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Abstract

In mathematical finance, backtest overfitting connotes the usage of his-
torical market data to develop an investment strategy, where too many
variations of the strategy are tried, relative to the amount of data avail-
able. Backtest overfitting is now thought to be a primary reason why
investment models and strategies that look good on paper often disap-
point in practice. In this study, we focus on overfitting in the context
of designing an investment portfolio or stock fund. We demonstrate a
computer program that, given any desired performance profile, designs a
portfolio consisting of common securities, such as the constituents of the
S&P 500 index, that achieves the desired profile based on in-sample back-
test data, but show that these portfolios typically perform erratically on
more recent, out-of-sample data. This is symptomatic of statistical over-
fitting. Less erratic results can be obtained by restricting the portfolio to
only positive-weight components, but then the results are quite unlike the
target profile on both in-sample and out-of-sample data.

1 Introduction

In mathematical finance, backtest overfitting connotes the usage of historical
market data to develop an investment strategy, where too many variations of the
strategy are tried, relative to the amount of data available. Backtest overfitting
is now thought to be a primary reason why investment models and strategies
that look good on paper often disappoint in practice. Models and strategies
suffering from overfitting typically target the specific idiosyncrasies of a lim-
ited dataset, rather than any general behavior, and, as a result, often perform
erratically when presented with new data.
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Backtest overfitting is an instance of the more general phenomenon of multi-
ple testing in scientific research, where numerous variations of a model are tested
on the same data, without accounting for the potential increase in false positive
rates. In finance it is common to conduct millions, if not billions, of tests on the
same data in search of an optimal strategy. Since financial academic journals
typically do not report the number of experiments involved in a discovery, it is
possible that many published investment results are false positives.

In one earlier study [1], the present authors and Jim Zhu demonstrated
that overfitting is surprisingly likely to occur in the construction of financial
models and strategies. We showed, for example, that if only five years of daily
backtest data are available, then no more than 45 strategy variations should be
tried. In another earlier study [2], the present authors, Amir Salehipour and
Jim Zhu described online tools that permit one to generate in-sample test data,
based on either pseudorandom data or else real S&P500 data, and then, by
utilizing a computer search scheme, produce an “optimal” strategy. The tools
then run these “optimal” strategies on out-of-sample data and evaluate their
performance. In most cases, the Sharpe ratio [11] on out-of-sample data is either
negative, or is significantly lower than the performance in-sample. These tools
are available at http://datagrid.lbl.gov/backtest/ and https://carma.

newcastle.edu.au/tenuremaker/, respectively.

2 Designing a portfolio to match a given profile

In this study, we address overfitting in the context of designing a mutual fund
or investment portfolio as a weighted collection of stocks. Most funds and
portfolios employ a relatively simple and objectively constructed weighting, such
as capitalization weighting (employed, for example, by funds that track the
standard S&P500 index or the London FTSE 100 index) and equal weighting
(employed, for example, by funds that track the S&P500 equal-weight index).

The most rapidly growing sector of the mutual fund market is the sector of
exchange-traded funds, which combine the market exposure of a mutual fund
with the convenience of real-time stock trading. As of 30 June 2015, some
USD$2.1 trillion was held in U.S.-listed exchange-traded funds [13]. Hundreds
of new exchange-traded funds are minted each year. There is concern in the
field that some of these funds are not really independent of their indexes, and,
in any event, most are not significantly different from the broad market. In
a 2012 study, researchers at the Vanguard Group found that the median time
between the definition of a new index and the inception of a new exchange-
traded fund based on the index dropped from almost three years in 2000 to
only 77 days in 2011. As a result, the report concludes, “most indexes have
little live performance history for investors to assess in the context of a new
ETF investment” [14].

How do these newly-minted exchange-traded funds perform? The 2012 Van-
guard report found that out of 370 indexes for which they were able to obtain
reliable information, 87% of the indexes outperformed the broad U.S. stock

2

http://datagrid.lbl.gov/backtest/
https://carma.newcastle.edu.au/tenuremaker/
https://carma.newcastle.edu.au/tenuremaker/


market over the time period used for the backtest, but only 51% outperformed
the broad market after inception of the index. In particular, the study found
an average 12.25% annualized excess return above the broad U.S. stock market
for a five-year backtest, but -0.26% excess return in the five years following the
inception of the index [14].

