ON THE PRODUCT OF TWO COMPLEX LINEAR POLYNOMIALS
IN TWO VARIABLES
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Extracted. from the Journal of the London Mathematical Sociely, Vol. 15, 1940.]

Some time ago, T. Hlawka (Monatshefie fir Mathematik und Physik,
46, 324-334) proved the following

THEOREM. Let a, B, v, 8 be four complex numbers such that

ad— Py =1,

and &, n two other complex numbers. Then there are two integers x and y
in the Gaussian field K@) such that

(@) | (ax+By+-&) (yx+dy+n)| <3

The sign of equality is necessary if, and only if, the product can be written as

<ax+by+g+——> (cotdy+h IJ”)

where a, b, ¢, d, g, b are integers in K (1) such that ad—bc = 1. If a/B is not
an element of K (i), then for every € > 0 there exists a solution of (a) for which

laz+Py+£&| < e

Hlawka’s method depends on Ford’s theorem on the approximation
of complex numbers by elements of K(¢), and on a lemma on quadratic
polynomials, of which the proof is somewhat complicated.

In this paperi I give another proof, which is based on the theory of
Hermitian forms and on a simple geometrical idea. By means of the same
method 1 prove two analogous theorems in the quadratic fields K(4/—2)
and K (1/—3); here the constants on the right-hand side of (a) are  and
L instead of §. The method can also be used to prove the theorems
of Minkowski and Remak on the product of two or three real linear
polynomials, and can probably be applied to other problems as well.

T Received 27 April, 1940; read 9 May, 1940.

I The present paper is an extension of an earlier one which was accepted for publication
by the Acta Arithmetica in Warsaw on 4th February, 1939, and of which I had just received

the first proofs when the war broke out. I have now added the new case of the quadratic
field K(4/—2), and the determination of the limiting cases.
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1. Reduction of Hermitian forms.

Let D be one of the numbers 1, 2, or 3, and let K = K(4/—D) be the
imaginary quadratic field generated by 4/—1D. The ring J = J(1/—D)
of all integers in K has the basis

1, w=+/—D for D=1 or 2,
L w=}(1++/—=D) for D=3

If « is complex, then let @, as usual, denote its conjugate complex; if a lies
in K, then a is also the conjugate of a with respect to this quadratic field.
By I' we denote the group of all linear transformations

| [@=aa’+Py’, T=ax'-+By’,
W ly=ma'toy, g=7v157,
where a, B, y, 8 are elements of J for which
ad—PBy = 1.
Let f(@, y) = axZ-+bTy +bxy-+cyy
be a positive definite Hermitian form of determinant

ac—bb =1,

with arbitrary real coefficients @ and ¢, and arbitrary complex coefficient b.
By the transformation (1), f(x, y) changes into a new form

lp(xr’ y/) — Az’ EU‘/’I-BCEI y/__l__Exf ?},"i‘oy/ -27/

of determinant 1, which is called equivalent to f(x, y).
We say that f(z, v) is a reduced form, if

a for |&|4|n|>0,

(2) f(f,n)>{c for n—1.

when ¢ and % lie in J. Since f(x, y) can be written in the form
(3) S rw@+3>@+§ﬁ+ir

s Y) = a y a y a ?/J:
these conditions imply

0<a<ec, if—l—%—‘}}%l for all € in J.
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Hence it is easily verified that the following inequalities are necessary for
reduced formst:

, LAY i b>1 1 —
[’0<a<c, !R(a“\)}%—g, |[<a <3 for D=1,
ORI by b 1
to\a\\@ LR(\_(‘/)§\27 I(—a/)\\/z for D=2,
L0 <a<e, khtp*bh| <a (p=e, k=1,2,3) for D=3.
pib4p P

Since a* <<ac=bb-+1, it follows that

2 for D=1,
(5) a?<<lac <44 for D=2,

L3 for D=3.

(The three fields K, where D =1, 2, or 3, have the class number 1, and in
them the Huclidean algorithm holds. This is no longer always the case for
D >3, e.g. not for D == 5. For this reason, the method of this paper would
require modification if analogues to Hlawka’s theorem in higher quadratic
fields are to be obtained.)

2. The geometrical representation of f(x, y).

Using Picard’s method, we represent f(x, ) by a point P with
coordinates
(6) X:R(i>, Y:1<i>, z—L<o,
a a a
which lies in the upper half-space H : Z > 0. The group I' generates an
isomorphic group I'* of point transformations of H into itself. These
transformations are conformal, and they change spheres into spheresi.

