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Suppose that

F(x, y) = a0x
3-\-a1x

2y-\-a2xy2-\ra3y
3

is a cubic binary form with integer coefficients, which is irreducible in the
field of all rational numbers, and that k ^ 0 is an integer. A special case
of Thue's famous theorem states that the equation

F{x, y) = k

has only a finite number A (k) of solutions in integers x, y; more recent
researches of the author have proved that this number A (k) can be large
only if the integer k is the product of a great number of equal or different
prime factors. A result due to C. L. Siegel includes the inequality

I A(h)=O(B),

and therefore A (k) must be zero for nearly all integers k.
Until recently, there did not seem to exist theorems in the other

direction, i.e. whether the number A (k) can, in fact, be very large for
suitably chosen integers k, or whether A (k) is absolutely bounded. I shall
prove in this paper that A (k) is greater than any given number t for certain
integers k, and that there is even an infinity of integers k for which

I cannot prove similar results for the "primitive" solutions of
F(x, y) = k, i.e. those solutions x, y for which x and y are coprime integers;

t This paper is an extension of one previously contributed to a Festschrift for Prof.
Hellinger.
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whether their number is bounded is still an open question, and I doubt
whether it can be solved by a method similar to that of this paper.

The cubic equation F(x, y) = k defines a cubic curve of genus 1 in the
(x, ?/)-plane, and so such curves exist on which more than t lattice points
lie, where t is an arbitrary integer. Now these cubic curves F(x, y) = k
are not the most general ones, since their invariant g2 is zero. A special case
of a theorem of Siegel shows that on every cubic curve of genus 1 which is
defined by an equation with rational coefficients, there are only a finite
number of lattice points. Two cubic curves which have the same absolute
invariant J can be transformed into one another by a birational trans-
formation, and this transformation has rational coefficients when there
are points with rational coordinates on both curves; also the systems of
these rational points are changed into each other by the transformation
and therefore are invariants. I t is interesting to observe that a corre-
sponding result for lattice points on these curves does not exist, for I shall
prove in this paper that, for any given integer t and for any given rational
value of the invariant J, there exists a cubic curve defined by an equation
with rational coefficients on which lie more than t lattice points.

The method of the text is useful for the study of all curves of genus 1 in
two or more dimensions; I give a number of results obtained by it, which
perhaps are not all new. It may be remarked that curves of genus 0 with
only a finite number of lattice points may be treated also in this way; the
reader will not find it difficult to establish, for example, the existence of
rational numbers a such that there are at least t lattice points on the
lemniscate

+a(x*-y*) = 0,

where t is an arbitrarily large integer.

I.

1. Suppose that

F(x, y) = a0x
3+ax

is a cubic binary form with integer coefficients and with only simple linear
factors. The equation

Fix, y) = 1

defines a cubic curve C without double points and therefore of genus 1 in
the (x, 2/)-plane. Its three asymptotes may be denoted by F', F", F'".
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If (xo> Vo) is a n y point with integer coordinates not lying on
T, F", F'", and

then k is an integer and k ^ 0; there is one and only one curve

F(x, y) = k,

say C(k), which goes through (x0, y0) and is similar and similarly situated
to the curve C relative to the origin.

2. Since C is of genus 1, a uniformisation of C,

exists; here <f>{u) and ifj{u) are two elliptic functions of u of order 2 or 3 and
with periods OJX and a>2, say. Instead of the point (a;, y) on C, we shall
speak also of the point u, where u is the elliptic argument of (x, y). Then.
u and u' are the same point if and only if

u = u' (mod a)v a>2),

i.e. if u = u'-\-h1(v1-\-hza)2

with two integers hx and h2.
Now let us take any straight line F; it cuts C in three points

uv u2, uz which satisfy the congruence

Here Co is a constant, not depending on T, which may be assumed, without
loss of generality, to be zero; then the congruence takes the simpler form

If, in particular, F is a tangent with ux its point of contact and u2 its other
point of intersection with C, i.e. iiu2 is the tangential of u1} then

2ux-\-u2 = 0 (mod oix, o)2).

3. Beginning with any point u on C we construct an infinite set U of
points

SHB. 2. VOL. 39. NO. 2051.
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on C, given by their elliptic arguments

^ 1 = = ^ , u_2= — 2u, u^ = 4:U, ...,

u-5 u_3m_2 = -{3m+2)u, . . . .

Since

2u1+u_2~0 (mod u)lt io2) and 2w_2+w4 = 0 (mod cov o)2),

u_2 is the point of intersection of C with the tangent to C at u, and M4 is the
point of intersection of C with the tangent to C at u_2. Further, since

= 0 (mod Wl, Cl)2) (f» = 2, 3, ...
and

ul + udm+l + u-(3m+2) = ° ( m o d w l» W2) ( w = !» 2> •••)

the point
(w = 2, 3, ...)

is the point of intersection with C of the straight line through u_2 and
U

-3m+l>
= l , 2, ...

is the point of intersection with C of the line through ux and u3m+1.
This construction makes use only of such properties of C as remain

unaltered by collineations, and is therefore invariant when we apply a
transformation of this kind. Now the transformation

changes C into C(k), and so changes the set U of points

%m+l> U-3m-2 (™=0> 1, 2, ...

on C into a set V of points

v-3m-2 (m = 0, 1, 2, ...

on C(&), which has the same properties with regard to C{k) as £7 has with
regard to C. It is obvious that the line joining the point uK and the
corresponding point vK passes through the origin.