In the present paper, we illustrate why this backtest-driven portfolio design
process is doomed to fail. We have developed a computer program that, given
any desired performance profile, designs a portfolio consisting of common secu-
rities, such as the constituents of the S&P 500 index, that achieves the desired
profile based on in-sample backtest data, but show that these portfolios typically
perform erratically on more recent, out-of-sample data. This is symptomatic of
statistical overfitting. Less erratic results can be obtained by restricting the
portfolio to only positive-weight components, but then the results are quite
unlike the target profile on both in-sample and out-of-sample data.

3 Mathematical techniques

In this paper we design a portfolio of stocks to track an arbitrary performance
profile by minimizing a simple objective function, namely the square root of
the tracking errors. This objective function is also minimized when building
minimum variance or minimum tracking error portfolios, hence our conclusions
can be extended to applications of Markowitz-style optimization, such as the
Critical Line algorithm (CLA). CLA delivers a result that is mathematically
correct in-sample; however it may not be optimal out-of-sample. For a detailed
discussion of CLA suboptimality out-of-sample, we refer the reader to [3, 12].

The basic approach employed by our computer program is as follows. Given
a set of stocks and a desired performance profile, we employ techniques of op-
timization theory [7] to find a set of weights that minimize the sum of squares
deviation of the weighted portfolio time series from the target profile time se-
ries. The resulting mathematical formulation is in the form of a matrix equation,
which can be solved using widely available linear algebra software. Mathemati-
cal details are given in Appendix 1.

As we shall see below, when this technique is implemented on real stock
market data, some of the resulting weights are typically negative. This means
that the corresponding stocks will be shorted in the resulting portfolio. While
shorting is certainly a legitimate trading strategy, shorting exposes the portfolio
to potentially large losses; indeed, this occurred in several examples below. So
one can also ask for an optimal set of weights subject to the contraint that each
weight must be greater than or equal to zero.

Problems of this type are known as optimization problems with interval or
inequality constraints. These problems have been studied at length, and quite
a few sophisticated schemes have been developed for their solution [3, 4, 5, 6].
In this particular application, we have employed what is known as the logarith-
mic barrier scheme [8], which is to append a logarithmic term with a constant
multiplier to the minimization problem. The presence of this logarithmic term
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penalizes very small weights and thus serves as a barrier, keeping the weights
away from zero or negative values. This is not the same as solving the con-
strained problem, but by successively reducing the constant multiplier, the de-
sired limiting solution can be obtained. Mathematical details, and a statement
of the resulting algorithm, are given in Appendix 2.

4 Implementation using S&P500 stocks

We now discuss a computer implementation of these schemes. For simplicity,
we base this analysis on historical stock data of stocks currently listed in the
S&P500 index, the world’s most widely traded stock index. Data for S&P500
stocks are easy to obtain online. For example, Apple Computer’s daily stock
closings going back to 1980 can be downloaded from https://finance.yahoo.

com/q/hp?s=AAPL or http://www.google.com/finance?q=AAPL.
Our program operates as follows. Given a starting year, plus the number of

years for the in-sample (L1) and out-of-sample (L2) tests, as well as the number
r of time periods per year, the program extracts the relevant data from the
database for as many stocks as possible, in order of capitalization weighting in
the S&P500 index as of 22 January 2016. Only those stocks for which a full set
of data covering the time period in question are incorporated for analysis. We
took monthly intervals for the analyses described in Section 5 (i.e., r = 12), but
our program can handle monthly, quarterly or annual intervals.

Using our program, one can generate any of several target profiles, including
(here p is an annual percentage rate):

1. Steady capital growth: A steady increase by the fraction (1 + p/(100r))
per time period (i.e., growing by p/r percent each time period, where r is
the number of time periods per year).

2. Stair-step growth: A stair-step function that is constant, except that at
the end of each q-year period it increases by the fraction (1 + p/(100r))qr

(i.e., at the end of each q-year period, it increases by a full q years’ growth
of Profile 1 above). We took q = 1 in the examples below.

3. Sinusoidal growth: A sinusoidal function that increases by the fraction
(1 + p/(100r)) per month, as in profile #1 above, but is multiplied by a
sine wave that varies from 1/2 to 3/2, with period q years. We took q = 5.

Arguably Profile 1 is a highly desirable profile — steady capital growth,
month after month, even in times of high market volatility. If a real-world
portfolio could be designed that reliably achieved this profile, presumably many
investors would invest in it. The second and third profiles are included mainly
to illustrate that any function whatsoever may be specified for the profile.