Points in H which are transformed into each other by elements of I'*
belong to equivalent forms. IFor reduced forms, the point P lies in the

T These conditions are also sufficient. Ior further literature on the reduction of
Hermitian forms see my note “° On the minimum of positive definite Hermitian forms ”,
Journal London Math. Soc., 14 (1939), 137-143. As usual, R(z) and I(z) are the real and
imaginary part of a complex number z.

-1 Planes are considered as spheres of infinite radius.
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SJundamental domain 11 of 1’ which is defined by the inequalities

[ le’ -{ %. {}/J {01' I) =

(7) X24L¥Y2472>1, and {EX[{’% Y =1/4/2 for =2
|L 1X| <4, g‘\'»}m\/g Y[<1, | Xy

for D= 3.

There are only a finite number of elements of 1'# which transform I into
itself, namely

X =eX, YV =¢¥Y(e=TF1), Z' =27 for D=1,
XY =pf(X4+iY) (p=re"t, k=1,2,3), Z =27 for D=3,

and only the identical transformation for D == 2. The half-space /{ is filled
completely without overlapping by the set & of all different domains 11,
into which IT is transformed by the elements of I'*.

This set S has the following pmpmhm The surface of each of its
Plenﬂenis I1, is formed bV 5 (for ]) — 1 or 2)or 7(for D = 3) spheres with their
The set of all surfaces of the elements of S
contains the fo]kmmg muiacc 2, extending to infinity, as a part:

a
(X =R+ (Y —k)2Z2=1 for |[X—h|<d |[YV—k|<4
(h, k=0, 71, 72, ...) for D=1;
(X—b)2 (Y —k/22+Z%=1 for |[X—h|<}, [Y—ka/2/<1/y/2
(b, k=0, T1, T2, ...) for D=2;

NTY 3 b2k 1

[N

(h, =0, 571, +2,...) for D=3

Obviously, X is simply connected, and a continuous curve from a point in
Z = 0 to a point in 1 intersects X in at least one point. I this curve begins
inapoint (X, ¥, 0) of Z == 0 for which X' --i} is not an clement of the field
K, and if it is perpendicular to the planc in this point, then it passes through
an infinity of elements of .

3. On a special Hermitian form.

TueorREM 1. Let o, B, y, 8 be compler wnumbers of  determinant
ad— By = 1, t a positive parameter, f,(x, y) the Hermitian form

., 1 \
S, y) = t]ax+By P4 ye+dy
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and F(w, y) = A28 By Bay+-Cyy
the reduced form which is equivalent to f(x, v). Then
Al — C:

Jor at least one value of ¢t if Bla does not belong to K, then there are arbitrarily
large ¢ with this property.

Proof. Since
fol, y) = (oal® +yy) e+ (e 78) Ty -+ (Bl y3) -+ (BB *+38) gy,

the point £, corresponding to f(x, ) is given by

. 2GB+yS t
Il =y Faa vy

If ¢ assumes all values in the interval 0 <<f << co, then P, describes the

semi-cirele ¢ which is perpendicular to the plane Z = 0 at the two pointsT

X4iY —=Bla and X4+i¥ =8/y;

for t->co, P, tends to the point in Z = 0 for which X3} = B/a. Thus,
in particular, if B/u does not belong to K&, then ¢ passes through an infinity
of different polyhedra I, of 4.

Let 11, be any one of the polyhedra which has a point in common with
C,andlet P # be the transformation in I'# which changes Il into II. It also
transforms C'into another semi-cirele ¢ perpendicular to Z =0, but with at
least one point in . Hence, as noted in §2, ¢V intersects the surface X
in at least one point, say the point ¢ =#;,. From the form of 2, there must
be a number in o, say { = {4, such that the translation P#% of I'¥

X>X-+E Yo Yity Z-2Z,
transforms the point £ =={, on ¢’ into a point (X, Y, Z) of II for which
CED RN/ AR

Let P be the element of I' corresponding to the product P##% P#; for

T The plane 2 = 0 1s identified with the complex plane. The equations of C are

\y

~

X--iY  ap 48] XAy a8

|[X—i¥ aB 5| =0, N} ad b =0
1 | — —
[ P N Y242 43 8
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t =ty, P changes f,(x, y) into F,(. y), and by our construction
Cpy= A1 (X2 Y2-2%) = 4,

as follows from (6).