4. It is possible that some of the points of U coincide. Let us consider
the 2n points

U3m+V u-Zm-2 (m = °> l> 2> —» n~l)



1934.] LATTICE POINTS ON CURVES OF GENUS 1. 435

of this set. If they are not all different, then one of the congruences

(mod o>1} w2),

(mod cov co2),

— {Zm1-\-2)u = — (3m2+2)w (mod col5 a>2)

(mv m2 = 0, 1, ..., n—l; m^^m^

must be satisfied, and therefore u is of the form

u == gjy2 - (mod co1} o>2),

where the denominator 3N is one of the numbers

32V = 3 , 63 9, ..., 3(2n- l ) ,

and h1 and h2 are any two integers. For every N, this gives only 92V2

different points u, and so there are at most

2n-l

S 92V2<(2n-l).9(2w-l)2<72n3

different positions of u on C, say

such that the 2?i first points

%m+l5
 U-3m-2 (»» = 0, 1, . . . , 71-1)

are not all different from one another.

5. Since C is a cubic curve, it has three points u', u", u'" at infinity.
It is possible that one of the first 2n points

*Wl> U-3m-2 (m = 0, 1, . . . , n-1)

of the set U coincides with u' or u" or u'". Then one of the congruences

(3m+l)^ = uw (mod cov co2) ( i = l , 2, 3; m = 0, 1, ..., n— 1),

•or one of the congruences

l5 o>2) ( t = l , 2, 3; m = 0, 1, ..., n— 1),
2 F 2
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must be satisfied, and therefore u has one of the values

U = 3m+l ( m o d Wl' " 2 ) (* = lf 2 ' 3 )

* S 3m+2 (^odcul5co2) ( t = l , 2 , 3 ) ,

where hx and h2 are two integers. For every m this gives only

3 . (3m+1)2+3 . (3m+2)2 < 6 .9 . (m+1)2

different points u. Hence there are at most

»—1

S 6.9.(m+l)2<7i.54?i2 = 54w3

different positions of u on 0, say

such that one of the 2n points

U3m+i> u-3m-2 ym—v, i, ..., n— if

of the set U lies at infinity.

6. Now we draw in the (x, ?/)-plane the three asymptotes

1 , 1 , 1

of G, all the straight lines

which go through the origin (0, 0) and one of the points

and all the straight lines

which go through the origin and one of the points

The total number of these straight lines is not greater than
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But on every one of these lines F, I \ , F2 there are at most

130w3+l

lattice points which lie in the square Q defined by

|# | , \y\)

Hence the number of lattice points in Q, which lie on any one of the straight
lines F, Fj, F2, does not exceed

130?i3(130w3+l),

and so is less than the number

of all lattice points in Q. I t follows that there must be a point

-with integer coordinates satisfying the inequality

max , |yi |)<65n3,

which does not lie on any one of the straight lines

r t p / / TV// . p / p // p(M) . p / p //

7. The number
•^(«i» Vi) = *i

is an integer different from zero, since (xv yj does not lie on the asymptotes
F1} F2, F3. Hence the equation

F(x,y) = k1

defines a cubic curve C{k^) which goes through (a ,̂ yx). Denote by k^ the
real cube root of kv Then the transformation

x y

•changes C(k1) into C and the point (xx, yx) on C(kx) into the point
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on C. The three points

(0, 0), (xv yx), ux

lie on the same straight line, and so ux must be different from all the points

ux', ux", ..., u[u), u2', u2", ..., w2">,

since (xv yx) does not He on any one of the lines

Now construct the In points

U3m+1 —

of the set U belonging to ux on the curve C. Then we know that they are
all different from one another and that none of them lies at infinity. The
In corresponding points

on C(k1) must therefore also be different from one another, and none of
them can lie at infinity. Furthermore, when mx, m2, ra3 are three different
members of the set of 2n indices 3ra+l, —3m—2 (m = 0, 1, ..., n— 1) with

then the three points

on C{k1) lie on the same straight line, and when m1 and m2 are two different
members of this set of indices with

2 = 0,

then the straight line through the two points

\Xmi> Urni)' \Xni2> Vint)

is a tangent to C{kx) at (xmv ymi).

8. We make use of the abbreviations

*i(*. y) = YX F(?> v)> Fz(*>
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F^x, y) and F2(x, y) vanish simultaneously only at the point x = y = 0;
for the binary form F(x, y) has simple linear factors only, and its discrimi-
nant, i.e. the resultant of Fx{x, y) and F2(x, y), cannot be zero.

Let (x'", y'") be the third point of intersection of the straight line
through two points (x', y') and (x", y") on C(kl) with this curve. Then

and
F(x"f, y'") = kv

x' y' 1

x" y" 1

x'" y'" 1

and therefore x'" and y'" must satisfy the cubic equations

F{y'"{xf~x")-{x'y"-x"y'), y'"{y'-y")} = kx{y'-y"f.

If we expand the left-hand sides in powers of x'" or y'", we get

F{x'-x", y'-y")x'"3+F2(x'-x", y>-y")(x'y"-x"y')x'"*+*x'"

+ *l = 0,

F(x'-x'\y'-y'')y"'3-F1(x'-x'\y'-y")(x'y''-x"y')y'"*+*y"'

where the asterisks denote the coefficients of x'" and 1, or of y'" and 1,
which are of no importance.

Now we know two roots x' and x", or y' and y", of these cubic equations;.
their third roots therefore have the values

»,_ _, r,, (x'y"-x"y')F2(x'-x",yf-y")
F{x'-x",y'-y")

,„, _ _„<_„", {x'y"-x"y')Fx{x'-x",y'-y")
f V V -T F{x'-x", y'-y")

When we introduce homogeneous coordinates

x': y': 1 = x^: yW: 2(1), x" : y": 1 = at®: y^: z(2), a;"': w'" : 1 = a^3): i/3): 2̂ 3)

and use the abbreviations

(xy) =
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and

(xz), (yz)},

(xz), (yz)},

), (yz)},

these formulae take the simple form

(A2)

The expressions G1} G2, Gz on the right-hand side are forms in the six
arguments £(1), ya), z(1), z(2), ?/2), z(2) with integer coefficients; they are of
degree four in the coordinates a^, y^^, z{1), and also in the coordinates
x(y) y{2)} 2(2) j t i s obvious that, when x<x\ tfU, z^\ x&\ ?/2>3 z®> have integral
values, so also have #(3), 2/3), s(3). If we write

^OI, |«C01) (i = \t 2, 3),

the formulae give the inequality

(A3)

where c2 is a positive constant depending only on the coefficients of the cubic
form F(x, y).

