x2
=

∫ 1

0

(
1− x2 + x4 − x6 + x8 − · · ·

)
dx

= 1− 1/3 + 1/5− 1/7 + 1/9− 1/11 + · · · (6)

In 1988, a colleague noted that Gregory’s series, when evaluated to 5,000,000
terms by computer, gives a value that differs strangely from the true value
of π. Here is the truncated Gregory value and the true value of π:

3.14159245358979323846464338327950278419716939938730582097494182230...

3.14159265358979323846264338327950288419716939937510582097494459230...

2 -2 10 -122 2770

The series value differs, as one might expect from a series truncated to
5,000,000 terms, in the seventh decimal place—a “4” where there should
be a “6” (namely an error of 2). But the next 13 digits are correct! Then,
following another erroneous digit, the sequence is once again correct for
an additional 12 digits. In fact, of the first 46 digits, only four differ from
the corresponding decimal digits of π. Further, the “error” digits appear
to occur in positions that have a period of 14, as shown above. Why?

A great place to start is by enlisting the help of an excellent online
resource for students and research mathematicians alike: Neil Sloane’s
Online Encyclopedia of Integer Sequences, available at http://www.oeis.
org. This tool has no difficulty recognizing the sequence above, namely
(2,−2, 10,−122, 2770 · · · ), as “Euler numbers,” which are coefficients E2k

in Taylor’s series for the secant function:

secx =

∞∑
k=0

(−1)kE2kx
2k

(2k)!
. (7)

Indeed, this discovery, made originally through the print version of the
integer sequence recognition tool more than 25 years ago, led to a formal
proof that the Euler numbers are indeed the “errors” here [11, p. 50–52].

3 Experimental methods in applied math

By many measures, the record of the field of modern high-performance,
applied mathematical computation is one of remarkable success. Accel-
erated by relentless advances of Moore’s law, this technology has enabled
researchers in many fields to perform computations that would have been
unthinkable in earlier times. Indeed, computation is rapidly becoming a
third mode of scientific discovery, after theory and laboratory work.

The progress in performance over the past few decades is truly re-
markable, arguably without peer in the history of modern science and
technology. For example, in the November 2014 edition of the Top 500
list of the world’s most powerful supercomputers (see Figure 1), the best
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Figure 1: Performance of the Top 500 computers: Red = #1 system; orange =
#500 system; blue = sum of #1 through #500.

system performs at over 30 Pflop/s (i.e., 30 “petaflops” or 30 quadrillion
floating-point operations per second), a level that exceeds the sum of the
top 500 performance figures approximately ten years earlier [20]. Note
also that a 2014-era Apple MacPro workstation, which features approxi-
mately 7 Tflop/s (i.e., 7 “teraflops” or 7 trillion floating-point operations
per second) peak performance, is roughly on a par with the #1 system
of the Top 500 list from 15 years earlier (assuming that the MacPro’s
Linpack performance is at least 15% of its peak performance).

Just as importantly, advances in algorithms and parallel implementa-
tion techniques have, in many cases, outstripped the advance from raw
hardware advances alone. To mention but a single well-known exam-
ple, the fast Fourier transform (“FFT”) algorithm reduces the number of
operations required to evaluate the “discrete Fourier transform,” a very
important and very widely employed computation (used, for example, to
process signals in cell phones), from 8n2 arithmetic operations to just
5n log2 n, where n is the total size of the dataset. For large n, the savings
are enormous. For example, when n is one billion, the FFT algorithm is
more than six million times more efficient.

Remarkable as these developments are, there is no indication that
progress is slowing down. Moore’s Law, the informal rule in the semi-
conductor industry that the number of transistors on a chip roughly dou-
bles every 18 months or so, continues apace, yielding a broad range of
computer-based devices that continue to advance in aggregate power (even
if power management concerns have limited increases in clock rate). And
researchers continue to develop new and improved numerical algorithms,
which, when coupled with improved hardware, will further improve the
power of future systems. Thus we can look forward with some confi-
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dence to scientific computer systems in the 2025 year time frame that are
roughly 100 times more power than systems available in 2015. Indeed,
one’s smartphone in the year 2025 may be comparable in power to the
world’s most powerful supercomputer in, say, 2005 or so.

