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Abstract Modern non-smooth analysis is now roughly thirty-five years old. In this
paper I shall attempt to analyse (briefly): where the subject stands today, where it
should be going, and what it will take to get there? In summary, the conclusion is
that the first order theory is rather impressive, as are many applications. The second
order theory is by comparison somewhat underdeveloped and wanting of further
advance.1

It is not knowledge, but the act of learning, not possession but the act of getting there,
which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I
turn away from it, in order to go into darkness again; the never-satisfied man is so strange
if he has completed a structure, then it is not in order to dwell in it peacefully,but in order
to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is
scarcely conquered, stretches out his arms for others.—Carl Friedrich Gauss (1777-1855).2

1 Preliminaries and Precursors

I intend to first discuss First-Order Theory, and then Higher-Order Theory—mainly
second-order—and only mention passingly higher-order theory which really de-
volves to second-order theory. I’ll finish by touching on Applications of Variational
Analysis or VA both inside and outside Mathematics, mentioning both successes
and limitations or failures. Each topic leads to open questions even in the convex
case which I’ll refer to as CA. Some issues are technical and specialized, others are
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some broader and more general. In nearly every case Boris Mordukhovich has made
prominent or seminal contributions; many of which are elaborated in [24] and [25].

To work fruitfully in VA it is really important to understand both CA and smooth
analysis (SA); they are the motivating foundations and very often provide the key
technical tools and insights. For example, Figure 1 shows how an essentially strictly
convex [8, 11] function defined on the orthant can fail to be strictly convex.

(x,y) 7→max{(x−2)2 + y2−1,−(xy)1/4}

Understanding this sort of boundary behaviour is clearly prerequisite to more
delicate variational analysis of lower semicontinuous functions as are studied in
[8, 24, 13, 28].

In this note our terminology is for the most-part consistent with those references
and since I wish to discuss patterns, not proofs, I will not worry too much about
exact conditions. That said, f will at least be a proper and lower semicontinuous
extended-real valued function on a Banach space X .

Fig. 1 A function that is essentially strictly but not strictly convex with nonconvex subgradient
domain.

Let us first recall the two main starting points:

1.1 A Descriptive Approach

By 1968 Pshenichnii, as described in his book [27], had started a study of the large
class of quasi-differentiable locally Lipschitz functions for which
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f ′(x;h) := limsup
t→0+

f (x+ th)− f (x)
t

is required to exist and be convex as a function of h. We define ∂ ′ f (x) := ∂2 f ′(x;0),
where we take the classical convex subdifferential with respect to the second vari-
able.

1.2 A Prescriptive Approach

By contrast, Clarke in his 1972 thesis (described in his now classic book [15]) con-
sidered all locally Lipschitz functions for which

f ◦(x;h) := limsup
t→0+ y→x

f (y+ th)− f (y)
t

is constructed to be convex. In convex terms we may now define a generalized subd-
ifferential by ∂ o f (x) := ∂2 f 0(x;0). (Here the later is again the convex subdifferential
with respect to the h variable.)

Both ideas capture the smooth and the convex case, both are closed under + and
∨, and both satisfy a reasonable calculus; so we are off to the races. Of course we
now wish to do as well as we can with more general lsc functions.

2 First-Order Theory of Variational Analysis

The key players are as I shall outline below. We start with:

1. The (Fréchet) Subgradient ∂F f (x), which denotes a one-sided lower Fréchet
subgradient (i.e., the appropriate limit is taken uniformly on bounded sets) and
which can (for some purposes) be replaced by a Gâteaux (uniform on finite
sets), Hadamard (uniform on norm-compact sets) or weak Hadamard (uniform
on weakly-compact sets) object. These are denoted by ∂G f (x),∂H f (x), and
∂WH f (x) respectively.
That is φ ∈ ∂F f (x), exactly when

φ(h)≤ liminf
t→0+ ‖h‖=1

f (x+ th)− f (x)
t

.