Assume, in particular, that none of the three points

lies at infinity, that (xWjzV, tfVftV) and (z<2)/z(2), tf2y^) do not coincide, and
that z(1) T£ 0 and z(2) ^ 0. Then it is obvious that the straight line through
these three points is not parallel to one of the asymptotes I", T", T'";
hence the point

-does not lie on V or V" or V", and so the number
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does not vanish, and we also have

(A4) z3

9. By the method of §8 we can calculate the coordinates (x"r, y'") of
the point of intersection of C(k) with its tangent at the point (x'} y').
The result is

r,,, gr, F2{Y',-X')(x'X'+y'Y')
F{Y'} -X')

'5 - X ' )

We also arrive at these formulae by making (x", y") tend to (xf, y') in the
formulae (Aj), for then

It is useful to remark that the binary form of degree 6,

F{Y', -X'),

is divisible by the cubic form

To establish this result, we show that the first form vanishes when the
second vanishes. This is trivial for x' = y' = 0. Therefore, let x' (or y')
be different from zero; then

or Y' = -^
\ y

so
F(Y', -X') =

[or = F(-* X', -X>) = - (ffFix', y') = o].

Hence F(Y', -X') = -^ F{x', y')*••(*', y'),

where F*(x', y') is a certain cubic form with integer coefficients and a is
-a'constant integer depending only on the coefficients of F(x, y).

If we introduce homogeneous coordinates

x': y': 1 = a*»: y™: ẑ >, x'": y'": 1 = x'*>: y™: z&
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and use the abbreviations

the formulae (BJ now take the form

(B2)

The expressions H1} H2, H3 on the right-hand side are forms in the three
arguments a;(1), y^\ z® with integer coefficients; they are of degree
four in these variables. Hence the two maxima

| l (i = 1, 3)

are connected by the inequality

(B3) u

where c2 is a positive constant depending only on the coefficients of the
cubic form F(x, y).

If neither of the points

) y(l)

is at infinity and if z(1) is not zero, then the tangent to C(k1) at the first
point cannot be parallel to one of the asymptotes I", F", V"; hence

F(Y', -X') =£ 0 and also F*{^, ifx)) ^ 0,

and so we have also

(B4) z& = zP>F*{afiu, i/l)) # 0.

We add the obvious remark that, if a^, iifl)
) 2

(1) are integers, so also are
aP\ y'z\ zf®.

10. Now we proceed to the application of the results (A) and (B) to the
study of the 2n points

» P-3m-2 = («-8»-2» 2/-
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on the curve C(^1). We know that P_2 is the tangential of Plt and P4 the
tangential of P_2; that for m = 2, 3, ..., n— 1 the three points

P P P

are colhnear; and for m — 1, 2, ..., n— 1 the three points

are colhnear. We know also that the coordinates of Px are integers and
that none of the In points P3m+1, P_3m_2 lies at infinity. Hence, from the
formulae (Ax) and (BjJ, it is obvious that the coordinates of all these points
are rational numbers, say

y ^-3m-2) y(-3m-2)
X3m+1 =

 z(3m+l)' 2/3wi+l = =
 z(3m+l) ' X-3m-2 =

 z(-3m-2)' V-'im-Z ~ z(-3m-2)»

where the new x's, y's, and z's are integers; in particular,

3ttv = x l t y(1) = y 1 , z ( 1 ) = l .

Since z(1) ̂  0, all denominators

z(3m+l)j z(-3m-2) ( m = 0, 1, . . . , 71—1)

are different from zero. If we write

Upm+1) = m a x (| x(3m+l) j > | ̂ Sm+l) | j 12(3m+l) | ̂

^(-3m-2) _ m a x (| ̂ -3m-2) | ? | y(-3m-2) | ? | z(-3»»-2) |) ?

then iy(1) = max(|a;1|, l^l, l )<65n3,

and, using (A3) and (B3), we get the system of inequalities

)J4 ( m = 2, 3, . . . , 71 — 1),

* (m = 1, 2, . . . , Ti—1),

and so we are able to give an upper bound for all numbers

w(3m+l)} w(-3m-2) ( m = 0, 1, . . . , 71— 1) .

11. We obtain, however, a much better result in a different way. The
equations

—3m-2)+(-3m+l) = 0, (_Gm-5)+(3m+l)+(3m+4) = 0,

(—6m-2)+2(3m+l) = 0, (6m+4)+2(-3m-2) = 0
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show that, for every m, the three points

p(6m+l)j p(-3m-2)j p(-3m+l) (m ^ 1)

are collinear; also the three points

p(-6m-5) p(3m+l) p(3m+4)

are collinear; and that, of the two points

p(-6wi-2) p(3m+l)

or of the two points

p(6m+4) p(-3m-2)

the first is the tangential of the second. Hence we obtain the recurrence
inequalities

They assume a simpler form when the new numbers

c3 = max (cj, c2K 1), czwf-Zm+v> = w3m+v c3w/-3m~2) = w_Zm_2

(m=0, 1, ..., n—l)

are introduced; they become

W6m+1 ^ ^-3771-2 ̂ - S m + l ' ^6/71+4

W-6m-Z ^ ^3771+1' W-6m-5 ^ ^3m+l ^ 3

Hence

-6m-Z ^ ^ 3 7 7 1 + 1 ' W-6m-5 ^ ^ 3 m + l ^3771+4 '

/— 3m— 2 = 0 1 n 1̂

where the arithmetical function f(h) is defined for all h = 1 (mod 3) by the
equations

| ), /(6m+4) = 4/(-3m-2),
(C)"{

[ / ( -6m-2) = 4/(3m+l), / (_6m-5) = 4/(3m+l)+4/(3m+4),
and the initial value /(I) = 1.