In this section, we present a few relatively accessible examples of the
experimental paradigm in action in applied mathematics. The intent here
is certainly not to give an encyclopedic review of modern high-performance
applied mathematical computing, but instead to illustrate, by a few ex-
amples (most of which require only modest computational resources), the
truly exploratory nature of this work.

3.1 Gravitational boosting or “slingshot magic”

One interesting space-age example is the unexpected discovery of grav-
itational boosting by Michael Minovitch, who at the time (1961) was a
student working on a summer project at the Jet Propulsion Laboratory
in Pasadena, California. Minovitch found that Hohmann transfer ellipses
were not, as then believed, the minimum-energy way to reach the outer
planets. Instead, he discovered, by a combination of clever analytical
derivations and heavy-duty computational experiments on IBM 7090 com-
puters (which were the world’s most powerful systems at the time), that
spacecraft orbits which pass close by other planets could gain a “slingshot
effect” substantial boost in speed, compensated by an extremely small
change in the orbital velocity of the planet, on their way to a distant
location [18]. Some of his earlier computation was not supported enthu-
siastically by NASA. As Minovitz later wrote,

Prior to the innovation of gravity-propelled trajectories, it
was taken for granted that the rocket engine, operating on
the well-known reaction principle of Newton’s Third Law of
Motion, represented the basic, and for all practical purposes,
the only means for propelling an interplanetary space vehicle
through the Solar System.1

Without such a boost from Jupiter, Saturn, and Uranus, the Voyager
mission would have taken more than 30 years to reach Neptune; instead,
Voyager reached Neptune in only ten years. Indeed, without gravitational
boosting, we would still be waiting!

A very similar type of “slingshot magic,” deduced from computational
simulations, was much more recently employed by the European Union’s
Rosetta spacecraft, which, in November 2014, orbited and then deployed
a probe to land on a comet many millions of kilometers away. The space-
craft utilized gravity-boost swing-bys around the earth in 2005, 2007 and
2009, and around Mars in 2007. The spacecraft’s final approach was very
carefully orchestrated, starting with triangular-shaped paths and ending
with an elliptical orbit tightly circling the comet, which has only a very

1There are differing accounts of how this principle was discovered; we rely on the first-
person account at http://www.gravityassist.com/IAF1/IAF1.pdf. Additional information
on “slingshot magic” is given at http://www.gravityassist.com/ and http://www2.jpl.

nasa.gov/basics/grav/primer.php.
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feeble gravitational field. An animation of the Rosetta craft’s path is avail-
able at http://www.esa.int/spaceinvideos/Videos/2014/01/Rosetta_
s_orbit_around_the_comet.

Along this line, in December 2014 researchers at Princeton University
and the University of Milan announced the discovery, aided by substantial
computational simulations, of a new may to achieve Mars orbit, known
as “ballistic capture.” The idea of ballistic capture is instead of sending
the spacecraft to where Mars will be in its orbit, as is done in missions
to date, the spacecraft is instead sent to a spot somewhat ahead of the
planet. As Mars slowly approaches the craft, it “snags” it into orbit about
the planet. In this way most of the large rocket burn to slow the craft is
avoided [14].

3.2 Iterative methods for protein conformation

The method of alternating projections (MAP), is a computational tech-
nique most often used in optimization applications. While a full math-
ematical treatment would require an excursion into Hilbert spaces and
the like, the concept is fairly simple, to find a point in the intersect of
several sets to iterate the following process: first “project” a point in a
multidimensional space to its closest projection in on each of the sets (a
process entirely analogous to the elementary geometry task of finding the
closet point on a line to a point outside the line), and average these es-
timates. The Douglas-Rachford method (DR) “reflects,” after projection
using one of several reflection operations and then averages with the prior
step. When the sets are convex, convergence is understood. In general,
the sets are not convex, and yet the DR method often works amazing well
(with non-convex sets) — see [12].

We illustrate the DR technique with the non-convex problem of re-
construction of protein structure (conformation) using only the short dis-
tances below about six Angstroms between atoms that can be measured
by nondestructive magnetic resonance imaging (MRI) techniques (inter-
atomic distances below 6Å typically constitute less than 8% of the total
distances between atoms in a protein).

Average (maximum) errors from five replications with re-
flection methods of six proteins taken from a standard database.