A formally smaller and more precise object is a derivative bundle of F,G,H or
WH-smooth (local) minorants:

2. The Viscosity Subgradient

∂
v
F f (x) := {φ :φ = ∇F g(x), f (y)−g(y)≥ f (x)−g(x) for y near x}
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as illustrated in Figure 2. By its very definition 0 ∈ ∂ v
F f (x) when x is a local

minimizer of f . In nice spaces, say those with Fréchet-smooth renorms as have
reflexive spaces, these two subgradient notions coincide [13]. In this case we
have access to a good generalization of the sum rule from convex calculus [11]:

3. (Fuzzy) Sum Rule. For each ε > 0

∂F( f +g)(x)⊆ ∂F f (x1)+∂F g(x2)+ εBX∗

for points x1,x2 each within ε of x. In Euclidean space and even in Banach
space—under quite stringent compactness conditions except in the Lipschitz
case—with the addition of asymptotic subgradients one can pass to the limit
and recapture approximate subdifferentials [13, 24, 25, 28].
For now we let ∂ f denote any of a number of subgradients and have the appro-
priate tools to define a workable normal cone.

4. Normal cones. We define
Nepi f := ∂ ιepi f .

Here ιC denotes the convex indicator function of a set C.
Key to establishing the fuzzy sum rule and its many equivalences [13, 24] are:

5. Smooth Variational Principles (SVP) which establish the existence of many
points, x, and locally smooth (with respect to an appropriate topology) minorants
g such that

f (y)−g(y)≥ f (x)−g(x)

for y near x.
We can now establish the existence and structure of:

6. Limiting Subdifferentials such as

∂
a f (x) := limsup

y→ f x
∂F f (x),

for appropriate topological limits superior, and of:
7. Coderivatives of Multifunctions. As in [24] one may write

D∗Ω(x,y)(y∗) = {x∗:(x∗,−y∗) ∈ Ngph(Ω)(x,y)}.

The fuzzy sum rule and its related calculus also leads to fine results about the
notion of:

8. Metric regularity.
Indeed, we can provide very practicable conditions on a multifunction Ω , see
[12, 13, 24, 17], so that locally around y0 ∈Ω(x0) one has

Kd(Ω(x),y)≥ d(x,Ω−1(y)). (1)

Estimate (1) allows one to show many things easily. For example, it allows one
straight forwardly to produce Ck-implicit function theorems under second-order
sufficiency conditions [3, 13]. Estimate (1) is also really useful in the very con-
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crete setting of alternating projections on two closed convex sets C and D where
one uses Ω(x) := x−D for x ∈C and Ω(x) := /0 otherwise [13].
The very recent book by Dontchev and Rockafellar [17] gives a comprehensive
treatment of implicit function theory for Euclidean multifunctions (and much
more).

Fig. 2 A function and its smooth minorant and a viscosity subdifferential (in red).

2.1 Achievements and limitations

Variational principles meshed with viscosity subdifferentials provide a fine first-
order theory. Sadly, ∂ a f (x) is inapplicable outside of Asplund space (such as reflex-
ive space or spaces with separable duals) and extensions using ∂H f are limited and
technically complicated. Correspondingly, the coderivative is very beautiful theo-
retically but is hard to compute even for ‘nice’ functions. Moreover the compact-
ness restrictions (e.g., sequential normal compactness as described in [24]) are fun-
damental, not technical. Better results rely on restricting classes of functions (and
spaces) such as considering, prox-regular [28], lower C2 [28], or essentially smooth
functions [13].

Moreover, the limits of a prescriptive approach are highlighted by the fact that
one can prove results showing that in all (separable) Banach spaces X a generic
non-expansive function has no information in its generalized derivative:

∂
a f (x) = ∂

o f (x)≡ BX∗
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for all points x ∈ X [13, 10]. Similarly, one can show that nonconvex equilibrium
results will frequently contain little or no non-trivial information [13].