12. Although f(h) is a complicated function, it is not difficult to find
a simple upper bound for its values when h is large.
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By applying the formulae C twice to this function, we obtain
System of equations

= 32/(3m+l) + 16/(3wi-2),

/(12m+4)=16/(3m+l),

/(—12m—5) = 32/(—3m—2)+16/(—3m+l),

+>7) = 16/(3m+4) + 32/(3m+l),

/( — 12m—8) = 16/(—3m—2),

+ 10) = 16/(3m+4) + 16/(3m+l),

/ ( - 1 2 m - l l ) = 16/(—3m—5)+32/(—3m—2).

Now let a be a number such that

4* > 48,

and introduce the new function

g(h)=f(h)\h\-«.

It is obvious then that, for every e > 0 and m ^ mo(e), we have the system.
of inequalities

(oo 1 a

g(-l2m-8) =
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Assume that, in particular,

;and write max g(h) = c4.
\hKl2mo{*)
h = 1 mod 3

Then it can be deduced at once from the last two inequalities that, for all
integers &=1 (mod 3),

Hence

for all such values of h.

13. The results in §§11 and 12 show that there are on C ^ ) at least
2n rational points

P3m+1> P-2m-2 (m = °> *> •••> ^ - 1 ) ,

and that the coordinates of these points are of the form

Spm+l) U3m+1) £(-3m-2) y^-Zm-2)
X3m+1 =

 2(3m+l)' 2/3m+l = ^(3m+l) > ^-3771-2 = = g-3m-2)> 2/-3m-2 = ^-3m-2)

(m = 0, 1, ...,n— 1),

where the a;'s, y's, z'a are integers which satisfy the inequalities

max

fh= 3m + 1 , — 3m—2\
\ m = 0, 1, ..., n—\ ) '

a being a number such that
4«>48,

and c4 being a positive constant depending only on a and the coefficients
of the form F(x, y).

Therefore, in particular,

1 1
C 3 C 3

(m = 0, 1, ..., n— 1),
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and the least common multiple Z of all denominators

Z(3m+l)) 2 ( - 3 m - 2 ) ( W = 0 , 1 , . . . , ? ! — 1 )

has a value

—) ?l(65c37i3)2c^37vrn.

„ i

2n 2

14. Let us now write

and

^X-3m-2 = P-3m-2> ^Z/-3;n-2 = Q-3m-2

(m = 0, 1, ..., Ti—1).

Then all the 2n points

(Psm+V V3m+l)> (P-3m-2> Q-Sm-z) ( ^ = 0, 1, . . . , 7 1 - 1 )

have integer coordinates; they are different from one another and they
lie on the same cubic curve C(lc). Now, evidently,

with a positive constant c5 depending only on the coefficients of the form
F{x, y), and so-

0 < I k\ <c5(65w3)3 (—) (65c37i3)2c*(3'l>a« .
( W3 / J

Since a is restricted only by the condition

4a > 48,

it may be assumed less than 3. Hence, if y is any positive constant, we
have, for n^no(y),

and, when we replace 2n by t, the following theorem is proved.

THEOREM 1. If yis any positive number, then there is a positive number
tQ(y) such that, corresponding to every integer t ^ to(y), there exists an integer
1c with

which can be represented by the binary form F(x, y) in at least t different ways,

with integers ph, qh.
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15. We apply Theorem 1 to the special form

where a ̂  0 is an arbitrary integer. Then we know that, for large t, there
exist integers k with

0 < |
such that the equation

has at least % different integer solutions

(?*.?») (h=l,2,...,2t).

Solving with respect to qh, we get

and hence it is obvious that to every ph there belong at most two different
qh. Therefore the numbers

pvp2, ...,p2t

assume at least t different values, and we have proved

THEOREM 2. If a ̂ 0 is any integer and t is a sufficiently large positive
integer, then there is an integer k with

such that the polynomial

f(x) =

is a perfect square for at least t different integer values of the argument x, and
these values of x may be assumed to divide the number k.

By a similar method we can also prove

THEOREM 3. If a =£0 is any integer and tis a sufficiently large positive
integer, then there is an integer k with

such that the polynomial
g(x) = ax2-\-k

is a perfect square for at least t different integer values of the argument x, and
these values of x may be assumed to divide the number k.
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THEOEEM 4. If a ^0 is any integer and t is a sufficiently large positive
integer, then there is an integer k with

such that the polynomial

g(x) = axz-\-k

is a perfect cube for at least t different integers x.

II.

16. The result of Theorem 1 can be generaKzed by a simple change in the-
method of the first chapter.

We have constructed a set of 2n rational points

*3m+l = = \x3m+l> 2/3m+l)' •* -3m-2 = = \x-3m-2> V-Zm-V

(ra = O, 1, ..., n—l)

on the curve C(k1) with the following properties:

(a) The corresponding points

on the curve C have arguments of the form

U3m+i= (3m+l)%, ^_3m_2=—(3m+2)% (m = 0, 1, ..., n—1).

(6) If hv h2, h3 are three different indices of the set

3m+l, —3m—2 (m = 0, 1, ..., w—1)

with

then Pftl, PA2, Ph3 are collinear, and when hx and ^2
 a r e two different indices-

with

then Phl is the tangential of Ph2.