In the special case in which B/a does not belong to K, there are obviously
an infinity of different values ¢ = f,->o0 with the required property, since
C passes through an infinity of different polyhedra IT, of S in the neigh-
bourhood of t = oo (i.e. of X-+iY = BJa, Z = 0), and the arc of the trans-
formed semi-circle C" which lies above the surface X enters only a finite
number of elements of S.

4. A geometrical extremum problem. (D=1 and D=3.)

Represent the elements of J as points in the complex z-plane. Then
they form a lattice L generated by

squares of side 1 for D=1,
rectangles of sides 1 and /2 for D=2,
equilateral triangles of side 1 for D= 3.

Let o be a number in the interval
V4 for D=1,
ogagj\/;;} for D=2,

L4 for D=3,
and denote by @(a)

a square of side a for D=1,
a rectangle of sides a and a4/2 for D=2,
an equilateral triangle of side « for D=3,

in arbitrary position in the z-plane. Let 8, be the shortest distance
between the vertices of ) (a) and the points of the lattice L. This minimum
distance 8¢ is a bounded continuous function of the position of Q(a), and
therefore has a maximum value §(a), which evidently is a continuous
function of a. In order to determine §(a), we distinguish the three values
of D.

(@) D=1. Place the square @(a) so that its centre coincides with
that of one of the squares ¢ of L and so that its sides are parallel to the
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diagonals of ¢; e.g., if ¢ is the square with vertices 0, 1, 1+, 4, then the
vertices of @(a) arve at

Thi e 1bi b I_H_}_ 1H_|,°"
V2 Ty 2 Ty ek

SO

and therefore

so= 4/ | (1= 55) +ar =/ (1= Z5+1e?).

This is also the value of §(a):

(8) 5(a) = \/( ).

For draw circles of radius 5, about all points of L as their centres,
and exclude the interiors of all these circles from the z-plane. The
remainder R of the plane consists of an infinite set of curvilinear squares .
If o < 4/4, then the diagonal of §(a) is less than 1 and therefore less than
the diameter of each excluded circle; thus the centre of @(a) cannot lie in
one of these circles. It follows that all vertices of @(a) can only belong
to the set R if they coincide with those of one of the squares . This
proves (8) for a << 4/%, and therefore, by continuity, also in the limiting
case a = 4/%.

(b) D=3. Place the triangle (a) so that its centre falls into that of
one of the triangles ¢ of L and so that its sides are parallel to those of ¢, but
lie on different sides of its centre; e.g. if ¢ is the triangle with vertices

1, $-+14/—3, then the vertices of J(a) are at

aJ[—l_l_ (a-F1)+/—3 1—~a_{_ (a+1)4/—3 l_}_gl_:‘?ﬁ)_ﬁéﬂ
2 6 ’ 2 6 > 2 6 ’

so that

Hence
(9) 8(a) = V{(I1—ata?)},

as follows by the same consideration as in the last case.

5. A geometrical extremum problem. (D =2.)

(¢) D=2. The result becomes more complicated since now ¢ and
Q(a) are less symmetrical. We start from the remark that if ¢(a) lies so
that 5, = 8(a), then the distances 3,, 8,, 83, 8, of its four vertices from their
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nearest lattice points are all equal. For if §; << 8, <8, < §,, §; < §,, then
it is evidently possible to move Q(a) a little so that §; increases and the
inequalities §; <{3, <{ 5, < §, remain satisfied. It suffices therefore to
determine all those positions of Q(a) in which §, = 8, = §;=208,. These
are given in the following table:

Vertices of Q(a). Value of o=
a __—ay/—2 _ 3a?
(1) :FE:F 2~’ 01“*‘4—-
—2 3a?
@) —H%ZF“V n=i—g+3.
2 32
(3) Ty, T
—9 —2 2
@ Pxige? oy = }—at- 22,
[ a 3a?
: V2+4
A — a\/2 for 0. <a<1/y/2.
(5) kT‘ ')7 USZJ
B o 3a  3a?
2 427 4
for o >1/4/2,
1 2 2 2
14+4/—2 2 342
m EYEpeyipe o =j—ave+is
1 —2 1 —2 2 ) 2

A simple calculation shows that

oy for 0<a<<a,

maxo, =4 o5 for ay<<a<<1l/4/2,
o, for 1/4/2<a<<+/%,

i/.ggi_\/_s__o;lgg

where _ oy = 16
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Hence the maximum §(a) is given by

[\/{ V(3)a+$a? for 0<a<ay,
(10) S(a) = < v/ {—4/(})at+ia? for ay<a<y/4,
1\/(‘2‘)& for vi<a<v/%

From these expressions we get
(11) B(a) < §—3v/2atda? for 0<a<y/4,

a result which could also have been proved directly in a similar way to the
formulae (8) and (9).