Protein # Atoms Rel. Error (dB) RMSE Max Error

1PTQ 404 -83.6 (-83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

What do the reconstructions look like? We turn to graphic
information for 1PTQ and 1POA, in Figure 2. These were respectively
our initially most and least successful cases.

7



1PTQ (actual) 5,000 steps, -83.6dB (perfect)

1POA (actual) 5,000 steps, -49.3dB (mainly good!)

Figure 2: IPTQ and IPOA reconstructions.

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Figure 3: Decibel error by iterations for 1PTQ using DR.

Note that the failure (and large mean or max error) is caused by a
very few very large spurious distances. The remainder is near perfect.

While traditional numerical measures (relative error in decibels, root
mean square error, and maximum error) of success held some informa-
tion, graphics-based tools have been dramatically more helpful. It is visu-
ally obvious that this method has successfully reconstructed the protein
whereas the MAP reconstruction method, shown below, has not. This dif-
ference is not evident if one compares the two methods in terms of decibel
measurement (beloved of engineers). After 1000 steps or so, using the DR
method, the protein shape is becoming apparent. After 2000 steps only
minor detail is being fixed.

As shown in Figures 3 and 4, decibel measurement really does not
discriminate this from the failure of the MAP method below which after
5000 steps has made less progress than DR after 1000. In Figures 3 and
4, we show the radical visual difference in the behavior of reflection and
projection methods on IPTQ.

The first 3,000 steps of the 1PTQ reconstruction are available as a
movie at http://carma.newcastle.edu.au/DRmethods/1PTQ.html.
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500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.

Figure 4: Decibel error by iterations for 1PTQ using MAP.

Figure 5: Relative error by iterations (vertical axis logarithmic).

The “un-tuned” implementation (from previous image):

1POA (actual) 5,000 steps (∼2day), -49.3dB

The optimised implementation:

1POA (actual) 28,500 steps (∼1day), -100dB (perfect!)

Figure 6: 1POA conformation before and after tuning.
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A More Robust Stopping Criterion. An optimized implementa-
tion suggested by the images above gave a ten-fold speed-up. This allowed
for the experiment whose results are shown in Figure 5 to be performed.
For less than 5, 000 iterations, the error exhibits non-monotone oscilla-
tory behavior. It then decreases sharply. Beyond this point progress is
slower. This suggested that perhaps early termination was to blame, so
we explored terminating when the error dropped below −100dB.

Similar results were observed for all the other test proteins. Nonethe-
less, MAP works very well for optical aberration correction (it was used
to “fix” the Hubble telescope), and the method is now built in to software
for some amateur telescopes.

4 New methods in mathematical research

Both of the present authors recall the time, earlier in their careers, when
prominent mathematicians dismissed computation as of no relevance to
mathematical research. “Real mathematicians don’t compute” was the
by-word. But times have changed. Nowadays it is not at all unusual for
mathematicians, particularly relatively young mathematicians, to utilize
computer-based tools to explore the mathematical universe, test conjec-
tures and carry out difficult algebraic manipulations — see the list given
in the Introduction (Section 1).

In present-day mathematical research, the most widely used tools for
experimental mathematics are the following:

• Symbolic computing. Symbolic computing, most often done using
commercial packages such as Maple and Mathematica, is a main-
stay of modern mathematical research, and is increasingly utilized
in classroom instruction as well. Present-day symbolic computing
tools are vastly improved over what was available even 10 years ago.

• High-precision arithmetic. Most work in scientific or engineering
computing relies on either 32-bit IEEE floating-point arithmetic
(roughly seven decimal digit precision) or 64-bit IEEE floating-point
arithmetic (roughly 16 decimal digit precision). But in experimental
mathematics, studies often require very high precision—hundreds or
thousands of digits. Fortunately software to perform such computa-
tions is widely available either in “freeware” or as a built-in feature
of commercial packages such as Maple and Mathematica.