(c) The 2n points

are all different.
P3m+1>

(d) None of these 2n points lies at infinity.
8EB. 2. VOL. 39. NO. 2052. 2 a
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17. Now let us consider, also, the additional points

„, , c-3?n-^2 2/-3m-2'
"<_q™_0

(m = 7l, 71+1, 71+2, ...)

•on C with elliptic arguments

u3m+1 = (3771+1)^, u_3m_2= (—3m—2)^ (m = 7i, Ti+1,7i+2, ...)

and their corresponding points

p _ ix y ) P = (x v )

(m = n, 7i+l, 7i+2, ...)

•on 0(^2); we arrange them with their indices in the order

1, —2, 4, —5, 7, —8, ..., —3m+l, 3m+l, —3m—2, ....

Tt is obvious that the enlarged system of points

Pl 5 P_2, P4, P_5, P7, P_8, ...

still has the property (6); but in general the two other properties (c) and
(d) no longer hold.

It can easily be proved that all arguments

u u (m = 0 1 2 . . . )

are congruent (mod OJ15 cu2) to real numbers. For the curve C has at least
one real asymptote; hence there is a real linear transformation

such that C takes the form

X ( 7 2 - a X 2 ) = l

"with a real constant a; then, if we write

Y — — v — 2L

it becomes r)2=

But the curve in the (£, -q)-plane corresponding to this equation has
only one real branch; hence, as is well known, all real points of the curve
and, therefore, also all real points of C are obtained, if, and only if, u
assumes all values congruent to a real number (mod a)lf co2).
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Denote by to the real fundamental period of the two functions cf>(u) and
*jj(u). We may assume that %, and so all arguments

U3m+V U-3m-2 (™ = 0, 1, 2, . . . ) ,

are real numbers. Two real arguments u' and u" will give the same point
on C, if, and only if,

u'= u" (mod to),

i.e. if there is an integer h with

u' = u"-\-ha>.

18. It is possible that no two points of the system of points

•*3m+l> -*-3m-2 (W = 0, 1, 2, . . .)

on C(k1) coincide. Then, also, all points

«3m+l» ^-3m-2 (™ = 0, 1, 2, . . .)

on C must be different; there is no integer/*, ^ 0 with

37*% = 0 (mod co)

and therefore the quotient

is an irrational number. Hence, by a well-known theorem, the system of
real numbers

is " gleichverteilt" mod co, and the corresponding points on C will be
everywhere dense on every arc F of this curve. To every arc F there
belongs a positive constant y, such that, for sufficiently large N, at least

yN

•of the points
U3m+V ^-3m-2 (w = 0, 1, .,., N-l)

on C lie on F. Hence, also, at least yN of the points

Pzm+V P-3m-2 (« = 0, 1, ..., i^ -1)

lie on the arc T(k1) on (̂A;!) corresponding to F on C.
2 G 2
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Since both curves C and C(kj) are cut in only one real point by any
straight line through the origin, we may define the arcs Y and T(k1) by
conditions of the form

or the form

where A and B are any two real numbers with A < B.

19. If at least two points of the set

P P (m = 0, 1, 2, ...)

coincide, then there is an index N ~^n such that all points

p p (m = 0 1 N—l)
• 3 m + l > •* — 3 m — 2 \ — ' ' ' • • » /

au different, while at least two of the points

p p (m = 0 1 ... i\n

coincide. This means that all the numbers

u = (3m-\-l)u u = ( 3?TI 2)u (m = 0 1 ... N 1)

but not all the numbers

are incongruent (mod w). Therefore, either

u3N+1 = u_3N+1 (mod w), i.e. GNu^Q (mod to),

with 3/mj^O (mod w) for h= 1, 2, ..., 2N— 1;

or w_3tf_2 —%tf+i (mod w), i.e. 3(2iV+l)% = 0 (mod w),

with ZhUi^Q (mod w) for h= 1, 2, ..., 2AT.

It follows that, in the first case,

and that, in the second case,

U-, =
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with an integer N ^n and a second integer M prime to 2N or 2N-\-1 respec-
tively. Hence in the first case the points

uv u_2, uit u_s, ..., u3N_2, u._zN+1

are the same as the points

and in the second case the points

uv u_z, lit, u_5, . . . , u_3N+1, u3N+1

are the same as the points

M(3g+l)<o , Q 2N)

when we disregard the order of the terms.
Therefore, for sufficiently large N, i.e. for sufficiently large n, those of

the points
U-Zm-2 (W = 0, 1, 2, . . . ) ,

on C which are different, will be everywhere dense on every arc of the
curve, and similarly for the corresponding points

•*3m+l> *>-3m-2 ( W - = 0, 1, 2 , . . . )

on C(k1). To every such arc there belongs again a positive constant y,
such that for sufficiently large n and N at least

yN

of the different points of the set

u-3,n-2 (WI = O, 1, 2, . . .)

on C, or of the points
P-»n-2 (m = 0, 1, 2, ...

on C(k1), lie on that arc. As in § 18 the arc can be defined by inequalities
of the form

or the form ^(
\x

x

where the real numbers A and B satisfy the condition A < B.
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20. The results of the last two paragraphs lead to the following lemma.

Assume G to be an angle about the origin (0, 0), i.e. the part of the
(x, y)-plane with

1.
x

or

where A and B are two real numbers with A < B. Then there is a positive
constant c6 depending only on G, such that corresponding to every integer
t> 0, there are three integers n, N, kx, and 2N points

Psm+1== (X3m+V 2/3»n+l)> •* -3m-2 = \x-3m-2> 2/-3m-2) ( ^ = 0, 1, . . . , IV — 1 )

on the curve C(k1) with the following properties:

(1) All points P3m+i, P-3m-2 have rational coordinates; Px has integer
coordinates with max (1^1, l^l)

(2) All points P3m+i, -P_3OT_2 arz different from one another; at least

of them lie in the angle G.