6. The principal lemma for D=1.
From now onwards, we usec the notation
2 =2,
if z, and 2, are two complex numbers which are congruent mod J, i.e. whose

difference z;—=z, lies in the ring /.

THEOREM 2. Suppose that D=1, and that

f(x,y) = axZ -+ bTy+bay+ayy

is a reduced positive definite Hermitian form of determinant 1. Then,
corresponding to any giwen complex numbers xy and y,, there exist two other
numbers x, and y,, such thot

(12) =%, Y1=Yo [(@¥) <1
The sign of equality ts necessary if, and only if,

Il

Lo

To=Yo=

Proof. Since x, and y, may be replaced by congruent numbers, we

may assume without loss of generality that

| B(yo) | <3, 11 (¥o)] <‘%a
(13)

<1 '1 x0+ )

' B <x0—}— @ yo>
and therefore

b _ _
<x0+4Jo>< +‘E?/> L Yolo < 3-
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Hence, if the stronger inequality T

(14) YoYo < $(2a—a?)
holds, then

b b _ 1 _ 1 2a—a?
f(xo,?/o):“(xo‘f"ayo\<x0+7y0>+}“yoyo<“-%‘+; 5 =1,

/

so that the conditions (12) are satisfied for x;, = z,, y; = ¥y, with the sign
“<” instead of “<”.
Suppose now that (14) is not true, 7.e. that y, lies in the domain G :

(15) [B@I<i [L@|<i [y|=B, where B=+/{}(2a—a?)].

Now, from (5), 1<a<<4/2 and therefore B>4/(v/2—1)> /=1
Hence ¢ consists of four separate curvilinear triangles; denote by

Aley, ) (e, €= 41)
that triangle for which
qR(y) >0, elI(y)>0.
By the translations of the y-plane
Y—>Y—erm—egnal (11, ng=10or 1)
we obtain the set of 16 triangles
Aey, ea|n1, ma) = Aler, €2)—€1m—e375%
(e, eg=F1; my, Py =10 or 1),

which together form a new domain @ consisting of four curvilinear squares
with their centres at }(41+4¢) and their vertices at

Yatari, aytbai dateal—yl, l—y)+iei
Here y is defined by
PEER=F, ie yi=i1-2a—1).
Obviously, therefore, for all points of G,

(16) < (@*+(1—y)=3{l—(@—1)}+1-/{1=2(a—1)%}

t For 2a—a? <1 if 1 <a<2.
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Suppose now that 7, lies in the triangle A(,°, €,°); then the four points

0 0; e 0___0;
Yoo Yo—€1, Yo—€2t Yo—€ €20

all belong to ¢’. For fixed X = x,, the four points in the z-plane
b 0 0,5 =0orl
= X‘Jr‘; (Ho— " m— € p7) (1, 92 =0o0r 1)

form the vertices of a square @(a) of side

o= 3=/ (1-3) <7

Their minimum distance 8, from the nearest lattice point therefore satisfies
by (8) the inequality

2 1 a?—1
2 12 4% ____)
892 < 8(a)2 = V2+2 =1l—53 \/< 5t )
Hence we have proved that, if y = vy, is a point in G, then there exist a number

Yy =19y, =19, 9n @ [which therefore satisfies (16)] and a number x, = x,, for
which

(17) <x1+—g~ y1> <9‘61+~Z-?71) = 3¢ \/< 207 )

From the identity (3) and from (16) and (17), we get

[y, 41) <a (x1+ % y1> < 1) —
)|

- - ( —1
<a11 202

o {1 (=) +1— /{12~ 1)3],

7.e.

fl@y, y1) <1+4, where A= “22'21 - \/(ai—l) —— V{1—2(a—1)3}

In this inequality, A is not positive. For put a= 1-+f, so that
0<<i<<y/2—1<4. Then A4 becomes

A 2+2t+tf;_22}/(1—2t2)_M<t+_t2i)_
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Using the inequalities for ¢, we easily get

V(1—=22) =152, since (1—§2)2 = 1—202—12(1—912) < 1— 282,

2+%+ﬁ—2wﬂb—%%<j+%2<t1+2%;_%H_ / (64
2--2¢ Sl U141y 8T (36%

V)= V) - /()
Hence finally A< A\ / (64152) B \/ <90tz> ~0.

