P. Erdös and K. Mahler†. [Extracted from the Journal of the London Mathematical Society, Vol. 14, 1939.]

In this note, we consider the greatest prime factor $G(B_n)$ of the

SOME ARITHMETICAL PROPERTIES OF THE CONVERGENTS OF A CONTINUED FRACTION

denominator of the *n*-th convergent A_n/B_n of an infinite continued fraction $\zeta = a_0 + \frac{1}{|a_0|} + \frac{1}{|a_0|} + \dots,$

here the
$$a_1, a_2, \ldots$$
 are positive integer

where the a_1, a_2, \ldots are positive integers.

We show in §1 that, for "almost all" ζ , $G(B_n)$ increases rapidly with

n (Theorem 1). In § 2, we prove that ζ is a Liouville number (i.e. $B_n < B_{n+1}^{\epsilon}$ for arbitrary $\epsilon > 0$ and an infinity of n if $G(B_n)$ is bounded for all n

is the sequence of its convergents.

(Theorem 2); and, in fact, there are Liouville numbers with bounded $G(B_n)$. If the denominators a_{n+1} are bounded or increase slowly, then we can prove sharper results (B and C); but we omit the proofs, since they are similar to that of Theorem 2.

Corresponding results hold for the numerators A_n of the convergents A_n/B_n of ζ . Notation. In the following, ζ is a positive irrational number,

$$\zeta = a_0 + \frac{1}{|a_1|} + \frac{1}{|a_2|} + \dots$$

is its regular continued fraction, and

$$\frac{A_{-1}}{B_{-1}} = \frac{1}{0}, \quad \frac{A_0}{B_0} = \frac{a_0}{1}, \quad \frac{A_1}{B_1} = \frac{a_0 a_1 + 1}{a_1}, \quad \dots$$

 $\{P\} = \{P_1, P_2, ..., P_t\}$

is an arbitrary finite set of different prime numbers, then $M(\{P\})$ denotes the set of all indices n for which all prime factors of B_n belong to $\{P\}$, and G(k) denotes the greatest prime factor of $k \neq 0$.

1. In this first paragraph, we prove that for "almost all" ζ the function $G(B_n)$ increases rapidly with n.

Ι.

 $N(x; \{P\})$ denotes the number of elements $n \leq x$ of this set.

Finally,

Let S be the set of all positive integers k for which Lemma 1.

$$k\geqslant \xi, \quad G(k)\leqslant \exp\left(rac{\log k}{20\,\log\log k}
ight);$$
 then, for large $\xi>0,$

$$\sum_{k \text{ in } S} rac{1}{k} = O\Big((\log \xi)^{-3}\Big).$$
 Proof. We divide the set of all positive integers k for which

(1)
$$k \leqslant x, \quad G(k) \leqslant \exp\left(\frac{\log k}{20 \log \log k}\right)$$
 into three classes A , B , and C , such that A consists of those elements which

are divisible by a square greater than or equal to $(\log x)^{10}$, and the

 $k = P_1^{h_1} P_2^{h_2} \dots P_t^{h_t}$

remaining elements k belong to B or C, according as $k \geqslant \sqrt{x}$ or $k < \sqrt{x}$. Then A has at most

$$\sum\limits_{r\geqslant (\log x)^5}rac{x}{r^2}=O\Bigl(rac{x}{(\log x)^5}\Bigr)$$

Next, let k be an element of B, and let

be its representation as a product of powers of different primes. Then, if an exponent $h \ge 2$, either P^{h-1} or P^h is a square factor of k, and therefore

elements.

n exponent
$$h\geqslant 2$$
, either P^{h-1} or P^h is a squ $P^{h-1}<(\log x)^{10}.$

Since $\sqrt{x} \leq k \leq x$, for large x, we have $P^h \leqslant (\log x)^{10^{h/(h-1)}} \leqslant (\log x)^{20} \leqslant \exp\left(\frac{\log x}{40 \log \log x}\right) \leqslant \exp\left(\frac{\log k}{20 \log \log k}\right).$

14

Since this inequality holds also for h = 1, we have

and
$$k$$
 is divisible by at least $20 \log \log k \geqslant 10 \log \log x$ different prime numbers, when x is sufficiently large. Therefore the number of divisors of k
$$d(k) \geqslant 2^{10 \log \log x} \geqslant (\log x)^5.$$

 $k \leqslant \exp\left(\frac{t \log k}{20 \log \log k}\right),$

 $\sum_{k \leqslant x} d(k) = O(x \log x),$ so that B has at most $(\log x)^{-5} O(x \log x) = O\left(\frac{x}{(\log x)^4}\right)$