(3) When hv h2, h3 are three different indices of the set

3 m + l , — 3m—2 (m = 0, I, ..., N— 1)

with ^ 1 +^ 2 +7i 3 = 05 then Phv Phi, P/i!t are collinear; when hx and h2 are
two of them with hx-\-2h2 = 0, then Phl is the tangential of Phr

(4) The integers n, N, and t satisfy the inequality

n

It is now possible that some, say j , of the 2N points P^m+i, P-sm-z l^e ^
infinity; but C(k1) being of degree 3, there are at most three such points,
and soj = 0, 1, 2, or 3. Call these points PKi, ..., PK.

21. The coordinates of the points P3m+1, -P_3m_2 are rational numbers
and can be written in the form

y^-37n-2) ?/-3m-2)
X3m+1 = =

 2(3m+l)' y^m+l ==
 2(3m+l) ' *C-3m-2 = = ^-Zm-2)' 2/-3»i-2 = =

 z(-Zm-2)

as in § 10, with integer x's, y's, and z's, which are finite and not all three
zero. The denominators z3m+1 and z_3m_2 are different from zero, with the
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exception of the j denominators zK1, ..., zK.. We write

W,(3m+1) = m a x (| X®m+» |, | 2/3^+D j , | Z<3™+« |)

^(-3771-2) _ m a x ( | £(-37n-2) | j | y(-3m-2) | ? | z(-3m-2) |)

(m = 0, 1, ...,N-l),

and have again

< 65n3.

Furthermore, it is obvious that

where c6 is a positive constant depending only on the coefficients of the
form F(x, y), but not on t, n, or N; and similarly

where the positive constant c7 also depends only on the coefficients of the
form F(x, y). We remark that, if j > 2, then j = 3, for then PKl, PK.,, and
PK;| lie on the line at infinity.

If one of these points PK. is collinear with two different finite points
Phl and Phn, three equations of the following form will be satisfied by the
coordinates of these finite points:

here X^, X^, K^(i=l,...,j) denote ternary forms with integer coefficients,
of degree e say, which depend only on the coefficients of the form
F(x, y). Their actual calculation by the method in §§8 and 9 shows that
2(>h) is n o t zero, when Phl and Ph., are different and finite. Obviously these
equations lead to the inequality

with another constant c8 > 0 depending only on the boefficients of F(x,

22. It is possible now to obtain an upper bound for all maxima

, w/-3m-2) ( m = 0 , 1, . . . , N— 1)
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by using the method of § 11. As far as these maxima correspond to finite
points, they are connected by the recurrence formulae

But these formulae must be replaced by others when at least one of the
points in them lies at infinity. Hence at most three of them change into

w^ < c6,
at most three into

and at most six into

Therefore the results in § 12 lead to a system of inequalities

(C9 tl/«) e6 /(3m+l), C9 M/-3»»-2) < (c9

where c9 is a constant depending only on the coefficients of F(x, y) and
where the arithmetical function f(h) satisfies the inequality

So we have, in particular,

12(

Now, by § 20, at least t-j- 3 of the points

lie in the angle G, and so there must be at least t of these points, say

P P P

which lie in G and are all finite. Therefore their denominators are different
from zero and satisfy the inequalities

|gW| < — (65c97i3)c««W {% = 1, 2, ..., <),
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so that their least common multiple is not greater than

j |j
I c9

I f Z is this least common multiple, we write

^ r ifcr = to (* = i . 2» •••» 0
and k = Zz kv

Then the coordinates of all points

(Pi, to) (»=1, 2, ...,*)

are integers; these points are finite and different and all lie in the angle
G and on the curve C(k). For the number k we have

( 1 ) s t

0 < | k | < c5(65w3)3 — (65n3)c"-W (# < c6«),

and so for any positive constant y and sufficiently large £, that is, sufficiently
large n and N, we have

since the exponent a may be assumed less than 3.

We have thus proved the following generalisation of Theorem 1.

THEOREM 5. Let A and B be two real numbers with A <B and 0 be the
•angle

about the origin, and let y be any positive number. Then there is a positive
number to(A, B, y), such that to every integer t^to(A, B, y) exists an integer
k with

0<|fc|<e*\

Jor which the conditions

F(x, y) = k, {x, y) in G,

have at least t different solutions in points

x=Pi> V = <li ( * = 1 , 2, ..., 0

with finite integer coordinates.
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We specialize the binary form F(x, y) and the angle G in this theorem
and obtain the two following results.

THEOREM 6. There is an infinite set of positive integers kv k2, k3, ... with

i- ^ ; fCj <!^ A/2 \ . fCg ^~~. • •«j

such that the number of representations of kv as a sum of two cubes of positive
integers is greater than \Zlogfc,,.

THEOERM 7. There is an infinite set of positive integers kv k2, fc3, ... with

such that the number of representations ofkv in the form

k,,=-.pq(p+q)

with positive integers p, q is greater than \Zlogfc,,.

III.

23. So far we have treated only cubic curves of the special kind

F(x,y) = k.