• Integer relation detection. Given a vector of real or complex numbers
xi, an integer relation algorithm attempts to find a nontrivial set of
integers ai such that a1x1 + a2x2 + · · · + anxn = 0. One common
application of such an algorithm is to find new identities involving
computed numeric constants. For example, suppose one suspects
that some mathematical object x1 (e.g., a definite integral, infinite
series, etc.) might be given as a sum of terms x2, x3, . . . , xn, with un-
known rational coefficients. One can then compute x1, x2, · · · , xn to
high precision (typically several hundred digits), and then apply an
integer relation algorithm. If the computation produces an integer
relation, then solving it for x1 produces an experimental identity for
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the original integral, which then can be proven using conventional
methods. The most commonly employed integer relation algorithm
is the “PSLQ” algorithm of mathematician-sculptor Helaman Fer-
guson [11, 230–234]. In 2000, integer relation methods were named
one of the top ten algorithms of the twentieth century by Computing
in Science and Engineering.

4.1 The BBP formula for pi

As noted above, mathematicians have been fascinated by the mathemat-
ical constant π = 3.1415926535 . . . since antiquity. Archimedes, in the
third century BCE, was the first to provide a systematic scheme for cal-
culating π, based on a sequence of inscribed and circumscribed polygons.
The Chinese mathematician Tsu Ch’ung Chi, in roughly 480, computed
seven correct digits; in 1665, Isaac Newton published 16 digits, but con-
fessed “I am ashamed to tell you how many figures I carried these compu-
tations, having no other business at the time.” These efforts culminated in
the computation of π to 707 digits by William Shanks in 1873; alas, only
the first 527 were correct. In the computer era, new techniques (such as
FFT-based multiplication) and transistorized hardware resulted in vastly
larger calculations — π was calculated to millions, then billions, and, as
of October 2011, ten trillion decimal digits [4].

One motivation for such computations has been to see if the decimal
expansion (or expansion in other number bases) of π repeats, which would
suggest that π is a simple ratio of natural numbers. But in 1761, Lambert
proved that π is irrational, and in 1882, Lindemann proved that π is
transcendental, meaning that it is not the root of any algebraic polynomial
with integer coefficients. Nonetheless, numerous questions still remain,
notably the question of whether or not π is a normal number in a given
number base. This will be discussed further in Section 4.2.

Thus it was with some interest researchers in 1996 announced the
discovery of a new formula for π, together with a rather simple scheme for
computing binary or hexadecimal digits of π, beginning at an arbitrary
starting position, without needing to compute any of the preceding digits.
The scheme is based on the following formula, now known as the “BBP
formula” for π [9]:

π =

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (8)

For our discussion here, perhaps the most relevant point is that this for-
mula was discovered using a high-precision computation (200 digits) to-
gether with the PSLQ algorithm. Indeed, it was one of the earliest suc-
cesses of what is now known as the experimental approach to mathemat-
ical research [4]. The proof of this formula (now known as the “BBP”
formula for π) is a relatively simple exercise in calculus. It is perhaps
puzzling that it had not been discovered centuries before. But then no
one was looking for such a formula.

The scheme to compute digits of π beginning at an arbitrary starting
point is remarkably simple, but will not be given here; see [4] for details.
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This and similar algorithms have been implemented to compute hexadec-
imal digits of π beginning at stratospherically high positions. On March
14 (Pi Day), 2013, Ed Karrels of Santa Clara University announced the
computation of 26 base-16 digits of π beginning at position one quadrillion
[4]. His result: 8353CB3F7F0C9ACCFA9AA215F2. Here hexadecimal digits
A,B,C,D,E,F denote 10, 11, 12, 13, 14, 15, respectively in base-16.

High-precision computations and PSLQ programs have been used to
found numerous other “BBP-type” formulas, which permit arbitrary-digit
calculation, for numerous other well-known mathematical constants. See
[8] for some additional examples.

Certainly there is no need for computing π or other constants to mil-
lions or billions of digits in practical scientific or engineering work. There
are certain scientific calculations that require intermediate calculations to
be performed to higher than standard 16-digit precision (typically 32 or
64 digits may be required) [2], and certain computations in the field of
experimental mathematics have required as high as 50,000 digits [7], but
we are not aware of any “practical” applications beyond this level.

Computations of digits of π are, however, excellent tests of computer
integrity—if even a single error occurs during a large computation, almost
certainly the final result will be badly in error, disagreeing with a check
calculation done with a different algorithm. For example, in 1986, a pair
of π-calculating programs detected some obscure hardware problems in
one of the original Cray-2 supercomputers. Also, some early research into
efficient implementations of the fast Fourier transform on modern com-
puter architectures had their origins in efforts to accelerate computations
of π [11, p. 115].

