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Abstract

Motivated by the desire to visualize large mathematical data sets, especially in
number theory, we offer various tools for representing floating point numbers as planar
(or three dimensional) walks and for quantitatively measuring their “randomness”.

1 Introduction

In the recent paper [4], by accessing the results of several extremely large recent computa-
tions [44, 45], the authors tested positively the normality of a prefix of roughly four trillion
hexadecimal digits of π. This result was used by a Poisson process model of normality of
π: in this model, it is extraordinarily unlikely that π is not asymptotically normal base 16,
given the normality of its initial segment. During that work, the authors of [4] like many
others looked for visual methods of representing their large mathematical data sets. Their
chosen tool was representation as walks in the plane. In this work, based in part on sources
such as [21, 22, 20, 18, 14] we make a more rigorous and quantitative study of such walks
on numbers.

The organization of the paper is as follows. In Section 2 we describe and exhibit
uniform walks on various numbers, both rational and irrational, artificial and ‘natural’. In
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the next two sections, we look at quantifying two of the best-known features of random
walks: the expected distance travelled after N steps (Section 3) and the number of sites
visited (Section 4). In Section 5 we discuss measuring the fractal (actually box) dimension
of our walks. In Section 6 we describe two classes for which normality and non-normality
results are known and one for which we have only surmise. In Section 7 we show some
further examples and leave some open questions. Finally, in Appendix 8 we collect the
numbers we have examined.

2 Walking on numbers

One of our tasks is to compare pseudo-random walks to deterministic walks of the same
length. For example, in Figure 1 we draw a uniform pseudo random-walk with a million
base-4 steps.

Figure 1: A uniform pseudo-random walk.

Below one will see very similar and widely dissimilar walks on the numbers we study.

2.1 A first few steps

At first glance the following two rational numbers Q1 and Q2 look quite different:

2



Q1=

1049012271677499437486619280565448601617567358491560876166848380843

1443584472528755516292470277595555704537156793130587832477297720217

7081818796590637365767487981422801328592027861019258140957135748704

7122902674651513128059541953997504202061380373822338959713391954

/

1612226962694290912940490066273549214229880755725468512353395718465

1913530173488143140175045399694454793530120643833272670970079330526

2920303509209736004509554561365966493250783914647728401623856513742

9529453089612268152748875615658076162410788075184599421938774835

Q2=

7278984857066874130428336124347736557760097920257997246066053320967

1510416153622193809833373062647935595578496622633151106310912260966

7568778977976821682512653537303069288477901523227013159658247897670

30435402490295493942131091063934014849602813952

/

1118707184315428172047608747409173378543817936412916114431306628996

5259377090978187244251666337745459152093558288671765654061273733231

7877736113382974861639142628415265543797274479692427652260844707187

532155254872952853725026318685997495262134665215

Their decimal expansion gives us some additional information: they both agree in the
first 240 digits (in base 4, their first 400 digits are the same). In Figure 2 a plot of the walk
on the digits of Q1 and Q2 in base 4 is shown. In order to create it, we have transformed the
rational numbers Q1 and Q2 into their base 4 decimal expansion, obtaining two (periodic)
sequences whose elements are either 0, 1, 2 or 3. At each step a new point is drawn adjacent
to the previous one: 0, 1, 2 and 3 draw the new point to the east, north, west and south,
respectively.

2.2 Random and deterministic walks

The idea is the same as when a random walk is plotted, with the difference being that the
direction followed at each step is encoded in the digits of the number instead of being chosen
randomly. The color is shifted up the spectrum (red-orange-yellow-green-cyan-blue-purple-
red) following an HSV1 model with S and V equal to one, which permits to visualize the
path followed by the walk. Following this same method, in each of the pictures in Figures 2
through 8, a digit string for a given number in a particular base is used to determine the
angle of unit steps (multiples of 120 degrees for base three, 90 degrees for base four, etc).
In Figure 3 the origin has been marked. Since this information is not that important for
our purposes and it can be approximately deduced by the color in most of the cases (and

1HSV (hue, saturation, and value) is a cylindrical-coordinate representation that permits to get an easy
rainbow-like range of colors.
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the pictures look less esthetic, let us face it), we have not marked it in the rest. Figure 6
is colored in a different way: by the number of returns to each point.

For the reader’s convenience, we have included an appendix with the definitions of the
mathematical constants addressed in this paper, see Section 8. We also exhibit there a few
digits in various bases for each number.

The rational numbers Q1 and Q2 represent the two possibilities when one computes a
walk on a rational number: either the walk is bounded like in Figure 2(a) (for any walk
with more than 440 steps one obtains the same plot), or it is unbounded but repeating
some pattern after a finite number of digits like in Figure 2(b).

(a) A 440 step walk on Q1 base 4. (b) A 8,240 step walk on Q2 base 4.

Figure 2: Walks on the rational numbers Q1 and Q2.

Of course, not all rational numbers are that easily identified by plotting their walk. It
is possible to create a rational number whose period is of any desired length. For example,
the following rational numbers from [37],

Q3 =
3624360069

7000000001
and Q4 =

123456789012

1000000000061
,

have a periodic part in base 10 with length2 1,750,000,000 and 1,000,000,000,060, respec-
tively. A walk on the first million digits of both numbers is plotted in Figure 4.

2.3 Numbers as walks

In the following, given some positive integer base b, we will say that a real number x is
b-normal if every m-long string of base-b digits appears in the base-b expansion of x with
precisely the expected limiting frequency 1/bm. It follows, from basic measure theory, as
shown by Borel, that almost all real numbers are b-normal for any specific base b and even
for all bases simultaneously [15].