36 36

This proof shows that (12) can always be satisfied with the sign <« <
instead of ““<{”, except for @ =1, 7.e. for the form

In this case, if only the sign ““ = ” is to be true, then necessarily
% =3 for wy=x, and y,y, =% for y; =y,

which requires that xo=%(141), yo=3$(1+9).

7. The principal lemma for D = 3.
THEOREM 3. Suppose that D=3, and that

(@, y) = aaZ+bTy+bxij-+ayy

18 a reduced positive definite Hermitian form of determinant 1. Then
corresponding to any given complex numbers xy and y,, there exist two other
numbers x, and y,, such that

(18) T =y, Y1=Yp [(@, Y1) < I

The sign of equality is necessary if, and only if,

xOE:FyOE:F(%+%)\/—3): a=1, f(x: y):x£+y37

Proof. Since z, and y, may be replaced by congruent numbers, we
may assume without loss of generality that

)

PR yot-p% g, < 1
19 (p=¢m, k=0,1,2),
(19) <1 p )

SN

(w0 90) 5 (B0
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and therefore
/ b -1 1
(xo‘l“—a‘ ?/0> <x0+ - yo) < YoYo <
Hence, if the stronger inequalityt

(20) YoYo < 3(20—a?)

holds, then

+_’ Yoo <. 5+'“ —a =15

o=l ) )

so that (18) is satisfied with the sign *“ << 7 instead of ** <",
Suppose therefore that (20) is not true, ¢.e. that y, lies in the domain G :

P by

(21)

(k=0,1,2), |y|=B, where B*=}(20—a?).

From (5),
1 <a<+/3, and therefore B> v{l —32)! _\/<\/(%)_%)>%.

Hence G consists of six separate curvilinear triangles, each of which
corresponds to and contains one of the six vertices p, of the regular hexagon
H given by

| y+p | <1 (k=0,1,2).

[f the indices are chosen suitably, then p;, ps, ps, and also p,, p,, pe, form
the vertices of two regular triangles of side 1; the complex numbers

M= Ppya—Pn M = Prpa—Pn (Prvs = Dn)

are units in and are a basis for the ring J.
Let A, denote that one of the six triangles of ¢ which lies at the vertex
pp. Then, by the translations of the y-plane

Y=Y Y=yt Y=yt
a system of 18 triangles

No=2N, Ay=7MNA4m Dp=7N+7" (R=1,2,...,6)

t See foot-note f, p. 222.
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is obtained. Together, they form a domain ¢’ consisting of six separate
concave curvilinear triangles d, with centres at the different points p,.
By the rotations

y—>edkriy (k=0,1, ..., 5)

of the y-plane, the d, are permuted cyclically. In particular, one of the
triangles, say d;, has its centre at the point p, = 4/ —1, and its vertices are
easily found to be the points

Wi—v(F—b}i,
H=Vit+tVEF—D+L}+iv-=3{Vi—v({E—DH+1}
—H VIRV (DY -3 (V- V(B =D+ 1.
Obviously, therefore, for all points of G,
(22) S ViV B—DP = i+52a—a’)—/(20—a’—3}).

| Suppose now that y, lies in A,, and that therefore the points

Yoo Yot Yo+

belong to @’. For fixed X =2x,, the three points in the z-plane
b b b /
Zy = X+“a— Yoo 2o :X‘f‘”d‘ (Yotmn), 2= X""a“ (#o+mn")
form the vertices of an equilateral triangle Q(a) of side
b
a:l—‘z-—!:,\//<l_—> '\/]

Therefore, by (9), their minimum distance 8, from the nearest lattice point
satisfies the inequality

5gt < 5(a)2= ““+“ %{2——— /(1—i)).

Hence we have proved that, if y = y, is a point in G, then there exist a number
Y=y, =Y, in G [which therefore satisfies (22)] and a number x, =zx,, for
which

(23) (x1+—g ) (o‘cﬁr% PARENES 33—} \/<1—&13>
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From (3), (22), and (23), we get

[y, 1) = “(%4‘% y1> <§’1+% ?71> ‘1”73 V1%

—afla—L AN L/ 2a—a®

_'“(33 32 %\/<1—a2>})+a<%+ 3 vV (2a—a®— %)>
i.e.
Sy, 1) <244, where A——— ——;\/ a?—1 —i\/(Za a*—3}).