4.2 Normal numbers

As we noted in the previous section, a long-standing unanswered ques-
tion of pure mathematics (with some potential real-world applications) is
whether or not π or other well-known mathematical constants are nor-
mal. A normal number (say in base ten) is a number whose decimal digit
expansion satisfies the property that each of the ten digits (0, 1, 2, · · · , 9)
appears, in the limit, 1/10 of the time; every pair of digits, such as “27”
or “83,” appears, in the limit, 1/100 of the time, and so on. Similar def-
initions apply for being normal base 2 or in other bases. Such questions
have intrigued mathematicians for ages. But to date, no one has been
able to prove (or disprove) any of these assertions — not for any well-
known mathematical constant, not for any number base. For example,
it is likely true that every irrational root of an integer polynomial (e.g.,√

2, 3
√

10, (1 +
√

5)/2, etc.) is normal to every integer base, but there are
no proofs, even in the simplest cases.

Fortunately, modern computer technology has provided some new tools
to deal with this age-old problem. One fruitful approach is to display the
digits of π or other constants graphically, cast as a random walk [1]. For
example, Figure 7 shows a walk based on one million base-4 pseudoran-
dom digits, where at each step the graph moves one unit east, north,
west or south, depending on the whether the pseudorandom base-4 digit
at that position is 0, 1, 2 or 3. The color indicates the path followed
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by the walk—shifted up the spectrum (red-orange-yellow-green-cyan-blue-
purple-red) following a hue-saturation-value (HSV) model.

Figure 7: A uniform pseudorandom walk.

Figure 8 shows a walk on the first two billion base-4 digits of π. A
hugely more detailed figure (based on 100 billion base-4 digits) is available
to explore online at http://gigapan.org/gigapans/106803.

Although no rigorous inference regarding the normality of π can be
drawn from these figures, it is plausible that π is 4-normal (and thus 2-
normal), since the overall appearance of its graph is similar to that of the
graph of the pseudorandomly generated base-4 digits.

This same tool can be employed to study the digits of Stoneham’s
constant, namely

α2,3 =
1

2
+

1

3 · 23
+

1

32 · 232
+ · · · = 1.043478260869564531 . . . . (9)

This constant is one of the few that is provably normal base 2 (meaning
that its binary expansion satisfies the normality property). What’s more,
it is provably not normal base 6, so that it is an explicit example of the fact
that normality in one number base does not imply normality in another
base [5]. For other number bases, including base 3, its normality is not
yet known either way. Perhaps additional computer studies will clarify.

Figures 9 and 10 show walks generated from the base-4 and base-6 digit
expansions, respectively, of α2,3. The base-4 digits are graphed using the
same scheme mentioned above, with each step moving east, north, west or
south according to whether the digit is 0, 1, 2 or 3. Similarly, the base-6
graph is generated by moving at an angle of 0, 60, 120, 180, 240, or 300
degrees, respectively, according to whether the digit is 0, 1, 2, 3, 4 or 5.

From these three figures it is clear that while the base-4 graphs appear
to be plausibly random (since they are similar in overall structure to
Figures 7 and 8), the base-6 walk is vastly different, mostly a horizontal
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Figure 8: A walk on the first two billion base-4 digits of π.

line. Indeed, we discovered the fact that α2,3 fails to be 6-normal by a
similar empirical analysis of the base-6 digits—there are long stretches of
zeroes in the base-6 expansion [5].

4.3 Ising integrals

High-precision computation and the PSLQ algorithm have been invaluable
in analyses of definite integrals that arise in mathematical physics settings.
For instance, consider this family of n-dimensional integrals [6]:

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

du1du2, · · ·dun(∑n
j=1(uj + 1/uj)

)2 . (10)

Direct numerical computation of these integrals from (10) is very difficult,
but it can be shown that

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp, (11)

where K0 is the modified Bessel function, and in this form these integrals
can be numerically computed. Indeed, it is in this form that Cn arises in
quantum field theory, as we subsequently learned from David Broadhurst.
Upon calculating these values, we quickly discovered that the Cn rapidly
approach a limiting value. For example,

C1024 = 0.6304735033743867961220401927108789043545870787 . . .