But proving normality for specific constants of interest in mathematics has proven re-
markably difficult. It is useful to know that while small in measure, the absolutely abnormal
numbers are residual in the sense of topological category [1] (moreover, the Hausdorff-
Besicovitch dimension of the set of real numbers having no asymptotic frequencies is equal
to 1). Likewise the Liouville numbers are measure zero but second category [17, p. 352].

2The numerators and denominators of Q3 and Q4 are relatively prime, and the denominators are not
congruent to 2 or 5, thus the period is simply the discrete logarithm of the denominator.
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Figure 3: A million step base-4 walk on e.

(a) Q3 = 3624360069
7000000001

(b) Q4 = 123456789012
1000000000061

Figure 4: Walks on the first million base 10-digits of the rationals Q3 and Q4 from [37].
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For example, a reasonable conjecture is that every irrational algebraic number (i.e.,
the irrational roots of polynomial equations with integer coefficients) is b-normal for every
integer base b. Yet there is no proof of this conjecture, not for any specific algebraic
number or for any specific integer base. The tenor of current knowledge is illustrated by
[43, 14, 33, 36, 38, 37, 42].

In Figure 5 we show a walk on the first 10 billion base 4 digits of π. This may be
viewed in more detail3 online at http://gigapan.org/gigapans/99214/. In Figure 6 a
100 million base 4 walk on π is shown where the color is determined by the number of
returns to the point. It is unknown whether π is normal or not. In [4] the authors have
empirically tested the normality of roughly four trillion of its hexadecimal digits by using
a Poisson process model, concluding that it is “extraordinarily unlikely” that π is not
16-normal.

Figure 5: A walk on the first 10 billion base-4 digits of π (normal?).

In what follows, we propose various methods to analyze real numbers and visualize
them as walks. Other methods widely used to visualize numbers include the matrix rep-

3The full-size picture has a resolution of 149, 818× 136, 312 pixels, that is, 20.42 gigapixels.
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Figure 6: A walk on the 100 million base-4 digits of π, colored by number of returns
(normal?). Color follows an HSV model (green-cyan-blue-purple-red) depending on the
number of returns to each point (where the maximum is colored in pink/red).

Figure 7: A walk on the first 100,000 bits of the primes (CE(2)) base two (normal).
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(a) A million step walk on α2,3

base 3 (normal?).
(b) A 100,000 step walk on α2,3

base 6 (abnormal).

(c) A million step walk on
α2,3 base 2 (normal).

(d) A 100,000 step walk on
Champernowne’s number C4

base 4 (normal).

(e) A million step walk
on EB(2) base 4 (nor-
mal?).

(f) A million step walk on CE(10)
base 4 (normal?).

Figure 8: Walks on prefixes of various numbers in different bases.
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resentations shown in Figure 9, where each pixel is colored depending on the value of the
digit, following a left-to-right up-to-down direction (in base 4 the colors used for 0, 1, 2 and
3 are red, green, cyan and purple, respectively). This method has been mainly used to vi-
sually test “randomness.” In some cases, it clearly shows the features of some numbers, as
for small periodic rationals, see Figure 9(c). It also shows the nonnormality of the number
α2,3, see Figure 9(e) (where the horizontal red bands correspond to the strings of zeroes),
and it captures some of the special peculiarities of the Champernowne’s number C4 (nor-
mal) in Figure 9(d). Nevertheless, it does not reveal the apparently non-random behavior
of numbers like the Erdös-Borwein constant: compare Figure 9(f) with Figure 8(e).

As we will see in what follows, the study of real numbers as walks will permit us to
compare them with random walks, obtaining in this manner a new way to empirically test
“randomness” in their digits.

3 Expected distance to the origin

Let b ∈ {3, 4, . . .} be a fixed base4, and let X1, X2, X3, . . . be a sequence of independent
bivariate discrete random variables whose common probability distribution is given by

P

(
X =

(
cos
(

2π
b k
)

sin
(

2π
b k
) )) =

1

b
for k = 1, . . . , b.

Then the random variable SN :=
∑N

m=1Xm represents a base-b random walk in the plane
of N steps.

The following result on the asymptotic expectation of the distance to the origin of
a base-b random walk is probably known, but being unable to find any reference in the
literature, we provide a proof.

Theorem 3.1. The expected distance to the origin of a base-b random walk of N steps is
asymptotically equal to

√
πN/2.

Proof. By the multivariate central limit theorem, the random variable 1/
√
N
∑N

m=1(Xm−
µ) is asymptotically bivariate normal with mean 02 and covariance matrix M , where µ is
the bi-dimensional mean vector of X and M is its 2 × 2 covariance matrix. By applying
Lagrange’s trigonometric identities, one gets

µ =

(
1
b

∑b
k=1 cos

(
2π
b k
)

1
b

∑b
k=1 sin

(
2π
b k
) ) =

1

b

 −1
2 +

sin((b+1/2) 2π
b )

2 sin(π/b)

1
2 cot(π/b)− cos((b+1/2) 2π

b )
2 sin(π/b)

 = 02.