3 Higher-Order Theory of Variational Analysis

Recall that for closed proper convex functions the difference quotient of f is given
by

∆t f (x) : h 7→ f (x+ th)− f (x)
t

;

and the second-order difference quotient of f by

∆
2
t f (x) : h 7→ f (x+ th)− f (x)− t〈∇ f (x),h〉

1
2 t2

.

Analogously let

∆t [∂ f ](x) : h 7→ ∂ f (x+ th)−∇ f (x)
t

.

For any t > 0, ∆t f (x) is closed, proper, convex and nonnegative [28, 11]. Quite
beautifully, as Rockafellar [28, 11] discovered,

∂

[
1
2

∆
2
t f (x)

]
= ∆t [∂ f ](x).

Hence, we reconnect the two most natural ways of building a second-order convex
approximation.

This relates to a wonderful result [1, 11]:

Theorem 1 (Alexandrov (1939)). In Euclidean space a real-valued continuous
convex function admits a second-order Taylor expansion at almost all points (with
respect to Lebesgue measure).

My favourite proof is a specialization of Mignot’s 1976 extension of Alexan-
drov’s theorem for monotone operators [28, 11]. The theorem relies on many happy
coincidences in Euclidean space. This convex result is quite subtle and so the paucity
of definitive non-convex results is no surprise.

3.1 The state of higher-order theory

Various lovely patterns and fine theorems are available in Euclidean space [28, 24,
11] but no definitive corpus of results exists, nor even canonical definitions, outside
of the convex case. There is interesting work by Jeyakumar-Luc [21], by Dutta, and
others, much of which is surveyed in [18].
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Starting with Clarke, many have noted that

∂
2 f (x) := ∂ ∇G f (x)

is a fine object when the function f is Lipschitz smooth in a separable Banach
space—so that the Banach space version of Rademacher’s Theorem [11] applies.

More interesting are the quite fundamental results by Ioffe and Penot [20] on lim-
iting 2-subjets and 2-coderivatives in Euclidean space, with a more refined calculus
of ‘efficient’ sub-Hessians given by Eberhard and Wenczel [19]. Ioffe and Penot
[20] exploit Alexandrov-like theory, again starting with the subtle analysis in [16],
to carefully study a subjet of a reasonable function f at x, the subjet ∂ 2

− f (x) being
defined as the collection of second-order expansions of all C2 local minorants g with
g(x) = f (x). The (non-empty) limiting 2-subjet is then defined by

∂
2

f (x) := limsup
y→ f x

∂
2
− f (x).

Various distinguished subsets and limits are also considered in their paper. They
provide a calculus, based on a sum rule for limiting 2-subjets (that holds for all
lower-C2 functions and so for all continuous convex functions) making note of both
the similarities and differences from the first-order theory. As noted, interesting re-
finements have been given by Eberhard and Wenczel in [19].

Fig. 3 Nick Trefethen’s digit-challenge function (2).

There is little ‘deep’ work in infinite dimensions, that is, when reasonably obvi-
ous extensions fail even in Hilbert space. Outside separable Hilbert space general
positive results are not to be expected [11]. So it seems clear to me that research
should focus on structured classes of functions for which more can be obtained;
such as integral functionals as in Moussaoui-Seeger [26], semi-smooth and prox-
regular functions [8], or composite convex functions [28].
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4 Some Reflections on Applications of Variational Analysis

The tools of variational analysis are now an established part of pure non-linear and
functional analysis. This is a major accomplishment.

There are also more concrete successes:

• There is a convergence theory for “pattern search” derivative-free optimization
algorithms (see [23] for an up to date accounting of such methods) based on the
Clarke subdifferential.

• Eigenvalue and singular value optimization theory has been beautifully devel-
oped [8], thanks largely to Adrian Lewis. There is a quite delicate second-order
theory due to Lewis and Sendov [22]. There are even some results for Hilbert-
Schmidt operators [13, 11].