14



Figure 9: A walk on the provably normal base-4 digits of Stoneham’s constant.

Figure 10: A walk on the nonnormal base-6 digits of Stoneham’s constant.

What is this number? When one copies the first 30 or 40 digits into the on-
line Inverse Symbolic Calculator (ISC) at http://carma-lx1.newcastle.
edu.au:8087, it quickly returns the result

lim
n→∞

Cn = 2e−2γ , (12)

where γ denotes Euler’s constant = 0.5772156649 . . .. This fact was rig-
orously proven shortly after discovery. Numerous other results for related
families of integrals have been discovered by computer in this fashion [6].

4.4 Formal verification of proof

In 1611, Kepler described the stacking of equal-sized spheres into the
familiar arrangement we see for oranges in the grocery store. He asserted
that this packing is the tightest possible. This assertion is now known as
the Kepler conjecture, and has persisted for centuries without proof.

In 1994, Thomas Hales, now at the University of Pittsburgh, proposed
a five-step program that would result in a proof: (a) treat maps that only
have triangular faces; (b) show that the face-centered cubic and hexagonal-
close packings are local maxima in the strong sense that they have a higher
score than any Delaunay star with the same graph; (c) treat maps that
contain only triangular and quadrilateral faces (except the pentagonal
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prism); (d) treat maps that contain something other than a triangular or
quadrilateral face; and (e) treat pentagonal prisms.

In 1998, Hales announced that the program was now complete, with
Samuel Ferguson (son of mathematician-sculptor Helaman Ferguson, who
discovered the PSLQ algorithm) completing the crucial fifth step. This
project involved extensive computation, using an interval arithmetic pack-
age, a graph generator, and Mathematica. The computer files contain-
ing the source code and computational results occupy more than three
Gbytes of disk space. Additional details, including papers, are avail-
able at http://www.math.pitt.edu/~thales/kepler98. For a mixture
of reasons—some more defensible than others—the Annals of Mathemat-
ics initially decided to publish Hales’ paper with a cautionary note, but
this disclaimer was deleted before final publication.

Hales subsequently embarked on a multi-year program to certify the
proof by means of computer-based formal methods, a project he has
named the “Flyspeck” project. This was completed in July 2014 [13].
As these computer-based formal proof techniques become better under-
stood, we can envision a large number of mathematical results eventually
being confirmed by computer, but this will take decades.

5 Why should we trust computations?

There are many possible sources of errors in large computations of the
type discussed above:

• The underlying mathematical formulas and algorithms used might
conceivably be in error, or the formulas may have been incorrectly
transcribed.

• The computer programs implementing these algorithms, which typ-
ically employ sophisticated algorithms such as matrix operations or
the fast Fourier transform (FFT), may contain bugs.

• Inadequate numeric precision may have been employed, invalidating
some key steps of the algorithm.

• Erroneous programming constructs may have been employed to con-
trol parallel processing. Such errors are typically very hard to detect
and rectify, since in many cases they cannot easily be replicated.

• Hardware errors may have occurred during the run, rendering all
subsequent computation invalid. This was a factor in the 1986 com-
putation of π, as noted above in Section 4.1.

• Quantum-mechanical errors, induced by stray subatomic particles,
may have corrupted the results in storage registers.

So why should anyone believe any results of such calculations? The
answer is that such calculations are double-checked, either by an indepen-
dent calculation done using some other algorithm, or by rigorous internal
checks. For instance, Kanada’s 2002 computation of π to 1.3 trillion
decimal digits involved first computing slightly over one trillion hexadec-
imal (base-16) digits, using formulas found by one of the present authors
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(Jonathan Borwein) and Peter Borwein. Kanada found that the 20 hex
digits of π beginning at position 1012 + 1 are B4466E8D21 5388C4E014.

Kanada then calculated these same 20 hexadecimal digits directly, us-
ing the “BBP” formula and algorithm, mentioned above in Section 4.1.
The result of the BBP calculation was B4466E8D21 5388C4E014. Needless
to say, in spite of the many potential sources of error in both computations,
each of which required many hours of computation on a supercomputer,
the final results dramatically agree, thus confirming in a convincing albeit
heuristic sense that both results are almost certainly correct. Although
one cannot rigorously assign a “probability” to this event, note that the
probability that two 20-long random hexadecimal digit strings perfectly
agree is one in 1620 ≈ 1.2089× 1024.