Now

elements. Since
$$C$$
 has less than \sqrt{x} elements, there are therefore only
$$O\left(\frac{x}{x}\right) + O\left(\frac{x}{x}\right) + \sqrt{x} = O\left(\frac{x}{x}\right)$$

$$O\left(\frac{x}{(\log x)^5}\right) + O\left(\frac{x}{(\log x)^4}\right) + \sqrt{x} = O\left(\frac{x}{(\log x)^4}\right)$$
 integers k satisfying (1). Suppose now that

ategers
$$k$$
 satisfying (1). Suppose now that
$$k_1, \quad k_2, \quad k_2, \quad \dots \quad (1 \leqslant k_1 \leqslant k_2 \leqslant k_2 \leqslant \dots)$$

$$k_1, \quad k_2, \quad k_3, \quad \dots \quad (1 \leqslant$$
 the sequence of all positive integers k for whi

is the sequence of all positive integers k for which $G(k) \leqslant \exp\left(\frac{\log k}{20 \log \log k}\right).$

Then, by the last result,
$$\frac{1}{k_{\nu}} = O\left(\frac{1}{\nu (\log \nu)^4}\right),$$

and the lemma follows immediately, since $\sum_{\nu \in \mathbb{N}} \frac{1}{\nu (\log \nu)^4} = O\left((\log n)^{-3}\right).$

The measure of the set of all ζ in $0 \leqslant \zeta \leqslant 1$, such that the denominator B_n of one of the convergents A_n/B_n of ζ is equal to a given integer $k \geqslant 1$, is not greater than 1/k.

This is trivial, since

15

(2)

(3)

is of measure zero. *Proof.* Obviously $B_n \geqslant B_n'$, where A_n'/B_n' is the convergent of order n of the special continued fraction

 $G(B_n) \leqslant \exp\left(\frac{\log B_n}{20\log\log B_n}\right),$

P. Erdős and K. Mahler

$$\frac{1}{|1|}+\frac{1}{|1|}+\frac{1}{|1|}+\dots.$$
 Now
$$B_{n'}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right\},$$
 and therefore

 $B_{n'} \geqslant \frac{1}{2} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} \quad (n = 1, 2, 3, \ldots).$

Let
$$n$$
 be an arbitrary index. Then, by Lemmas 1 and 2, the measure of all ζ in $0\leqslant \zeta\leqslant 1$, for which (2) holds, is not greater than
$$\Sigma'\,\frac{1}{k}=O(n^{-3}),$$

where the summation extends over all integers k for which $k \geqslant \frac{1}{2} \left(\frac{1 + \sqrt{5}}{2} \right)^n, \quad G(k) \leqslant \exp\left(\frac{\log k}{20 \log \log k} \right).$

Therefore the measure of all ζ in $0 \leqslant \zeta \leqslant 1$, for which (2) is satisfied for an infinity of indices $n \geqslant N$, is not greater than

 $O\left(\sum_{n \ge N} n^{-3}\right) = O(N^{-2}) = o(1),$

and hence the theorem follows immediately.

In particular, from Theorem 1 and (3), for "almost all" ζ in $0\leqslant\zeta\leqslant 1$ and all sufficiently large n, we have

 $G(B_n) \geqslant \exp\left(\frac{n}{50 \log n}\right).$

16

numbers ζ .

numbers P_1, \ldots, P_t , there is at most a finite number of systems of three integers $X_1 \neq 0, \quad X_2 \neq 0, \quad X_3 = \xi X_3 \stackrel{*}{=} = 0,$

2. In this second paragraph, we give some properties of the set $M(\{P\})$ and the arithmetical function $N(x; \{P\})$ for special classes of irrational

Lemma 3. For every $\epsilon > 0$ and every finite system $\{P\}$ of given prime

such that $X_1 - X_2 = X_3$, $(X_1, X_2) = 1$, $|X_3^*| \ge \max(|X_1|, |X_2|)^\epsilon$, where ξ and X_3 * are integers, and all prime factors of $X_1X_2X_3$ * belong to $\{P\}$.

Proof. Take a prime number n, for which $n \geqslant 5$, $\frac{1+2\sqrt{(n-1)}}{n} < \epsilon$, $\frac{2}{\sqrt{n}} < \epsilon$.

By hypothesis, X_1 and X_2 can be written in the form

 $X_1 = \eta_1 \, P_1^{h_1} \dots P_t^{h_t}, \quad X_2 = \eta_2 \, P_1^{k_1} \dots P_t^{k_t} \quad (\eta_1 = \pm 1, \ \eta_2 = \pm 1),$

with non-negative exponents. Dividing them by n, we get, say,

 $h_{\tau} = nh_{\tau}' + h_{\tau}'', \quad k_{\tau} = nk_{\tau}' + k_{\tau}'' \quad (\tau = 1, 2, ..., t),$

where h_{τ}^{\prime} , $h_{\tau}^{\prime\prime}$, k_{τ}^{\prime} , $k_{\tau}^{\prime\prime}$ are integers, and $0 \leq h_{\tau}^{"} \leq n-1, \quad 0 \leq k_{\tau}^{"} \leq n-1 \quad (\tau = 1, 2, ...,$

Put

 $x = P_1^{h_1'} \dots P_t^{h_t'}, \quad y = P_1^{k_1'} \dots P_t^{k_{t'}}, \quad a = P_1^{h_1''} \dots P_t^{h_{t''}} \eta_1, \quad b = P_1^{k_1''} \dots P_t^{k_{t''}} \eta_2.$ Then there are only $4n^{2l}$ possible sets (a, b). Also

hence (x, y) = 1 and

 $X_1 = ax^n$, $X_2 = by^n$;

 $ax^n - by^n = \xi X_2^*$.