4We treat the case b = 2 as a base-4 walk. We could consider it as a base-2 walk on a line, but the
pictures would be much less interesting.
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(a) π base 4 (b) (Pseudo)random number base 4

(c) The rational number Q1 base 4 (d) α2,3 base 6

(e) Champernowne’s number C4

base 4
(f) EB(2) base 4

Figure 9: Horizontal color representation of a million digits of various numbers.
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Number Base Steps
Average normalized

distance to the origin
Normal

Mean of 10,000
4 1,000,000 1.00315 Yes

random walks
α2,3 3 1,000,000 0.89275 ?
α2,3 4 1,000,000 0.25901 Yes
α2,3 5 1,000,000 0.88104 ?
α2,3 6 1,000,000 108.02218 No
α4,3 3 1,000,000 1.07223 ?
α4,3 4 1,000,000 0.24268 Yes
α4,3 6 1,000,000 94.54563 No
α4,3 12 1,000,000 371.24694 No
α3,5 3 1,000,000 0.32511 Yes
α3,5 5 1,000,000 0.85258 ?
α3,5 15 1,000,000 370.93128 No
π 4 1,000,000 0.84366 ?
π 6 1,000,000 0.96458 ?
π 10 1,000,000 0.82167 ?
π 10 10,000,000 0.56856 ?
π 10 100,000,000 0.94725 ?
π 10 1,000,000,000 0.59824 ?
e 4 1,000,000 0.59583 ?√
2 4 1,000,000 0.72260 ?

log 2 4 1,000,000 1.21113 ?
Champernowne C10 10 1,000,000 59.91143 Yes

EB(2) 4 1,000,000 6.95831 ?
CE(10) 4 1,000,000 0.94964 ?

Rational number Q1 4 1,000,000 0.04105 No
Rational number Q2 4 1,000,000 58.40222 No

Euler constant γ 10 1,000,000 1.17216 ?
Fibonacci F 10 1,000,000 1.24820

ζ(2) = π2

6 4 1,000,000 1.57571 ?
ζ(3) 4 1,000,000 1.04085 ?

Catalan’s constant G 4 1,000,000 0.53489 ?
Thue-Morse TM2 4 1,000,000 531.92344 ?
Paper-folding P 4 1,000,000 0.01336 ?

Table 1: Average of the normalized distance to the origin (i.e. multiplied by 2/
√
πN , where

N is the number of steps) of the walk of various constants in different bases.
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Thus,

M =
1

b

[ ∑b
k=1 cos2

(
2π
b k
) ∑b

k=1 cos
(

2π
b k
)

sin
(

2π
b k
)∑b

k=1 cos
(

2π
b k
)

sin
(

2π
b k
) ∑b

k=1 sin2
(

2π
b k
) ]

.

Since

b∑
k=1

cos2

(
2π

b
k

)
=

b∑
k=1

1 + cos
(

4π
b k
)

2
=
b

2
,

b∑
k=1

sin2

(
2π

b
k

)
=

b∑
k=1

1− cos
(

4π
b k
)

2
=
b

2
,

b∑
k=1

cos

(
2π

b
k

)
sin

(
2π

b
k

)
=

b∑
k=1

sin
(

4π
b k
)

2
= 0,

one has

M =

[
1
2 0
0 1

2

]
.

Hence, 1/
√
NSN is asymptotically bivariate normal with mean 02 and covariance matrix

M . Since its components (1/
√
NSN1 , 1/

√
NSN2 )T are uncorrelated, then they are indepen-

dent random variables, whose distribution is (univariate) normal with mean 0 and variance
1/2. Therefore, the random variable√√√√( √2√

N
SN1

)2

+

( √
2√
N
SN2

)2

converges in distribution to a χ random variable with two degrees of freedom. Then, for
N sufficiently large,

E

(√
(SN1 )2 + (SN2 )2

)
=

√
N√
2
E


√√√√( √2√

N
SN1

)2

+

( √
2√
N
SN2

)2


≈
√
N√
2

Γ(3/2)

Γ(1)
=

√
πN

2
,

where E(·) stands for the expectation of a random variable. Therefore, the expected
distance to the origin of the random walk is asymptotically equal to

√
πN/2.

As a consequence of this result, for any random walk of N steps in any given base,
the expectation of the distance to the origin multiplied by 2/

√
πN (which we will call
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normalized distance to the origin) must approach asymptotically to 1 as N goes to infinity.
Therefore, for a “sufficiently” big random walk, one would expect that the arithmetic mean
of the normalized distances (which will be denominated as the average normalized distance
to the origin) should be close to 1.

We have created a sample of 10,000 (pseudo)random walks base-4 of one million points
each in Python5, and we have computed their average normalized distance to the origin.
The arithmetic mean of these numbers for the mentioned sample of pseudorandom walks
is 1.0031, while its variance is 0.1351, so the asymptotic result fits quite well. In Table 1
we show the average normalized distance to the origin of various numbers.

4 Number of points visited during an N-step base-4 walk

The number of distinct points visited during a walk of a given constant (on a lattice) can
be also used as an indicator of how “random” the digits of that constant are. It is well
known that the expectation of an N -step random walk on a two-dimensional lattice is
asymptotically equal to πN/ log(N), see e.g. [34, page 338] or [13, page 27]. This result
was first proven by Dvoretzky and Erdös in [32, Theorem 1]. The main practical problem
with this asymptotic result is that its convergence is rather slow, specifically it has order of
O
(
N log logN/(logN)2

)
. In [30, 31], Downham and Fotopoulos show the following bounds

on the expectation of the number of distinct points,]
π(N + 0.84)

1.16π − 1− log 2 + log(N + 2)
,

π(N + 1)

1.066π − 1− log 2 + log(N + 1)

[
, (1)

which provide a tighter estimate on the expectation than the asymptotic limit πN/ log(N).
For example, for N = 106, these bounds are ]199,256.1, 203,059.5[ while πN/ log(N) =
227, 396, which overestimates the expectation.

In Table 2 we have calculated the number of distinct points visited by the base-4 walks
on several constants. One can see that the values for different step walks on π fit quite well
the expectation. On the other hand, numbers that are known to be normal like α2,3 or
the base-4 Champernowne number substantially differ from the expectation of a random
walk. These constants, despite being normal, do not have a “random” appearance when
one draws the associated walk, see Figure 8(d).