• We can also handle a wide variety of differential inclusions and optimal control
problems well [25].

• There is a fine approximate Maximum Principle and a good accounting of
Hamilton-Jacobi equations [24, 25, 13].

• Non-convex mathematical economics and Mathematical Programs with Equilib-
rium Constraints (MPECS) are much better understood than before [24, 25].

• Exact penalty and universal barrier methods are well developed, especially in
finite dimensions [11].

• Counting convex optimization—as we certainly should—we have many more
successes [14].

That said, there has been only limited numerical success even in the convex
case—excluding somewhat spectral optimization, semidefinite programming code,
and bundle methods.

For example, consider the following two-variable well-structured very smooth
function taken from [4] in which only the first two rather innocuous terms couple
the variables

(x,y) 7→ + (x2 + y2)/4− sin(10(x+ y))+ exp(sin(50x))

+ sin(sin(80y))+ sin(70sinx)+ sin(60ey). (2)

This function is quite hard to minimize. Actually, the global minimum occurs at
(x∗,y∗)≈ (−0.024627 . . . ,0.211789 . . .) with minimal value of ≈−3.30687 . . ..

The pictures in Figure 3, plotted using 106 grid points on [0,1]× [0,1] and also—
after ‘zooming in’—on [−00.25,0]× [0,0.25], shows that we really can not robustly
distinguish the function from a nonsmooth function. Hence, it makes little sense to
look at practicable nonsmooth algorithms without specifying a realistic subclass of
functions on which they should operate.

Perhaps we should look more towards projects like Robert Vanderbei’s SDP/Convex
package LOQO/LOCO3 and Janos Pinter’s Global Optimization LGO4 package,

3 http://www.princeton.edu/∼rvdb/
4 http://myweb.dal.ca/jdpinter/index.html
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while working with composite convex functions and smoothing techniques, and
adopting the “disciplined convex programming”5 approach advocated by Steve
Boyd.

5 Open Questions and Concluding Remarks

I pose six problems below which should either have variational solutions or instruc-
tive counter-examples. Details can be found in the specified references.

5.1 Alexandrov Theorem in Infinite Dimensions

For me, the most intriguing open question about convex functions is:

Does every continuous convex function on separable Hilbert space admit a second order
Gâteaux expansion at at least one point (or perhaps on a dense set of points)? ([9, 7, 13])

This fails in non-separable Hilbert space and in every separable `p(N),1 ≤ p <
∞, p 6= 2. It also fails in the Fréchet sense even in `2(N).

The following example from [9] provides a continuous convex function d on
any nonseparable Hilbert space which is nowhere second-order differentiable: Let
A be uncountable and let C the positive cone of `2(A). Denote by d the distance
function to C and let P := ∇d. Then d is nowhere second-order differentiable and P
is nowhere differentiable (in the sense of Mignot [28]).

Proof. Clearly, P(a) = a+ for all a ∈ `2(A), where a+ = (a+α )α∈A and a+α =
max{0,aα}. Pick x ∈ `2(A) and α ∈ A, then P is differentiable in the direction
eα if and only if xα 6= 0. Here eα stands for an element of the canonical basis.
Since each x ∈ `2(A) has only countably many nonzero coordinates, d is nowhere
second-order differentiable. Likewise the maximal monotone operator P is nowhere
differentiable. ♦

So I suggest to look for a counter-example. I might add that, despite the won-
derful results of Preiss [11] and others on differentiability of Lipschitz functions,
it is still also unknown whether two arbitrary real-valued Lipschitz functions on a
separable Hilbert space must share a point of Fréchet differentiability.