As mentioned above, the portfolios produced by the scheme of Appendix
1 typically include negative weights, which correspond to shorted stocks. As a
second set of illustrations, we also analyze portfolios based on the constraint that
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all weights must be greater than or equal to zero, using the method described
in Appendix 2.

The program evaluates the resulting performance of the portfolio’s time se-
ries by calculating the root-mean-square deviation (RMS) of the portfolio per-
formance from the target profile, namely

RMS =

√√√√ 1

n
·

n∑
i=1

(
xi − ti

ti

)2

,

where xi is the portfolio time series and ti is the target profile time series. It
also calculates the Sharpe ratio (SR) of the portfolio, in particular

SR =

∑n
i=1(xi/xi−1 − si/si−1)√

n
∑n

i=1(xi/xi−1 − si/sk−1)2
,

where sn is the S&P 500 index time series with reinvested dividends.
Our program implementing the optimization strategy is written in For-

tran, using 64-bit IEEE arithmetic, and incorporates the subroutines dgefa

and dgesl (together with certain lower-level routines) from the Linpack library
[10] for solving the linear system (4). Running one complete case of results takes
only 20 seconds on a MacBook Pro.

5 Results

For our main set of results, we took an in-sample test period L1 = 15 years
starting on 31 December 1990 and an out-of-sample test period L2 = 10 years,
ending 4 January 2016. In other words, the in-sample period was 1991 through
2005, and the out-of-sample period was 2006 through 2015. Our program found
277 valid stocks from the S&P500 database for which data spanning this time
period was available. All stock data used here include reinvested dividends.

We show in Figures 1 through 6 plots of the performance of the portfolio, in
blue, compared with the target profile in orange. The corresponding profile of
the S&P500 index (with reinvested dividends) is shown in green. The plot on the
left of each pair is the standard portfolio, constructed as described in Appendix
1. The plot on the right is for the all-positive-weight portfolio, constructed as
described in Appendix 2.

Figures 7 and 8 are the corresponding plots for Profile 2, the stair-step profile.
Figures 9 and 10 are the corresponding plots for Profile 3, the sinusoidal profile.
These results, with calculated statistics, are summarized in Table 1.
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Standard weights All-positive weights
RMS dev. Sharpe ratio RMS dev. Sharpe ratio

Profile Fig. APR IS OOS IS OOS IS OOS IS OOS
Steady 1 6% 0.000 7.658 -0.120 0.168 1.426 1.910 0.163 -0.025
growth 2 8% 0.000 2.534 -0.079 FAIL 1.016 0.970 0.162 -0.025

3 10% 0.000 0.996 -0.038 FAIL 0.695 0.391 0.161 -0.026
4 12% 0.000 1.178 0.003 FAIL 0.452 0.276 0.157 -0.027
5 15% 0.000 5.953 0.065 0.178 0.223 0.557 0.145 -0.016
6 18% 0.000 0.996 0.126 FAIL 0.218 0.711 0.177 -0.021

Stair- 7 8% 0.000 9.395 -0.066 0.167 1.086 1.039 0.162 -0.025
step 8 10% 0.000 0.996 -0.024 FAIL 0.768 0.442 0.161 -0.025

Sinu- 9 8% 0.000 4.518 -0.064 FAIL 1.584 1.528 0.162 -0.024
soidal 10 10% 0.000 0.996 -0.029 FAIL 1.267 0.867 0.158 -0.024

Table 1: Performance of portfolio generation program versus various target pro-
files, with in-sample period from 1991 through 2005 (15 years) and out-of-sample
period from 2006 through 2015 (10 years). “Fig.” refers to the figure number; “RMS
dev.” means root-mean-square deviation from target profile; “Sharpe ratio” means
Sharpe ratio relative to S&P 500 with reinvested dividends; “IS” means in-sample;
“OOS” means out-of-sample; and “FAIL” means a catastrophic loss of all capital.
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Figure 1: Profile 1, APR = 6%, standard portfolio (L) and all-positive portfolio (R)
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Figure 2: Profile 1, APR = 8%, standard portfolio (L) and all-positive portfolio (R)
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Figure 3: Profile 1, APR = 10%, standard portfolio (L) and all-positive portfolio (R)
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Figure 4: Profile 1, APR = 12%, standard portfolio (L) and all-positive portfolio (R)
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Figure 5: Profile 1, APR = 15%, standard portfolio (L) and all-positive portfolio (R)
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Figure 6: Profile 1, APR = 18%, standard portfolio (L) and all-positive portfolio (R)
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Figure 7: Profile 2, APR = 8%, standard portfolio (L) and all-positive portfolio (R)
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Figure 8: Profile 2, APR = 10%, standard portfolio (L) and all-positive portfolio (R)
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Figure 9: Profile 3, APR = 8%, standard portfolio (L) and all-positive portfolio (R)
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Figure 10: Profile 3, APR = 10%, standard portfolio (L) and all-positive portfolio (R)
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So what are we to make of these results?
Note that in every case, the standard portfolio performance achieved zero