At first visit, the walk on the constant α2,3 might seem random, see Figure 8(c). A
closer look, shown in Figure 11, reveals a more complex structure: the walk appears to
be somehow self-repeating. This helps explain why the number of sites visited by the
base-4 walk on α2,3 or α4,3 is smaller than the expectation for a random walk. A detailed
discussion of the Stoneham constants and their walks is given in Section 6.2 where the
precise structure of Figure 11 is conjectured.

5Python uses the Mersenne Twister as the core generator and produces 53-bit precision floats, with a
period of 219937 − 1 ≈ 106002. Compare the length of this period to the comoving distance from Earth to
the edge of the observable universe in any direction, which has a magnitude of 4.6 · 1029 millimeters.
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Figure 10: Number of points visited by 104 base-4 (pseudo)random million steps walks.

Figure 11: Zooming in on the base-4 walk on α2,3 of Figure 8(c) and Conjecture 6.5.
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Number Steps Sites visited
Bounds on the expectation of
sites visited by a random walk
Lower bound Upper bound

Mean of 10,000
1,000,000 202,684 199,256 203,060

random walks
α2,3 1,000,000 95,817 199,256 203,060
α4,3 1,000,000 68,613 199,256 203,060
α3,2 1,000,000 195,585 199,256 203,060
π 1,000,000 204,148 199,256 203,060
π 10,000,000 1,933,903 1,738,645 1,767,533
π 100,000,000 16,109,429 15,421,296 15,648,132
π 1,000,000,000 138,107,050 138,552,612 140,380,926
e 1,000,000 176,350 199,256 203,060√
2 1,000,000 200,733 199,256 203,060

log 2 1,000,000 214,508 199,256 203,060
Champernowne C4 1,000,000 548,746 199,256 203,060

EB(2) 1,000,000 279,585 199,256 203,060
CE(10) 1,000,000 190,239 199,256 203,060

Rational number Q1 1,000,000 378 199,256 203,060
Rational number Q2 1,000,000 939,322 199,256 203,060

Euler constant γ 1,000,000 208,957 199,256 203,060
ζ(2) 1,000,000 188,808 199,256 203,060
ζ(3) 1,000,000 221,598 199,256 203,060

Catalan’s constant G 1,000,000 195,853 199,256 203,060
TM2 1,000,000 1,000,000 199,256 203,060

Paper-folding P 1,000,000 21 199,256 203,060

Table 2: Number of points visited in various N -step base-4 walks. The values of the two
last columns are upper and lower bounds on the expectation of the number of distinct sites
visited during an N -step random walk, see [30, Theorem 2] and [31].
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5 Fractal and box-dimension

We now turn to our estimates of fractal dimension of number walks. One can appreciate
in each of the pictures in Figures 1 through 8 that the walks on numbers exhibit a fractal-
like structure. The fractal dimension has been used as an appropriate tool to measure
the geometrical complexity of a set, characterizing its space-filling capacity (see e.g. [5]
for a nice introduction about fractals). The box-counting dimension, also known as the
Minkowski-Bouligand dimension, permits to estimate the fractal dimension of a given set.
If we denote by #boxε(A) the number of boxes of side length ε > 0 required to cover a
compact set A ⊂ Rn, the box-counting dimension is defined as

dbox(A) := lim
ε→0

log (#boxε(A))

log(1/ε)
. (2)

The box-counting dimension of a given image can be easily estimated by dividing the image
into a non-overlapping regular grid and counting the number of filled boxes for different
grid sizes. Then the box-counting dimension can be approximated by the slope of a linear
regression model on log(1/ε) and the logarithm of the number of nonempty boxes for
different values of box-size ε, see Figure 12.

A random walk, being space-filling, has fractal dimension 2. For the mentioned sample
of 10,000 pseudo-random walks of one million steps, the average of their box-counting
dimension is 1.752, with a variance of 0.0011. The average of the box-counting dimension
of these same walks with 500,000 steps is 1.738, with a variance of 0.0013. This method
seems to be both efficient and stable for analyzing “randomness”, see also Figure 13. The
box-counting dimension of various constants is collected in Table 3.

6 Copeland-Erdös, Stoneham and Erdös-Borwein constants

As well as the classical numbers—such as e, π, γ—listed in the Appendix we also considered
various other constructions. Most notably as described in the next three subsections.

6.1 Champernowne number and its concatenated relatives

The first mathematical constant proven to be 10-normal is the Champernowne number,
which is defined as the concatenation of the decimal values of the positive integers, i.e.,
C10 = 0.12345678910111213141516 . . .. Champernowne proved that C10 is 10-normal in
1933 [23]. This was later extended to base-b normality (for base-b versions of the Cham-
pernowne constant) as in Theorem 6.1. In 1946, Copeland and Erdös established that the
corresponding concatenation of primes 0.23571113171923 . . . and also the concatenation of
composites 0.46891012141516 . . ., among others, are also 10-normal [25]. In general they
proved that concatenation leads to normality if the sequence grows slowly enough. We call
such numbers concatenation numbers:
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Figure 13: Comparison of the approximate box dimension of 10,000 random walks.
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Theorem 6.1 ([25]). If a1, a2, · · · is an increasing sequence of integers such that for every
θ < 1 the number of ai’s up to N exceeds N θ provided N is sufficiently large, then the
infinite decimal

0.a1a2a3 · · ·

is normal with respect to the base b in which these integers are expressed.