But our method suffices for the study of much more general cubic
curves. Suppose

M y) = o
to be the equation of a cubic curve of genus 1, and

g(x, y) = 0,

the equation of another curve, of degree less than or equal to 3, both
f(x, y) and g(x, y) being polynomials with rational coefficients. Then to-
every point {x', y') in the (x, y)-plane with rational coordinates, which is
not a point of intersection of the two curves, there belongs a rational,
number A, such that the cubic curve C(X),

goes through (x', y'), and if this point lies sufficiently near to / = 0, but
not to a point of intersection of / = 0, g = 0, then |A| will be very small.
Now there is a uniformisation of the curve C(X),

by means of two elliptic functions
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with the same periods a>W, w[2) and of order 2 or 3; as functions of the
parameter A the expressions

are analytic and even regular for sufficiently small |A|.
If the point (xr, y') on C(A) has the elliptic argument u, we can

construct on this curve the set of points with arguments

(3ra+l)w, ( — 3m—2)u (m = 0, 1, ..., TO—1)

by the same process as in § 3, for any given integer n ^ 1. All these 2n points
will be different from one another and none lie at infinity if a certain finite
number of incongruences of the type

u^vf (mod OJM, «[*>) (»= 1, 2, ...,j)
are satisfied; here

7,(1) v(2) VU)

denote analytical functions of A, which are regular for sufficiently small
| A |. Now for variable and sufficiently small A, every congruence

« = »«) (mod wf> cuf) (»= 1, 2, ...,j)

represents an arc of a certain analytic curve. Hence, in order that all
2n points on C(A) with elliptic arguments

(3m+l)tt, (—3m—2)u (m = 0, 1, ..., TO—1)

are different and finite, we must choose the special point (x'} y') of argument
u in such a way that it lies sufficiently near to the curve / = 0 and not on
a finite number of arcs of certain analytical curves. But here it is obvious,
that in any neighbourhood of any arc of the curve / = 0, there is a point
(x'} y') with these properties and with rational coordinates. Therefore we
arrive at the following result.

THEOREM 8. Suppose that

f(x, y) = 0 and g(x, y) = 0

are the equations of two different cubic curves, of which the first has the genus
one, and that these equations have rational coefficients. Let e be any positive
number, t^l any integer. Then there is a rational number A with

such that at least t different finite points with rational coordinates lie on the
cubic curve

f(x}y)+\g(x,y) = 0.
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The method of the second chapter may be applied to prove that all these
>t points can also be assumed to lie in any neighbourhood of any finite arc
of the curve / = 0.

It is also possible to obtain an upper bound

for the general denominator of the coordinates of these t points, when t is
large enough; here a denotes an absolute positive constant.

24. We now mention some applications of Theorem 8. Take

f(x, y) = #3+2/3+1 - 3Axy

with any rational number A ^ 1, so that this curve has genus 1, and

g(x, y) = Z\xy.

Then we get the result:

THEOREM 9. For any given rational number A=£l, any given positive
number e, and any integer t^l, there is a rational nun'her A' with

0<\A'-A\<e,

such that the equation

S = 0

has at least t different solutions in co-prime integers x, y, z.

It is trivial that this theorem remains true also for .4 = 1. For then
take a rational number A" with

and apply the theorem with A" instead of A and £e instead of e; then

\A'—A"\^l* and therefore Q<\Ar—

As a second example take

/(*> V) = y2~(^-g2x-g3),

where g2 and g3 are two rational numbers with

02s-27flra» 7*0,

so that the curve /= 0 is of genus 1, and

0{x, V) = -{±z3-92x-93)'
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We have

and so obtain the result:

THEOREM 10. For any two given rational numbers g2 and g.d with

any given positive number c and any integer t^l there exists a rational
number A with

0 < | A | < e ,
such that the cubic curve

has at least t different points with rational coordinates.

25. The last theorem has a remarkable consequence. Evidently the-
curve

CK{\): y2_{i+X)(^-g2x-g3) = 0

has the same absolute invariant

T- 9*
8

as the curve

C:

and the same is true for all curves

CK(Z):

where Z ^ 0 is any number. Now we may choose this number Z as an.
integer in such a way that the t rational points on CK(l) change into points,
on CK{Z) with integer coordinates. It is obvious also that, corresponding;
to every rational value of the absolute invariant J, two rational numbers.
<72 and g3 can be found with

J ~ g2*-21g3*'
Hence we have:

THEOREM 11. Corresponding to every integer t ^ l and to every rational'
number J, there exists a cubic curve with absolute invariant J, on which lie at least
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t different points with integer coordinates, and which is defined by an equation
of the special form

with integer coefficients.

26. Theorem 10 is a special case of the following more general result.

THEOREM 12. Suppose thatf(x) is a polynomial of exact degree 3 or 4 in
x with rational coefficients, and that t^l is an integer. Then there is an
integer k^O such that, for at least t different rational values of x, the polynomial
kf(x) is the square of an integer.

Proof. If f(x) = 0 has a multiple root this result is rather trivial;
henceforth we assume that the roots off{x) = 0 are all simple. Evidently
it is sufficient to prove that, for a certain rational number fcx ̂  0, there are
-at least t different rational points on the curve

C(kx): y*-kJ(x) = 0.

The curve C(l) = C has a uniformisation

where <f>(x) and ip(x) are two elliptic functions with the periods cov o»2 say.
It is cut by every parabola

y=-.Ax2+.Bx+C

in exactly four points, and the arguments uv u2, u3, w4 of these points
satisfy the congruence

= c (mod 2),

with a certain constant c, which may be assumed equal to zero without loss
of generality. Of these four points of intersection, three may be given
arbitrarily, and then the last one can be found by a rational construction.
In the special case in which the parabola osculates C in the point uv we must
count this point thrice, and so there is only one other point of intersection
u2, given by the congruence

w2= — 3% (mod u)v <o2).