deviation (to three significant digits) from the target profile over the entire
15-year in-sample period (1991 through 2005) — an essentially perfect fit in-
sample. Only beginning with 2006 (the start of the out-of-sample period) do
the blue curves depart from the orange in the plots, corresponding to large RMS
deviations statistics from the target profile in Table 1.

In some cases, as in Figures 1, 5 and 7, the fitted standard portfolios did
remarkably well, far outperforming either the target profile or the S&P500 in-
dex — in some of these cases the vertical axis had to be greatly extended to
show the full upward march of the graph (with corresponding Sharpe ratios in
Table 1). If one could reliably obtain such performance for future epochs, one
could certainly forgive the fact that the performance did not match the target
performance profile. But in most other cases, including Figures 2, 3, 4, 6, 8,
9 and 10, the standard portfolios have a very different fate, namely complete
ruin — a catastrophic drop to zero, after which the portfolio is presumed to be
liquidated (in Table 1 this is indicated by “FAIL” in the out-of-sample Sharpe
ratio column).

In any event, it is abundantly clear that the performance of the standard
portfolios on out-of-sample data (i.e., beginning with 2006) fails to match the
target profiles, as indicated by the much larger RMS deviation statistics. The
central objective here, namely to achieve, by means of a weighted portfolio of
S&P500 stocks, a desired performance profile that also holds on out-of-sample
data, is certainly not met.

The positive-weight portfolios are significantly less erratic, in that they avoid
the catastrophic drops to zero that plague the standard portfolios — there are
no “FAIL” entries in Table 1 for positive weight cases. In fact, in seven of
the ten cases, the positive-weight portfolio outperforms both the target profile
and the S&P500 benchmark. But these portfolios fail to match the target pro-
files either in-sample or out-of-sample. Instead, these graphs typically resemble
scaled (high-beta) versions of the S&P500 index graphs, with significantly higher
volatility than the S&P500 index.

6 Additional computer runs

We have performed similar analyses for a variety of other cases, with different
starting years, in-sample and out-of-sample periods. These are briefly sum-
marized in Table 2. Each row of Table 2 represents a full set of ten runs,
corresponding to the ten profile cases as shown in Table 1. A run was deemed a
“success” if the out-of-sample test did not suffer a catastrophic loss of all capital
and furthermore had a positive Sharpe ratio; otherwise it was deemed a “fail-
ure.” Sharpe ratios, as before, are based on the S&P 500 index with reinvested
dividends.

Table 2 does not present RMS deviation statistics, but none of them were
very good — indeed, in the additional runs the RMS deviation statistics were
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Start IS OOS Standard weights All-positive weights
year years years Successes failures Successes failures

1981 10 10 1 9 10 0
1986 10 10 0 10 10 0
1991 10 10 1 9 10 0
1996 10 10 0 10 4 6

1981 15 10 8 2 10 0
1986 15 10 9 1 2 8
1991 15 10 3 7 0 10

Table 2: Performance of runs with different starting years and IS periods, in each case
with the ten profiles as shown in the rows of Table 1. A run was a “success” if the
out-of-sample test did not suffer a catastrophic loss of all capital and had a positive
Sharpe ratio; otherwise it was deemed a “failure.”

as erratic as in Table 1. The best out-of-sample RMS deviation statistic that we
observed in any of these runs was 0.232, for the run starting at 1996 with ten-year
IS and OOS periods, with APR = 10%. Most others were considerably higher,
indicating only a very weak correlation to the target profile out-of-sample.

With regards to overall performance, some of these additional runs did rela-
tively well. For example, for the case starting in 1986 with 10-year IS and OOS
periods, the all-positive weight portfolio beat the S&P 500 for each of the ten
test profiles. The case starting in 1986 with a 15-year IS period and a 10-year
OOS period did similarly well with the standard weights. But note that none
of these runs achieved uniformly good performance for both the standard and
all-positive weight cases.