This result clearly applies the Champernowne numbers (Figure 8(d)), to the primes of
the form ak+ c with a and c relatively prime in any given base, and to the integers which
are the sum of two squares (since every prime of the form 4k + 1 is included). In further
illustration, using the primes in binary lead to normality in base two of the number

0.1011101111101111011000110011101111110111111100101101001101011101111 . . . ,

as shown as a planar walk in Figure 7.

6.1.1 Strong normality

In [14] it is shown that C10 fails the following stronger test of normality which we now
discuss. The test is is a simple one, in the spirit of Borel’s test of normality, as opposed to
other more statistical tests discussed in [14]. If the digits of a real number α are chosen at
random in the base b, the asymptotic frequency mk(n)/n of each 1-string approaches 1/b
with probability 1. However, the discrepancy mk(n)−n/b does not approach any limit, but
fluctuates with an expected value equal to the standard deviation

√
(b− 1)n/b. (Precisely

mk(n) := mk(n) = #{i : ai = k, i ≤ n} when α has fractional part 0.a0 a1 a2 · · · in base b.)
Kolmogorov’s law of the iterated logarithm allows one make a precise statement about

the discrepancy of a random number. Belshaw and P. Borwein [14] use this to define their
criterion and then show that almost every number is absolutely strongly normal.

Definition 6.2 (Strong normality [14]). For real α, and mk(n) as above, α is simply
strongly normal in the base b if for each 0 ≤ k ≤ b− 1 one has

lim sup
n→∞

mk(n)− n/b√
2n log log n

= − lim inf
n→∞

mk(n)− n/b√
2n log log n

=

√
1− 1

b
. (3)

A number is strongly normal in base b if it is simply strongly normal in each base bj,
j = 1, 2, 3, . . ., and is absolutely strongly normal if it is strongly normal in every base.

In paraphrase (absolutely) strongly normal numbers are those that distributionally
oscillate as much as is possible.

Belshaw and Borwein show that strongly normal numbers are indeed normal. They
also make the important observation that Champernowne’s base-b number is not strongly
normal in base b. Indeed, there are bk−1 digits of length k and they all start with a digit
between 1 and b−1 while the following k−1 digits take values between 0 and b−1 equally.
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In consequence, there is a dearth of zeroes. This is easiest to analyse base 2. As illustrated
below, the concatenated numbers start

1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

where for k = 3 there are 4 zeroes and 8, for k = 4 there are 12 zeroes and 20 ones, and
for k = 5 there are 32 zeroes and 48 ones.

In general, let nk := 1 + (k − 2)2k. Then one has m0(nk) = 1 + (k − 2) 2k−1 and so

m1(nk) = nk −m0(nk) = k 2k−1

and so 2m1(nk) ≥ nk for k ≥ 1. Thence

lim inf
n→∞

m1(n)− n/2√
2n log log n

≥ 0 6= −
√

1− 1

2
.

It seems likely that by appropriately shuffling the integers, one should be able to display
a strongly normal variant. Relatedly Martin [38] has shown how to construct an explicit
absolutely abnormal number.

Finally, while the log log limiting-behaviour required by (3) appears hard to test numer-
ically to any significant level, it appears reasonably easy computationally to check whether
other sequences such as many of the concatenation sequences of Theorem 6.1 fail to be
strongly normal for similar reasons. Heuristically, we would expect the number CE(2) to
fail to be strongly normal since each prime of length k both starts and ends with a one,
while intermediate bits should show no skewing.

To Finalize DAVID to test strong normality for CE(2) and α2,3

6.2 Stoneham numbers: a class containing provably normal and abnor-
mal constants

Giving further motivation for these studies is the recent provision of rigorous proofs of
normality for an uncountably infinite class of explicit real numbers, the Stoneham numbers
defined by

αb,c :=
∑
m≥1

1

cmbcm
(4)

for relatively prime integers b, c.
Relatedly, Bailey and Crandall showed that given a real number r in [0, 1), and rk

denoting the k-th binary digit of r, that the real number

α2,3(r) : =
∞∑
k=0

1

3k23k+rk
(5)
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is 2-normal. It can be seen that if r 6= s, then α2,3(r) 6= α2,3(s), so that these constants are
all distinct. Thus, this class of constants is uncountably infinite. A similar result applies
if 2 and 3 in this formula are replaced by any pair of co-prime integers (b, c) greater than
one [10] [15, pg. 141–173]. More recently, Bailey and Misieurwicz were able to establish
this normality result by a much simpler argument, based on techniques of ergodic theory
[11] [15, pg. 141–173].

Theorem 6.3 (Normality of Stoneham constants [3]). For every coprime pair of integers
(b, c) with b ≥ 2 and c ≥ 2, the constant αb,c =

∑
m≥1 1/(cmbc

m
) is b-normal.

So, for example, the constant α2,3 =
∑

k≥0 1/(3k23k) = 0.0418836808315030 . . . is prov-
ably 2-normal. This special case was proven by Stoneham in 1973 [41]. A similar result
applies for all αb,c(r) as above.

Equally interesting is the following result:

Theorem 6.4 (Abnormality of Stoneham constants [3]). Given coprime integers b ≥ 2 and
c ≥ 2, and integers p, q, r ≥ 1, with neither b nor c dividing r, let B = bpcqr. Assume that
the condition D = cq/pr1/p/bc−1 < 1 is satisfied. Then the constant αb,c =

∑
k≥0 1/(ckbc

k
)

is B-nonnormal.

In various of the Figures and Tables we explore the striking differences of behaviour—
proven and unproven—for αb,c as we vary the base. For instance, the abnormality of
α2,3 base six was proved just before we started to draw walks. Contrast Figure 8(b) to
Figure 8(c) and Figure 8(a). Now compare the values given in Table 1 and Table 2. Clearly,
from this sort of visual and numeric data, the discovery of other cases of Theorem 6.4 is
very easy.