This raises the following question: Which is more securely established,
the assertion that the hexadecimal digits of π in positions 1012+1 through
1012 +20 are B4466E8D21 5388C4E014, or the final result of some very dif-
ficult work of mathematics that required hundreds or thousands of pages,
that relied on many results quoted from other sources, and that (as is fre-
quently the case) has been read in detail by only only a relative handful
of mathematicians besides the author? In our opinion, computation often
trumps cerebration.

6 What will the future bring?

We have discussed numerous examples of the “experimental” paradigm
of mathematics in action, both for “pure” and “applied” applications. It
is clear that these experimental-computational methods are rapidly be-
coming central to all mathematical research, and also to mathematical
education, where students can now see, hands-on, many of the princi-
ples that heretofore were only abstractions. What’s more, the rapidly
improving quality of mathematical software, when combined with the in-
exorable forward march of Moore’s Law in hardware technology, means
that ever-more-powerful software tools will be available in the future. In-
deed, almost certainly one day we will look back on the present epoch
with puzzlement, wondering how anyone ever got any serious done with
such primitive tools as we use today!

It is not just Maple and Mathematica that are improving. In Section
2.2 we mentioned Neil Sloane’s Online Encyclopedia of Integer Sequences
(http://www.oeis.org) and the Inverse Symbolic Calculator (http://
isc.carma.newcastle.edu.au. A few other valuable online resources in-
clude the Digital Library of Mathematical Functions (http://dlmf.nist.
gov), a large compendium of formulas for special functions, LAPACK
(http://www.netlib.org/lapack), a large library of highly optimized lin-
ear algebra programs, and SAGE (http://www.sagemath.org), an open-
source mathematical computing package. We can certainly expect sub-
stantial improvements in these tools as well.

Of related interest is online collaborative efforts in mathematics, no-
tably the PolyMath activity, which joins together a large team of mathe-
maticians in online, computer-based collaborations to explore conjectures
and prove theorems. One notable success was a dramatic lowering of the
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bound on prime gaps, completed in September 2014 [19].
But aside from steadily improving mathematical tools and online fa-

cilities, can we expect anything fundamentally different?
One possibility is a wide-ranging “intelligent assistant” for mathemat-

ics [10]. Some readers may recall the 2011 televised match, on the “Jeop-
ardy!” quiz show in North America, between IBM’s “Watson” computer
and the two most accomplished champions of the show (Ken Jennings
and Brad Rutter). This was the culmination of a multi-year project by
researchers at the IBM Yorktown Heights research center, who employed
state-of-the-art artificially intelligent and machine learning software that
could first “understand” the clues (which are often quirky and involve
puns) and then quickly produce the correct response. It has been re-
ported that that the project cost IBM more than one billion U.S. dollars.
While in their first match, the humans were competitive, in the second
match Watson creamed its human opponents, and easily won the $1 mil-
lion prize (which IBM donated to charity) [17]. IBM is now adapting the
Watson technology for medical applications, among other things.

We can thus envision an enhanced Watson-class intelligent system for
mathematics. Such a system would not only incorporate powerful soft-
ware to “understand” and respond to natural-language queries, but it
would also acquire and absorb the entire existing corpus of published
mathematics for its database. One way or another, it is clear that future
advances in mathematics will be intertwined with advances in artificial
intelligence. Along this line, Eric Horvitz, Managing Director of the Mi-
crosoft Research Lab in Redmond, Washington, has launched a project
to track the advance of artificial intelligence over the next 100 years, with
progress reports every five years [21].

So will computers ever completely replace human mathematicians?
Probably not, according to the 2014 Breakthrough Prize in Mathematics
recipient Terence Tao — even 100 years from now, much of mathemat-
ics will continue to be done with humans working in partnership with
computers [3].

But, as we mentioned above, more is at stake than merely accelerating
the pace at which mathematical researchers, teachers and students can
do their work. The very notion of what constitutes secure mathematical
knowledge may be changing, before our eyes. It will be interesting in any
event. We look forward to what the future will bring.
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