Also, the runs starting in 1981 or 1986 tend to perform better than those
starting in 1991. Keep in mind that data running back before 1991 is now
fully 25 years old, and of questionable relevance in today’s highly computerized
market. Those runs focusing on more recent data did not perform particularly
well, suggesting that relatively unsophisticated computer-based portfolio selec-
tion schemes such as the ones analyzed in this study are not likely to perform
well in today’s market.

7 Overfitting

So what is the best overall explanation for these results? Why do the optimal
portfolio performance plots fail so miserably to match those of the target profiles
out-of-sample? Here it is worth keeping in mind that the procedure to produce
either the standard or all-positive portfolio is tantamount to doing a massive
computer search, over the space of all possible sets of weighting factors, for a set
of weighting factors that minimizes the R function, either (1) or (5) respectively.

But consider the size of the space of sets of weighting factors (presuming
a positive-weight portfolio): If one allows weights from 0 to 100 percent, in
resolution of 0.1 percent, and if there are 100 stocks in the portfolio, then the
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total number of sets of weighting factors is roughly 1001000, i.e., 102000, a number
vastly greater than the number (1086) of elementary particles in the visible
universe. So when a computer program, such as ours, produces an optimal set
of weights, it is selecting from an inconceivably large set of possible weighting
sets, and thus statistical overfitting of the backtest data is unavoidable.

8 Conclusion

We have shown that it is relatively straightforward to produce a stock portfolio
that achieves any desired performance profile, based on backtest (in-sample)
data. However, the resulting portfolios tend to perform erratically on new (out-
of-sample) data, certainly not following the target profile, and, in fact, resulting
in complete ruin in many cases. Significantly less erratic results can be obtained
by imposing constraints that restrict the portfolio to positive weights, but the
resulting portfolios typically depart significantly from the target profile on both
the in-sample and out-of-sample data.

The erratic performance observed in our results on out-of-sample data is a
classic symptom of statistical overfitting. In fact, overfitting is unavoidable in
this or any scheme that amounts to searching over a large set of strategies or
fund weightings, and only implementing or reporting the final optimal scheme.

One way of interpreting our analysis is that selection bias can easily make
backtest results worthless. The reason is that as the number of trials grows,
so does the probability of selecting a false positive. Readers need to keep in
mind that any Sharpe ratio is attainable given enough trials. Thus there is no
such notion as a “minimum” Sharpe ratio that makes a strategy useful. For a
detailed discussion of backtest overfitting, we refer the reader to [1].

The same difficulty afflicts many other attempts to construct an investment
strategy based solely on daily, weekly, monthly or yearly historical market data,
such as by trying to discern patterns in stock market indexes by examination of
charts (as is often done by technical analysts) or designing a portfolio that tracks
a particular risk profile, as many smart beta ETFs attempt. Any underlying ac-
tionable information that might exist in such data has long been mined by highly
sophisticated computerized algorithms operated by large quantitative funds and
other organizations, using much more detailed data (minute-by-minute or even
millisecond-by-millisecond records of many thousands of securities), who can
afford the expertise and facilities to make such analyses profitable. Any lesser
efforts, such as those described in this paper, are doomed to be statistically
overfit, and if followed may well have disastrous consequences.
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9 Appendix 1: Constructing a weighted portfo-
lio to achieve a desired performance profile

Given a target time series (vj , 1 ≤ j ≤ n) covering a time period T , and a
collection of m stocks (zi, 1 ≤ i ≤ m), each with a time series (zi(tj), 1 ≤ j ≤ n)
covering the same time period T , we wish to find m weights (wi, 1 ≤ i ≤ m) for
the m stocks that minimize the objective function

R(w1, w2, · · · , wm) =

n∑
j=1

(
m∑
i=1

wizi(tj) − vj

)2

. (1)

Note that P (tj) =
∑m

i=1 wizi(tj) is the weighted portfolio time series, so (1) is
simply the total squared deviation of the portfolio time series from the target
time series. The function R is minimized when the following are satisfied:

∂R

∂w1
= 2

n∑
j=1

(
m∑
i=1

wizi(tj) − vj

)
z1(tj) = 0,

∂R

∂w2
= 2

n∑
j=1

(
m∑
i=1

wizi(tj) − vj

)
z2(tj) = 0,

· · ·

∂R

∂wm
= 2

n∑
j=1

(
m∑
i=1

wizi(tj) − vj

)
zm(tj) = 0, (2)

which can be rewritten as

m∑
i=1

wi

n∑
j=1

zi(tj)z1(tj) =

n∑
j=1

vjz1(tj),

m∑
i=1

wi

n∑
j=1

zi(tj)z2(tj) =

n∑
j=1

vjz2(tj),

· · ·
m∑
i=1

wi

n∑
j=1

zi(tj)zm(tj) =

n∑
j=1

vjzm(tj). (3)

In matrix notation, (3) is the same as writing A ·W = B, where

A =


∑n

j=1 z
2
1(tj)

∑n
j=1 z1(tj)z2(tj) · · ·

∑n
j=1 z1(tj)zm(tj)∑n

j=1 z2(tj)z1(tj)
∑n

j=1 z
2
2(tj) · · ·

∑n
j=1 z2(tj)zm(tj)

...
...