In this inequality, A is not positive. For put
a=1-+t, so that 0<<t<<+/3—1<¢
Then A becomes

4 433/ (1—4)
- 6(1+1)

—3v/(2+1)

Using the inequalities for ¢, we get

A/(1—4£2) >1—382, since (1—312)2 = (1—412)—12(2— 91?) < 1 —42,

2t2+4t+3~—3\/(1~—4t2)<4t-|—11t2<t 4+,
6(1+¢) T 61+t U6+ T
5V (@2H8) Z 5/ (2. 42 4-17) =1, "
and therefore A< Pgt—t=— &t <0.

This proof shows that (18) can always be satisfied with the sign ““ <"
instead of “ <”, except for a =1, i.e. for the form

f@, y) = aZ+yy.
If in this case only the sign ““ = " is to hold, then necessarily
z, %, =% for x;=x, and y,¥ =3 for y,=y,.

This requires that the points x, and y, lie in the centres of triangles of the
lattice L, and therefore

To=tYp=+(F+4v—3).
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8. The principal lemma for D = 2.
THEOREM 4. Suppose that D=2, and that
fle, y) = axT +bF y-+bay +-ayy

18 @ reduced positive definite Hermatian form of determinant 1. Then
corresponding to any given complex numbers x, and y,, there exist two other
numbers xy and y,, such that

(24) v =2, 1=y J(@, y) <5
The sign of equality vs necessary if, and only if,
to=yo= 1+ —2), a=1, [ y)=aTtyy.

Proof. Since z, and y, may be replaced by congruent numbers, we may
suppose without loss of generality that

[R(yo)| <% Ly <1/v2,
(25) | ) | S
Rtk w) |<h |1 | < 75

and therefore

(26) Yo¥o < 7 (20—a?)
or}
b _ b _ 2a—1
(27) (%“r‘“a' yo) (xo‘i'"a“ yo> <i a?
is satisfied, then
, 5 . a3+ — 2(2a—a?) =3 or
f(@g, y) =a (Wﬁ‘ o L’/o> <fo+ o ?70) + o Yo Yo <
' 2a0—1 1
g2 —1, 13 __3
4 az + a 4 7 2

and so (24) holds for x; = xy, y; = y, with the sign “ < instead of ““ <.

[ For 2a—1)ja* <1 if L<a<2.
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Suppose therefore from now onwards that neither (26) nor (27) is true,
v.e. that y, lies in the domain ¢':

(28) |Ry)| <1, UWY<UVZ!m>ﬁ where g —+/{§(2a—a?)},
and that z,= x0+ Y, satisfles the inequalities

(29) |RGo)| <} 1G] <1v2 |z|=y. where o2=}(2a—1)/a%
We distinguish two cases, according to the value of a.

(A) 1<a<<§. In this case,

=\ 13(2.4—@?)) > v

hence the domain @ consists of four separate curvilinear triangles. For
given y in @, denote by «,, e, those units -1, for which

€1 R(y) = 0: € I(y) > 0:
and let G’ be the set of all points
Yy—eym—ensV/ —2 (m, ma=0or 1),

where y assumes all possible positions in ¢. Asin §6, G’ con~ists of four
separate parts in the form of congruent curvilinear parallelograms; it is
easily verified that for all points in @',

(30) Yy < 3(4+6a—3a%)—+/(6a—3a2—2) for 1<a<C

L3

Suppose that y, belongs to the signs €% ¢, so that
" R(yy) >0, &°1(y) >0
and all four points
Yo— e’ m—e’ 0/ —2 (1, 72 =0or 1)

belong to G’. For fixed X = x,, the four points in the z-plane

b
Z”l"!z = X‘|‘;(yo‘“€10’710520772 V—=2) (g, my=00r1l)

form the vertices of a rectangle @(a) of sides

:V/<1—%><\/%, and a4/2,
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Therefore, by (10) and (11), their minimum distance from the nearest
lattice point satisfies the inequality

3 g/
I—1v2atiat=3—,—1 \/QQ——> for 1<a <2,
5? <5(a)? <
[ 2o g<1—a—12> for /2 <a<3.
Hence we have proved that, if y =y, is a point in G, then there exist a number