When we now construct the set oi t points with arguments

uly — 3u1}
 11
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on C, there will be only a finite number of initial positions for ux, for which
some of these t points coincide or lie at infinity: this is shown by a method
similar to that of the first chapter. Through all these exceptional positions
of ux and through all points with f{x) = 0, y = 0 we draw straight lines
perpendicular to the x-axis, and then talve a rational point (xx, yx) not lying
on any one of these lines or on the oj-axis. Then there is exactly one curve
C(kx) going through this point, with

ii 2

h _ i>X
1 - / ( * ) •

On this curve we construct the t points

x l ' ifX)> V X 2 ' if2/> • • • ' \ x « > i/t)

such that, for m= 1, 2, ..., t—l, the point {xm+1, ym+x) is the point of
intersection with C(A;1) of the parabola

y = Ax2+Bx+C,

which osculates this curve in the point (xm, ym). All points

are different and none lies at infinity, and their coordinates are rational
numbers; these facts may be shown by transforming C(kx) into C by
replacing y by yl\/\kx\; or by actually giving a recurrence formula for
the coordinates of the (m+l)-th point, when the ra-th is known. This
proves our theorem.

27. We mention two trivial consequences of the last theorem.

THEOREM 13. Let t be an arbitrary positive integer. Then there exists
a polynomial aox

2-\-ax (aoax ^ 0) of exact degree 2 with integer coefficients,
which is a perfect cube for at least t different integer values of the argument.

THEOREM 14. Let t be an arbitrary positive integer. Then there exists
a polynomial aQx*-\-ax (aoax ^ 0 ) of exact degree 2 with integer coefficients,
which is a perfect fourth power for at least t different integer values of the
argument.

To prove these two theorems we need only apply Theorem 12 to the
two polynomials

f(x) = x3—a and f(x) = x*—a,

where a ^ 0 denotes an arbitrary integer.
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28. So far we have considered the lattice points only on plane curves
of genus 1. Our method, however, can also be used for the study of these
points on curves of genus 1 in spaces of three or more dimensions. I t
may be sufficient to give one result of this kind.

THEOREM 15. Suppose that a, b, c, and A, B, C are six integers with

aB-bA^O, aC-cA^O, bC-cB=£0,

and that t is an arbitrary positive integer. Then there are two integers k ^ 0
and K ^ 0 such that the system of equations

ax2+by2+cz2 = k, Ax2+By2+Cz2 = K

has at least t different solutions in integers x, y, z.

Proof. We choose two rational numbers kQ and Ko such that the curve

C{kQ, Ko): ax*+by*+cz* = k0, Ax*+By*+Cz* = Ko

in three dimensions does not consist of single real points, but has real arcs
and is of genus unity. Then the same is true for all curves

C{kv Kx): ax*+byz+cz* = kv Ax*+By*+Cz* = Klt

where k± and Kx are two rational numbers sufficientlj7" near to k0 and Ko»
C(kv K-i) is not a plane curve and is of degree 4 and of genus 1. Hence it
has a uniformisation

by means of three elliptic functions

with the same periods co{ffKi, <o$Kl, say. As functions of variable para-
meters kx and Kv the expressions

are analytic and even regular, when

\kx—ko\ a n d | JSTX—Ko\

are sufficiently small.
An arbitrary plane cuts C{kv KJ in four points of elliptic arguments

Ui, 2̂> uz> W4> s a v > *ney a r e connected by the congruence
==c (mod
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with a certain constant c, which may be assumed equal to zero without loss
of generality. Of these four points of intersection, three may be given
arbitrarily, and then the last one can be found by a rational construction.
In the special case when the plane osculates C(kv KJ in the point ux, this
point must be counted thrice, and so there is only one other point of
intersection u2, given by the congruence

u2=-ZUl (mod a)MKi, w g y .

When we now construct the t points with the elliptic arguments

they will all be different from one another and none lie at infinity, when a
certain finite number of incongruences of the type

is satisfied; here

denote analytical functions of kx, Klt which are regular for sufficiently
small l&j—ko\ and \KX—Ko\. Now for such k± and Kx every congruence

represents a piece of a certain analytical surface. Hence all t points

ux, -Suv +9uv ..., (Sy-1^

on C(kv Kx) will be different and finite, when the first point

% = (»', y', *')

is chosen in such a way that it lies sufficiently near to the curve C(kQ, Ko)
and does not lie on a finite number of pieces of certain analytical surfaces.
We can satisfy these conditions by rational numbers x', y', z'. The
point (x', y', z') determines uniquely the numbers

kx = ax'z+by'2+cz'2, Kx = Ax

and so also the curve C(k1} Kj); both kx and Kx are rational, and the
former method shows that the t points with elliptic arguments

on C(kv Kx) are different and finite and have rational coordinates. Assumo
Z to be the least common multiple of the denominators of these
coordinates; then, on the curve

C{kx Z*, Kx Z*): ax2+by2+cz* = kx Z*, Ax*+By2+ Cz* = Kx Z\
SEB. 2. VOL.39, NO. 2053. 2H
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there are at least t different and finite lattice points, which proves our
theorem.

29. All the considerations of the previous pages were based on the
construction of rational points on a curve of genus 1, when one such
rational point was known. Evidently the method will lead to still better
results when we know more rational points on the curve and when the
elliptic arguments, say uly u2, ..., us, of these points do not satisfy any
congruence

a = 0 (mod co1, cu2)

with too small integers hv h2, ..., hs. Now we have a cubic curve through
any nine given points in the plane. We may choose their coordinates as
integers in such a way that the curve has no double point and hence is of
genus 1, and that the elliptic arguments of the nine points are sufficiently
independent in the above-mentioned sense; this will be the case when a
certain finite system of inequalities is satisfied. It is very probable that
in this way we may be able to prove the result:

"There are an infinity of cubic curves

3 3

t=o

of genus 1 and with integer coefficients, on which at least

(log a)2

different lattice points lie, where

a = max (\au\)".

I hope to attack this question in a later paper.

Krefeld, Ross-str. 243,
Germany.