5.2 Subjets in Hilbert space

I turn to a question about nonsmooth second-order behaviour:

5 http://www.stanford.edu/∼boyd/cvx/
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Are there sizeable classes of functions for which subjets or other useful second order ex-
pansions can be built in separable Hilbert space? ([20, 19, 11])

I have no precise idea what “useful” means and even in convex case this is a tough
request; if one could handle the convex case then one might be able to use Lasry-
Lions regularization or other such tools more generally. A potentially tractable case
is that of continuous integral functionals for which positive Alexandrov like results
are known in the convex case [9].

5.3 Chebyshev Sets

The Chebyshev problem as posed by Klee (1961) asks:

Given a non-empty set C in a Hilbert space H such that every point in H has a unique
nearest (also called proximal) point in C must C convex? ([5, 8, 11])

Such sets are called Chebyshev sets. Clearly convex closed sets in Hilbert space
are Chebyshev sets. The answer is ‘yes’ in finite dimensions. This is the Motzkin-
Bunt theorem of which four proofs are given in Euclidean space in [8] and [5]. In
[5, 11] a history of the problem, which fails in some incomplete normed spaces, is
given.

Fig. 4 A proximal point on the boundary of the (2/3)-ball.

5.4 Proximality

The most striking open question I know regarding proximality is:
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(a) Let C be a closed subset of a Hilbert space H. Fix an arbitrary equivalent renorming of
H. Must some (many) points in H have a nearest point in C in the given renorming?

(b) More generally, is it possible that in every reflexive Banach space, the proximal points
on the boundary of C (see Figure 4) are dense in the boundary of C? ([6, 13])

The answer is ‘yes’ in if the set is bounded or the norm is Kadec-Klee and hence if
the space is finite dimensional or if it is locally uniformly rotund [6, 13, 11].

So any counter-example must be a wild set in a weird equivalent norm on H.

5.5 Legendre Functions in Reflexive Space

Recall that a convex function is of Legendre-type if it is both essentially smooth and
essentially strictly convex. In the reflexive setting, the property is preserved under
Fenchel conjugacy.

Find a generalization of the notion of a Legendre function for convex functions on a reflexive
space that applies when the functions have no points of continuity such as is the case of the
(negative) Shannon entropy. ([2, 11])

When f has a point of continuity, a quite useful theory is available but it does not
apply to entropy functions like x 7→

∫ 1
0 x(t) logx(t)µ(dt) or x 7→ −

∫ 1
0 logx(t)µ(dt),

whose domains are subsets of the non-negative cone when viewed as operators on
L2(T,µ). More properly to cover these two examples, the theory should really apply
to integral functionals on non-reflexive spaces such as L1(T,µ).

Fig. 5 A function and non-viscosity subderivative of 0.
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5.6 Viscosity Subdifferentials in Hilbert Space

A more technical but fundamental question is:

Is there a real-valued locally Lipschitz function f on `2(N) such that properly

∂
v
H f (x)⊂ ∂H f (x)

for some x ∈ `2(N)? ([12, 13])

As shown in Figure 5, the following continuous but non-Lipschitz function

(x,y) 7→ xy3

x2 + y4

with value zero at the origin has 0 ∈ ∂H f (0) but 0 6∈ ∂ v
H f (0) [12, 13].

For a Lipschitz function in Euclidean space the answer is ‘no’ since ∂F f = ∂H f in
this setting. And as we have noted ∂F f = ∂ v

F f in reflexive space. A counter-example
would be very instructive, while a positive result would allow for many results to be
extended from the Fréchet case to the Gateaux case: as ∂G f = ∂H f for all locally
Lipschitz f .

5.7 Final Comments

My view is that rather than looking for general prescriptive results based on univer-
sal constructions, we would do better to spend some real effort, or ‘brain grease’
as Einstein called it,6 on descriptive results for problems such as the six above.
Counter-examples or complete positive solutions would be spectacular, but even
somewhat improving best current results will require sharpening the tools of vari-
ational analysis in interesting ways. That would also provide great advertising for
our field.
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