Yy =1y, =Y, in G [which therefore satisfies (30)], and ¢ number x, =x,, for
which

I

. 3 2
i gt/ (2 )
31) (m+2 9 (Bt 31) <B¢* < for 1<a<v2
‘ 3
%-—Zc;é for v/2<a<3}.
From (3), (30), and (31), we get

f(xl’ yl) < %"I'—A)
where

(a2 _ 92
3a’+1 4%{(}% 3a 2)_%\/(2(12__2) for 1<a<<v/2,

A=

Zlé {1—+/(6a—3a2—2)} for /2<a<

e

V2 <a<$; inthe otherinterval 1 <a <{+/2, 4 is not positive.

For put
a = 1-4t, so that

From these expressions, it is nearly trivial that 4 is negative for

4614312 — 4/ (1—382)
0<t<v2—1, A= e —3 /{202 +12)).

Then, as in §6 and §7,

V(1—31) > 1—2#, since (1—22)2= (1—3t%)—2(3—51¢2) < 1—3¢2,

4+6t4-3t2—44/(1—3¢%) __ 3005142

21(v2—
£(1+1) <Gy <+t ey 50 /2 ) <2,
2t+t2>t2(\/22__1+1>=(\/2+1)2t2, PVREFP) = iv2(V2H 1) =0,
and therefore A< 2%—5t=—4t<0.
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(B) 3 <<a <{2. In this case, the complex number b/a satisfies by

(4) the inequalities
al<r [1@)<ye o=V =@z vis v

and in the inequalities (29) for z,,

(33) y=o/ (1% 21> vi

It is clear from (32) that there exist two units ¢; = 41, ¢, = -+ 1, such that

)|

6y eV <A (VB = 1=V

and similarly from (29) and (33) that there are two units p;, = +1, 9, = +1,
such that

(35) Zo— 3+ vV —2) | <3 VI~ (VD=1
Let E= -1 be a unit for which
E R(y,) >0,

and put

Vi=Y—E, &=zt —2)E—$(n 49,/ —2).
Then obviously

Ryl <L )| <UV2, $:1=1o
and therefore
(36) N9 <3
It is clear that 1(e; E—n,) and (e, E— 772) are integers; hence
Xy =1,

Finally, from (34) and (35),

(DY) (L _abay/=2)

’ b
{931“}“"&‘ Y1 ) p)
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and therefore

w{

b b
<9“1+7{ J1> (xl’{' > 4 \/1& ‘1": :
Hence, from this inequality and from (36),

b b 1 . _4a 3
flxy, yy) = a(zl—i— ” y1> <961+—(; Z/1> +‘CZ N < ‘]'5“‘5’&

<ih-dHE @7 <

In both cases 4 and B, the proof has shown that (24) can always be
satisfied with the sign ““ << instead of ““ <, except for a = 1, i.e. for the
form

If in this case only the sign ““ = " is to hold, then necessarily
v %y =>4 for vy =2, and y, 7, =3% for y,=y,,

which requires that xj==y,=+(1++/—2).

9. The product of two tnhomogeneous polynomials.
By means of the preceding lemmas, we can now prove:

THEOREM 5. Suppose that D =1, 2, or 3, and that a, B, y, 8 are four
complex numbers of determinant ad8—Py=1. Then to any two complex
numbers %y, y,, there are two other complex numbers xy, y,, such that

(3 for D=1,
A)  w=zy Y1=Yyp |(ax;+Py,) ) (yay+38y,) | i i for D=2,
& for D=3.

Here the sign of equality is necessary if

(B) (az+PBy) (yz-+3y) = (ax+by)(cx+dy)

wdentically in x, y, where a, b, ¢, d are integers in K(+/—D) of determinant
ad—bc =1, and if at the same time

11++/—D) for D=1 or 2,

B’ = =
(B") axy+by, $‘(cxo+d?/o) {$(£+%\/_3) for D — 3.
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When a/B is not an element of K (+/—D), then to every e > 0 there is a solution
xy, ¥, of (A) such that

(©) [az;+By, | < e

Proof. Consider the Hermitian form

fiw, y) =1] ax+ﬁylz+71 |ya+3y 2
and the equivalent reduced form
Ft(x" y,) = Alx"%/+Blil yl+th,g’+Oly'g,'
By Theorem 1, there is a value ¢{=1#,, for which
A, = 0Cy;
if a/B is not in K, then #, may be assumed greater than 3/2¢%. Let
' = ax+by, vy =cx-+dy (ad—bc =1)

be the linear integral unimodular transformation in I' which changes
fi,(x, y) into F, («',y’), and put

%y = axy+byy, Yo = cTy+dy,.