As illustrated also in the ‘zoom’ of Figure 11, we can use the pictures to discover more
subtle structure. We conjecture the following relations on the digits of α2,3 in base 4 (which
explain the values in Tables 1 and 2).

Conjecture 6.5 (Base 4 structure of α2,3). Denote by ak the kth digit of α2,3 in its base
4 expansion; that is, α2,3 =

∑∞
k=1 ak/4

k,with ak ∈ {0, 1, 2, 3} for or all k. Then, for all
n = 0, 1, 2, . . . one has:

(i)

3
2

(3n+1)+3n∑
k= 3

2
(3n+1)

eakπ i/2 =
(−1)n+1 − 1

2
+

(−1)n − 1

2
i = −

{
i, n odd
1, n even

;

(ii) ak = ak+3n = ak+2·3n for all k =
3

2
(3n + 1),

3

2
(3n + 1) + 1, . . . ,

3

2
(3n + 1) + 3n − 1.

In Figure 14 we show the position of the walk after 3
2(3n+1), 3

2(3n+1)+3n and 3
2(3n+

1) + 2 · 3n steps for n = 0, 1, . . . , 11, which, together with Figures 8(c) and 11, graphically
explains Conjecture 6.5. Similar results seem to hold for other Stoneham constants in other
bases. For instance, for α3,5 base 3 we conjecture the following.
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Figure 14: A pattern in the digits of α2,3 base 4. We show only positions of the walk after
3
2(3n + 1), 3

2(3n + 1) + 3n and 3
2(3n + 1) + 2 · 3n steps for n = 0, 1, . . . , 11.

Conjecture 6.6 (Base 3 structure of α3,5). Denote by ak the kth digit of α3,5 in its
base 3 expansion; that is, α3,5 =

∑∞
k=1 ak/3

k, with ak ∈ {0, 1, 2} for all k. Then, for all
n = 0, 1, 2, . . . one has:

(i)
2+5n+1+4·5n∑
k=2+5n+1

eakπ i/2 =
(−1)n

(
−1 +

√
3i
)

2
= e(3n+2)πi/3;

(ii) ak = ak+4·5n = ak+8·5n = ak+12·5n = ak+16·5n for k = 5n+1 + j, j = 2, . . . , 2 + 4 · 5n.

6.3 The Erdös-Borwein constants

The constructions of the previous two subsections exhaust most of what is known of con-
crete irrational examples. By contrast, we finish this section with a truly tantalizing case:

In a base b ≥ 2, we define the Erdös-(Peter) Borwein constant EB(b) by the Lambert
series [17]:

EB(b) :=
∑
n≥1

1

bn − 1
=
∑
n≥1

σ(n)

bn
(6)

where σk the sum of the k-th power of the divisors and σ = σ1. It is known that the
numbers

∑
1/(qn − r) are irrational for r rational and q = 1/b, b = 2, 3, ... [19]. Whence –

as provably irrational numbers other than the standard examples are few and far between,
it is interesting to consider their normality.

Crandall [26] has used the BBP-like structure [7, 15] made obvious in (6), and some
non-trivial knowledge of the arithmetic properties of σ to establish results such as that the
googol-th bit–that is, the bit in position 10100 to the right of the floating point—is a 1.

In [26] Crandall also computed the full first 243 bits of EB(2) (a Terabyte in about a
day), and finds that there are 4359105565638 zeroes and 4436987456570 ones. There is
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corresponding variation in the second and third place in the single digit hex distributions.
This certainly leaves some doubt as to its normality. See also Figure 8(e) but contrast it
to Figure 9(f).

Our own more modest computations of EB(10) base-ten again leave it far from
clear that EB(10) is 10-normal. Likewise, Crandall finds that in the first 10, 000 dec-
imal positions after the quintillionth digit 1018), the respective digit counts for digits
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are 104, 82, 87, 100, 73, 126, 87, 123, 114, 104.

We should note that for computational purposes we used the identity∑
n≥1

qn

1− qn
=
∑
n≥1

qn
2 1 + qn

1− qn
,

for |q| < 1, due to Clausen, as did Crandall [26].

(a) Directions used: →, ↑, ←, ↓. dbox = 1.736. (b) Directions used: ↗, ↘, ↖, ↙. dbox = 1.796.

Figure 15: Two different rules for plotting a base 2 walk on the first million values of λ(n)
(the Liouville number λ2).

7 Other avenues and concluding remarks

Let us recall two further examples utilized in [14], that of the Liouville function which
counts the parity of the number of primes factors of n, namely Ω(n), see Figure 15 and
of the human genome taken from the UCSC Genome Browser at http://hgdownload.

cse.ucsc.edu/goldenPath/hg19/chromosomes/, see Figure 17. Note the similarity of
the genome walk to the those of concatenation sequences. We have explored a wide variety
of walks on genomes but reserve the results for future paper.

We should emphasize that, to the best of our knowledge the normality and transcen-
dence status of the numbers explored is unresolved other than in the cases indicated in

23

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/


Number Steps Box dimension
Random average base 4 500,000 1.738
Random average base 4 1,000,000 1.752

e base 4 1,000,000 1.804
C4 base 4 1,000,000 1.090
π base 4 1,000,000 1.754
π base 4 1,000,000,000 1.842
α2,3 base 6 1,000,000 1.057
α2,3 base 3 1,000,000 1.754
P angle π/3 10,000,000 1.921
P angle 2π/3 1,000,000 1.783
TM2 angle π/3 100,000 1.353
π angle π/3 1,000,000 1.783

Table 3: Box-counting dimensions of various walks (Fig. 12) and turtle plots (Fig. 19) .

sections 6.1 and 6.2 and indicated in Appendix 8. While one of the clearly non-random
numbers (say Stoneham or Copeland-Erdös) may pass muster on one or other measure of
the walk, it is generally the case that it fails another. Thus, the Liouville number λ2, see
Figure 15, shows a much more structured drift than π or e but looks more like them than
like Figure 17(a).