. . .
...∑n

j=1 zm(tj)z1(tj)
∑n

j=1 zm(tj)z2(tj) · · ·
∑n

j=1 z
2
m(tj)

 ,
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W =


w1

w2

...
wm

 , B =


∑n

j=1 vjz1(tj)∑n
j=1 vjz2(tj)

...∑n
j=1 vjzm(tj)

 . (4)

In this form, the system can be solved for the W vector by using conventional
linear system solver software, such as the Linpack [10] library, the Lapack [9]
library, or even routines built into popular spreadsheet programs. Note that it
is not essential that n > m; if n < m this scheme produces a best least-squares
fit to the target profile, although the quality of this fit degrades when the ratio
n/m falls much below one.

10 Appendix 2: Constructing an all-positive-
weight portfolio

As we mentioned above, when the technique described in Appendix 1 is imple-
mented on real stock market data, some of the resulting weights wi are typically
negative. This means that the corresponding stocks will be shorted in the result-
ing portfolio. While shorting is certainly a legitimate trading strategy, shorting
exposes the portfolio to potentially large losses; indeed, this occurred in several
examples below. So one can also ask for an optimal set of weights W subject
to the contraint that each weight wi ≥ 0.

Problems of this type are known as optimization problems with interval (or
inequality) constraints. These problems have been studied at length, and quite
a few sophisticated schemes have been developed for their solution [3, 4, 5, 6]. In
this particular application, we have employed what is known as the logarithmic
barrier scheme [8], which is to append a logarithmic term to the minimization
problem (1), as follows:

R(w1, w2, · · · , wm) =

n∑
j=1

(
m∑
i=1

wizi(tj) − vj

)2

+ 2C

m∑
i=1

logwi. (5)

The presence of this logarithmic term penalizes very small weights and thus
serves as a barrier, keeping the weights away from zero or negative values. This
is not the same as solving the constrained problem, but by successively reducing
the constant C, the desired limiting solution can be obtained. In this case, the

14



equivalent minimizing condition is

m∑
i=1

wi

n∑
j=1

zi(tj)z1(tj) =

n∑
j=1

vjz1(tj) + C/w1,

m∑
i=1

wi

n∑
j=1

zi(tj)z2(tj) =

n∑
j=1

vjz2(tj) + C/w2,

· · ·
m∑
i=1

wi

n∑
j=1

zi(tj)zm(tj) =

n∑
j=1

vjzm(tj) + C/wm. (6)

This system can be efficiently solved by Newton iterations, where one takes,
as starting estimates of the weights W , the solution to the unconstrained prob-
lem (4) above, replacing zero or negative weights with some very small positive
value. The Newton iterations to be performed are

w̄1 = w1 −
∑m

i=1 wi

∑n
j=1 zi(tj)z1(tj) −

∑n
j=1 vjz1(tj) − C/w1∑n

j=1 z
2
1(tj) + C/w2

1

,

w̄2 = w2 −
∑m

i=1 wi

∑n
j=1 zi(tj)z2(tj) −

∑n
j=1 vjz2(tj) − C/w2∑n

j=1 z
2
2(tj) + C/w2

2

,

· · ·

w̄m = wm −
∑m

i=1 wi

∑n
j=1 zi(tj)zm(tj) −

∑n
j=1 vjzm(tj) − C/wm∑n

j=1 z
2
m(tj) + C/w2

m

. (7)

In summary, the algorithm for the constrained problem is the following:
(a) perform the unconstrained matrix calculation as described in Appendix 1,
namely formula (4), to obtain an initial set of weights W ; (b) replace zero or
negative weights with a small positive value (we use 10−8); (c) select C = 1, then
perform the Newton iteration (7) until convergence (typically in ten or fewer
iterations); and (d) reduce C by a factor of ten and repeat step (c), continuing
until overall convergence (typically when C = 10−6 or so).
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