By the Theorems 2-4, there are two numbers ', ¥,’, such that

1 for D=1,
v =z, y'=yy, F(x',9)<13% for D=2,
12 for D=3

Denote by z;, y; the two numbers satisfying
x) = awy+byy, Yy = cxy+-dy;.
Then obviously

1 for D=1,

1
=% Y1=Yo» flo(xl: y1)=to|a7"1+ﬁyllz+t—0 IWC1+8?/1P< g for D=2,
2 for D=3,

and (A) follows immediately by the theorem of the arithmetic and
geometric means ; if a/f is not in K, then further (C) holds, since

|z, + By | < A/(3/26) < e.
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The limiting cases, in which the third formula (A) is true only with the
sign of equality, are derived from §§ 2 and 3 as follows:

By Theorems 2-4, necessarily 4, =1 for all values ¢ =1¢, for which
A4, = 0. Hence the semi-circle ' belonging to F, (', y') intersects the
surface X only in points of the form (X, ¥, 1), where XY is an element
of J; it passes through at least one of these points, namely through
(0, 0, 1).

There are now two possibilities. If C' degenerates into a straight linet
then this is the perpendicular to the plane Z = 0 at the point X = ¥= 0.
Hence, by §3,

where o', B’, ¢, 8" are derived from a, B, y, § by the change of x, y into
2’, y'; with a suitable o’ 40, we therefore get

’ ’ /AT 1 1 , 2
Fo@, y')=t|a'a' P+ =y,
(1]
so that, identically in  and y,
’ ’ 1 ’ .
(a2 +By) (ya+-8y) = o' &' . 5y’ = (aw+by) (cx+-dy).

This proves (B); the congruences (B’) are obvious in this trivial case.
If C is a circle of finite radius, then let

(0,0,1) and (X, Y, 1)

be its two points of intersection with X; here X-+3Y =£ 0 is an element of
J. Obviously C intersects the plane Z = 0 in the two points

<g2£{1+n \/<1+X2%W>}’ ”12:{1+”\/(1+)-§§%7-2>}>

1 In this case, C has the point at infinity as its second point of intersection with the
plane Z = 0.
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£ ST/ ot e}

5B i (i)

Hence

and therefore

2

Fi@, y')=t,

(A o/ (et )

(T e/ (1 ) )

+__
where o’ 0 and 9’ %0 are numbers satisfying

b
(X+iY)\/(1+X—2-i—ﬁ> o'y = 1.

Hence we have identically in « and y

(457 w) =T () v

2

(a2+By) (ye+-8y) = R— ;
X+iT) y, <1+X2+ Y2>
or, more simply,
_ (X=iY) a4 (X2 Y32 y' — (X +0Y)y2
(37)  (ax+Py)(ya+3dy) = V{XPF (X + Y24}

=¢(@',y’) say.

For this product, it is easily proved that the last formula (A) can always be
satisfied with the sign “ <<”. By Theorems 2-4, this is certainly true

if zy, y,” do not satisfy the congruences
L 1(14++/—D) for D=1 or 2,
Lo = =
PTEN T La4iv—y) for D=3,

On the other hand, if x,’, 7, satisfy these congruences, then the statement
follows from the formulae

| (I—H 144y (2 Xz
R ) S e
(Lt =iy [P, y?
' (2 ’ 2> Tt (XY (XY
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for D=1,

2 9X2

9

16T (X 7Y (X2 YR A)’

l¢<1+\2/~2’ 1+\2/-2>

’¢<1+\/—2 1—\/—2> 2, (X424/27)2
2 2 I8 4(XHYR)(XPH-YE44)
for D=2, and
V=3 VP 4X2
‘¢<%—+ 6 TG > _%_9(X2+Y2)(X2+Y2+4)’
—3 —3\ |2 X 3Y)2
s+ 1+ =y (X3 T)

9T 9(X2 Y (X2 Y2 +-4)

with similar expressions for |¢(+3+21y/—3, £3+14/—3)|? for D=3.
In these formulae, at most one of the two numbers X and Y, or X and

X+24/27, or X and X++/3Y can vanish, so that the stated inequalities
follow at once.
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