This situation gives us hope for more precise future analyses. We conclude by remarking
on some unresolved issues and on our plans for future research.

7.1 Three dimensions

We have also explored three-dimensional graphics—using base-6 for directions—both in
perspective as in Figure 16, and in a large passive (glasses-free) three-dimensional viewer
outside the CARMA laboratory; but have not yet quantified these excursions.

7.2 Genome comparison

Genomes are made up of so called purine and pyrimidines nucleotides. In DNA, purine
necleotide bases are adenine and guanine (A and G), while the pyrimidine bases are thymine
and cytosine (T and C). Thymine is replaced by uracyl in RNA. The haploid human genome
(i.e., 23 chromosomes) is estimated to hold about 3.2 billion base pairs and so to contain
20, 000 − 25, 000 distinct genes. Thence, there are many ways of representing a stretch
of a chromosome as a walk, say as a base-four uniform walk on the symbols (A,G,T,C)
illustrated in Figure 17 (where A, G, T and C draw the new point to the south, north,
west and east, respectively, and we have not plotted undecoded or unused portions), or as
a three dimensional logarithmic walk inside a tetrahedron. We have also compared random
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Figure 16: A 3D walk on the first million base 6 digits of π.

chaos games in a square with genomes and numbers plotted by the same rules, as in [16,
pp. 194–205].

7.3 Automatic numbers

We have also explored numbers originating with finite state automata such as those of
the paper-folding and the Thue-Morse sequences, P and TM2, see [2] and Section 8.
Automatic numbers are never normal and are typically transcendental; by comparison the
Liouville number λ2 is not p-automatic for any prime p [24].

The walks on P and TM2 have a similar shape, see Figure 18, but while the Thue-
Morse sequence generates very large pictures, the paper-folding sequence generates very
small ones since it is highly self-replicating, see also the values in Tables 1 and 2.

A turtle plot6 on these constants exhibits some of their striking features, see Figure 19.
For instance, drawn with a rotating angle of π/3, TM2 converges to a Koch snowflake [39],
see Figure 19(c). We show a corresponding turtle graphic of π in Figure 19(d). Correspond-
ing features occur for the paper folding sequence as described in [27, 28, 29]and two variants
are shown in Figures 19(a) and 19(b). While the walk specific metrics make little sense to
measure, we do supply their fractal dimensions in Table 3 below. As might be expected
turtle plots of the same length appear to exhibit higher box-dimensions. The correspond-
ing dimensions for our two variants of Liouville walks are recorded below their pictures in
Figure 15.

6In base 2, each digit correspond to one the following orders: either “forward motion” of length one or
“rotate the Logo turtle” a fixed angle.
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(a) Human X. dbox = 1.237. (b) log 2. dbox = 1.723.

Figure 17: Base four walks on 106 bases of the X-chromosome and 106 digits of log 2.

(a) A thousand digits of
the Thue-Morse sequence
TM2 base 2.

(b) Ten million digits of
the paper-folding sequence
base 2.

Figure 18: Walks on two automatic and abnormal numbers.
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7.4 Continued fractions

Simple continued fractions often encode more information about a real number. Basic facts
are that a continued fraction terminates or repeats if and only if the number is rational or
a quadratic irrationality [15, 7]. By contrast, the simple continued fractions for π and e
start as follows in the standard compact form:

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, . . .]

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, . . .],

from which the surprising regularity of e and apparent irregularity of π as continued fraction
is apparent. The counterpart to Borel’s theorem—that almost all numbers are normal—is
that almost all numbers have ‘normal’ continued fractions α = [a1, a2, . . . , an, . . .] for which
the Gauss-Kuzmin distribution holds [15]: for each k = 1, 2, 3, . . .

Prob{an = k} = − log2

(
1− 1

(k + 1)2

)
(7)

so that roughly 41.5% of the terms are 1, 16.99% are 2, 9.31% are 3, etc.
In Figure 20 we show an histogram of the first 100 million terms7 of the continued

fraction of π. We have not yet found a satisfactory way to embed this in a walk on a
continued fraction but in the Figure 21 we show base-4 walks on π and e where we use the
remainder modulo four to build the walk (with 0 being right, 1 being up 2 being left and
3 being down). We also show turtle plots on π, e.

Andrew Mattingly has observed that:

Proposition 7.1. With probability one, such a mod four random walk on the simple con-
tinued fraction coefficients of a real number is asymptotic to a line making a positive angle
with the x-axis of:

arctan

(
1

2

log2(π/2)− 1

log2(π/2)− 2 log2 (Γ (3/4))

)
≈ 110.44◦.

Proof. The result comes by summing the expected Gauss-Kuzmin probabilities of each step
being taken as given by (7).

This is illustrated in Figure 21(a) with a 90◦ anticlockwise rotation; thus making the
case that one must have some a priori knowledge before designing tools.

It is also instructive to compare at digits and and continued fractions of numbers as
horizontal matrix plots of the form already used in Figure9. In Figure 22 we show six pairs
of million terms digits strings and their corresponding fractions. In some cases both look
random, in others one or the other does.