The binary form on the left-hand side is either irreducible, or is the product of an irreducible form of degree $n-1 \ge 3$ and a linear factor. Also there are only a finite number of possible forms. On the right,

all prime factors of X_3 * belong to $\{P\}$. Hence, by the p-adic generalization of the Thue-Siegel theorem[†], we must have $X^* = O(\max(|x|, |y|)^{\max\{2 \lor n, 1+2 \lor (n-1)\}})$

P. Erdős and K. Mahler

 $= O(\max(|X_1|, |X_2|)^{2/\sqrt{n}, 1+2\sqrt{(n-1)/n}}),$

(4) $n=n_1, n_2, n_3, \ldots$

the denominators
$$B_{n-1}$$
, B_n , B_{n+1} of three consecutive convergents of ζ are divisible by only a finite system of prime numbers $\{P\}$. Then ζ is a Liouville number, and is therefore transcendental.

Proof. Obviously

17

(A)

(5)
$$B_{n+1} - B_{n-1} = a_{n+1} B_n.$$
 Put $d = (B_{n-1}, B_{n+1})$. Then $(d, B_n) = 1$, since any two consecutive B are relatively prime; and so, by (5), d is a divisor of a_{n+1} . Write

Put
$$d = (B_{n-1}, B_{n+1})$$
. Then $(d, B_n) = 1$, since any two consecutive B 's are relatively prime; and so, by (5), d is a divisor of a_{n+1} . Write
$$B_{n+1} = dB^* \dots B_{n+1} = dB^* \dots a_{n+1} = da^*.$$

 $B_{n+1} = dB_{n+1}^*, \quad B_{n-1} = dB_{n-1}^*, \quad a_{n+1} = da_{n+1}^*.$ Then $(B_{n-1}^*, B_{n+1}^*) = 1$, and all prime factors of $B_{n-1}^*, B_n, B_{n+1}^*$ belong to

Then
$$(B_{n-1}^*, B_{n+1}^*) = 1$$
, and all prime factors of B_{n-1}^*, B_n , B_{n+1}^* below $\{P\}$ if n is an element of the sequence (4). From (5) and Lemma 3,
$$B_{n+1}^* - B_{n-1}^* = a_{n+1}^* B_n;$$

 $B_n \leqslant \max(|B_{n-1}^*|, |B_{n+1}^*|)^{\epsilon} \leqslant B_{n+1}^{\epsilon}$ hence

for sufficiently large n; and this is the defining property of a Liouville number.

3. By the last proof, for all sufficiently large n at least one of any three

consecutive indices n-1, n, n+1 does not belong to $M(\{P\})$, if ζ is not a Liouville number; hence we have the inequality

 $\limsup N(x; \{P\})/x \leq \frac{2}{3}, \text{ if } \log a_{n+1} = O(\log B_n).$

In a similar way, by considering a sufficiently large number of consecutive indices and applying a lemma similar to Lemma 3, we

 $\lim N(x; \{P\})/x = 0$, if $\log a_{n+1} = o(\log B_n)$,

 $N(x; \{P\}) = O(\log x)$, if all a_{n+1} are bounded.

(A) All real irrational algebraic numbers, the number π , the logarithms

(For these quadratic irrationals, it is even possible to show that $M(\{P\})$

for which all B_n are prime numbers. Assuming Riemann's hypothesis to be true, it is easy to show that there exist also non-Liouville numbers

Since any two consecutive B_n are relatively prime, all B_n cannot be

18

of all real rational numbers, the powers e^a with real irrational algebraic exponents.

We mention as examples for these theorems:

(B) The powers e^a with rational exponents $a \neq 0$.

powers of one single prime number. It is, however, easy to construct a Liouville number for which all B_n are only divisible by two arbitrary given prime numbers. On the other hand there are Liouville numbers

with this property.

has only a finite number of elements.)

(C) All real quadratic irrational numbers.

can prove the following two results:

(B)

(C)

Added 28 October, 1938. With respect to Theorem 2, it may be remarked that there are transcendental non-Liouville numbers, for which

the greatest prime divisor of q_n is bounded for an infinity of indices n;

e.g., $\zeta = 3^{-1} + 3^{-3} + 3^{-9} + 3^{-27} + 3^{-81} + \dots$

Liouville numbers; but this we have not yet proved.

We can show further that there exist real numbers ζ , for which the greatest prime factor of both p_n and q_n is bounded for an infinity of n. These numbers are necessarily transcendental, and probably they are

Mathematics Department, Manchester University.