7Computed by Neil Bickford and accessible at http://neilbickford.com/picf.htm.
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(a) Ten million digits of the paper-
folding sequence with rotating angle
π/3. dbox = 1.921.

(b) Dragon curve from one million dig-
its of the paper-folding sequence with
rotating angle 2π/3. dbox = 1.783.

(c) Koch snowflake from 100,000 digits
of the Thue-Morse sequence TM2 with
rotating angle π/3. dbox = 1.353.

(d) One million digits of π with rotat-
ing angle π/3. dbox = 1.760.

Figure 19: Turtle plots on various constants with different rotating angles in base 2—where
‘0’ gives forward motion and ‘1’ rotation by a fixed angle.
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(a) Histogram of the terms in green, Gauss-
Kuzmin function in red.
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(b) Difference between the expected and com-
puted values of the Gauss-Kuzmin function.

Figure 20: Expected values of the Gauss-Kuzmin distribution of (7) and the values of 100
million terms of the continued fraction of π.

(a) A 100,000 step walk on the continued fraction of π
modulo 4.

(b) A 100 step walk on the continued frac-
tion of e modulo 4.

(c) A one million step turtle walk
on the continued fraction of π mod-
ulo 2 with rotating angle π/3.

(d) A 100 step turtle walk on the
continued fraction of e modulo 2
with rotating angle π/3.

Figure 21: Simple continued fraction based uniform walks on π and e.
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Figure 22: Million step comparisons of base-4 digits and fractions. Row 1: α2,3(base 6)
and C4. Row 2: e and π. Row 3: Q1 and pseudorandoms; as listed from top left to bottom
right.
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In conclusion, we have only tapped the surface of what is becoming possible in a period
in which data—five hundred million terms of the continued fraction or five trillion bits of π,
full genomes and much more— can be downloaded from the internet, then rendered—and
visually mined—with fair rapidity.

8 Appendix: Selected numerical constants

In what follows, we denote x := 0.ba1a2a3a4 . . . the base-b expansion of the number x, that
is, x =

∑∞
k=1

ak
bk

. Base 10 is denoted without a subindex.

Archimedes constant (transcendental):

π := 2

∫ 1

−1

√
1− x2 dx (8)

=
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
= 3.1415926535 . . .

Catalan’s constant (irrational?):

G :=
∞∑
k=0

(−1)k

(2k + 1)2
= 0.9159655941 . . . (9)

Champernowne numbers (irrational and normal):

Cb :=
∞∑
k=1

∑bk−1
m=bk−1 mb

−k[m−(bk−1−1)]

b
∑k−1

m=0m(b− 1)bm−1
(10)

C10 = 0.123456789101112 . . .

C4 = 0.41231011121320212223 . . .

Copeland-Erdös constants (irrational and normal):

CE(b) :=

∞∑
k=1

pkb
−(k+

∑k
m=1blogb pmc), where pk is the kth prime number. (11)

CE(10) = 0.2357111317 . . .

CE(2) = 0.21011101111 . . .
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Exponential constant (transcendental):

e :=
∞∑
k=0

1

k!
= 2.7182818284 . . . (12)

Erdös-Borwein constants (irrational):

EB(b) :=
∞∑
k=1

1

bk − 1
. (13)

EB(2) = 1.6066951524 . . . = 0.4212311001 . . .

Euler-Mascheroni constant (irrational?):

γ := lim
m→∞

(
m∑
k=1

1

k
− logm

)
= 0.5772156649 . . . (14)

Fibonacci constant (irrational?):

F : =
∞∑
k=1

Fk10−(1+k+
∑k
m=1blog10 Fmc), where Fk =

(
1+
√

5
2

)k
−
(

1−
√

5
2

)k
√

5
(15)

= 0.011235813213455 . . .

Liouville number (irrational, not p-automatic):

λ2 :=
∞∑
k=1

1

2(λ(k)+1)/2
where λ(k) := (−1)Ω(k) (16)

where Ω(k) counts prime factors of k.

Logarithmic constant (transcendental):

log 2 :=

∞∑
k=1

1

k2k
= 0.6931471806 . . . (17)

Riemann zeta function (transcendental for n even, irrational for n = 3):

ζ(s) :=
∞∑
k=1

1

ks
, (18)
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whence

ζ(2) =
π2

6
= 1.6449340668 . . .

ζ(2n) = (−1)n+1 (2π)2n

2(2n)!
B2n (in terms of Bernoulli numbers)

ζ(3) = Apéry’s constant =
5

2

∞∑
k=1

(−1)k+1

k3
(

2k
k

) = 1.2020569031 . . .

Stoneham constants (normal or abnormal irrationals):

αb,c :=
∞∑
k=1

1

bckck
. (19)

α2,3 = 0.0418836808 . . . = 0.40022232032 . . . = 0.60130140430003334 . . .

α4,3 = 0.0052087571 . . . = 0.40001111111301 . . . = 0.60010430041343502130000 . . .

α3,2 = 0.0586610287 . . . = 0.30011202021212121 . . . = 0.60204005200030544000002 . . .

α3,5 = 0.0008230452 . . . = 0.300000012101210121 . . . = 0.15002ba00000061d2 . . .

Thue-Morse constant (transcendental, 2-automatic hence abnormal):

TM2 :=
∞∑
k=1

1

2t(n)
where t(0) = 0, while t(2n) = t(n) and t(2n+ 1) = 1− t(n). (20)

= 0.4124540336 . . . = 0.201101001100101101001011001101001 . . .

Paper-folding constant (transcendental, 2-automatic hence abnormal):

P :=

∞∑
k=0

82k

22k+2 − 1
= 0.8507361882 . . . = 0.21101100111001001 . . . (21)
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