ON EXCEPTIONAL POINTS ON CUBIC CURVES

G. Bruuing and K. MAHLERT.

[Extracted from the Journal of the London Mathematical Society, Vol. 15, 1940.]

Introduction.

1. Let ¢ be a cubic curve of genus one and let P, be any point on it.
The tangent at P, cuts C'in a point P,, the tangent at P, cuts C in a point
Py, and soon. If this construction leads to only a finite number of different
points, then P, is called an exceptional point. Otherwise P, is called an
ordinary point.

Suppose that all the coefficients of the equation of ' in some coordinate-
system lie in a field Q.  If the coordinates of P, also belong to Q, it may be
called an exceptional (or ordinary) point in Q; and it is clear that the
derived points P, (=1, 2, ...) are then exceptional (or ordinary) points
in Q. The third point of intersection of C' with a straight line joining two
exceptional points in Q is also an exceptional point in Q. All the points
obtained in this way from a given exceptional point form a finite group
(G. Billing [2]). We may suppose, without loss of generality, that one of
the exceptional points in Q is a point of inflexion, since otherwise we can
apply a suitable birational transformation with coefficients in Q. We
express the coordinates as elliptic functions of some parameter u chosen
in such a way that the point of inflexion in Q has an argument u =0
(mod . w,), where w, w, is a primitive pair of periods of the elliptic
functions. The argument of any exceptional point in Q is then
(mw—+my w,)/n, where (m, m,, n) =1 and n is a divisor of the number of
elements of the group. The group of exceptional points derived from
the point (mw-miw;)/n consists of the n points £k (mw-+m,w;)/n
(k=0,1,...,n—1). This group is cyclic, but there are also non-cyclic
groups of exceptional points. In this paper we consider only the cyclic
cases.

The problem arises of determining the possible values of # when Q is
the rational field. The chief known results are due to B. Levi [4],
A. Hurwitz [3], and T. Nagell [6, 7], who have proved that the following
values of n are possible:

n=1,2 3 4.5 6, 7,8, 9, 10, 12.
Levi also proved that » cannot be 14, 16, or 20.

1 Received 13 July, 1939; read 15 December, 1939.
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Another problem is to determine whether there exist curves whose
rational points form an exceptional point-group of given structure. In
the cyelic cases, this problem has been solved by Levi, Hurwitz, and
Nagell for n =1, 2, 3, 4, and 6. Recently C. E. Lind [5] gave examples
of curves whose rational points form cyclic groups of 8, 10, and 12 elements.

In this paper we suppose that we are given five points, say 0, 1, 2, 3, 4,
for brevity. We describe a construction by which we can in general
determine a unique cubic which passes through these points and through
certain other points determined by them. If this cubic is of genus one,
then 0 is a point of inflexion and the elliptic arguments of the points 0, 1, ...
can be taken as ku (b =0, 1, ..., 4). We show that, if the positions of the
points 0, 1, 2, 3, 4 satisfy certain conditions, these points are elements of
cycelic groups of exceptional points (n > 5). If these conditions can be
satisfied by five points with rational coordinates, then the cubic has n
rational exceptional points. For small values of %, the conditions are
simple. For n >8 we choose a homogeneous coordinate-system such
that the points 0, 1, 2, 3 are at (1, 1, 1), (1, 0, ¢), (0, 1, 0), and (0, 0, 1),
and the point 4 at (zy, x,, x3).

If the five points belong to an exceptional group of order n, then 4 lies
on a certain curve, namely

a straight line, if n=28 or 9;

a conic, if =10 or 12;

a cubic of genus one, if n=11;

a hyperelliptic quartic, if »=13, 14, or 15.

The coordinates of 4 are rational if x,, x,, x; satisfy a diophantine equation.

For n = 11, we show that the cubic for 4 has only five rational points
(a result which is of interest in itself as the first example of a cubic of this
kind), and we deduce that a cubic cannot have a group of 11 rational points.

The construction.

2. Let 0, 1, 2, 3, 4 denote five different points in the plane, no four of
which are collinear. Let (L; L’) denote the point of intersection of the
two straight lines L and L', and {k,, k,} the straight line through the points

ky. and k,. We define five more points —1, ..., —5 in the following way:
—3=({0, 3}; {1, 2}), —4 = ({0, 4}; {1, 3}),
—b=({1, 4}; {2, 3}), —1=({0, 1}; {3, 4}),

—2= ({0, 2}; {—1, 3}).
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3. We consider two cases.

L. The general case. No three of the points 0, 1, 2, 3, 4 lie on a straight
line.

We prove that the nine points 0, +1, 2, +3, +4, —5 are all different,
and that there is only one cubic (' passing through them.

Forif, e.g., —5 and —1 coincide, 0, 1, 4 lie on a straight line. Similarly,
no other two of the nine points can coincide.

Through the eight points 0, 4-1, 2, 43, 4-4 there pass an infinity of
cubies, all of which pass through the same ninth point. This ninth point
must be the point —2 (which may possibly coincide with 2, but not with
any other of the nine points, as is easily seen by an argument of the above
type). For consider the two degenerate cubics consisting of three straight
lines: {4, 0, —4}, {1, 2, —3}, {—1, 3} and {4, —1, —3} {—4, 1, 3}, {0, 2}.
Both pass through the eight given points and also through the ninth point
—2. Hence they do not both pass through —5, and so there is only one
cubic C which contains the nine points 0, +1, 2, 43, +4, —5.

4. The point 0 is either a point of inflexion or a point on a straight line
forming part of C, if C degenerates into a straight line and a conic, or into
three straight lines.

For consider the two degenerate cubics {4, 0, —4}, {3,0, —3},
{1, 0, —1} and {4, —3, —1}, {—4, 3,1}, {0, 0}. They evidently meet
C in the six points +4, 43, 41 and in three points at 0. If ¢ does not
degenerate, then 0 is not a double point. For if it were, by considering the
line {4, 0, —4} we see that —4 would coincide with 0, which is impossible
from §2.

5. The cubic cannot degenerate into a proper conic ¢ and a straight
line L.

For, from §4, 0 would lie on L. If any one of the points 1, 2, 3, 4 also
lies on L, then none of the other three can do so. Hence either both 1 and
4 or both 2 and 3 lie on ¢, and so —5 lies on L. But then —5, 0 and one
of the point-pairs 1, 4, or 2, 3 lies on L, t.e. on the same straight line,
contrary to hypothesis. Hence none of the points 1, 2, 3, 4, lies on L and
so also none of the points —1, —2, —3, —4. This is impossible, since it
implies that the three collinear points —1, —2, 3 lie on Q.

6. The cubic may, however, degenerate into three straight lines
Ly, Ly, L_,. We prove that two and only two configurations are
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possible :
(1) The points congruent to £ (mod 3) lie on L, (k=0, 1, —1).

(ii) The points congruent to &£ (mod 4) lie on L, if £=10, 1, or —1,
and the points congruent to 2 (mod 4) coincide with the point (L;; L_)).

Since no three of the points 0, 1, 2, 3, 4 lie on a straight line, at least
one of them and at most two of them lie on each of the three lines Ly, L, L_,.
Hence, by §2, no two of the points —3, —4, —5 lie on one and the same
line L. Suppose then that —3 lies on L,, —4 on Lg, —5on Ly, a, B, y
denoting the values 0, 41, and —1 taken in some order.

Suppose first that —1 lies on L,. Then 4 also lies on L,. Hence no
one of the points 0, 1, 2, 3 lies on L,, for then three of the points 0, 1, 2, 3, 4
would lie on L,. Also 4 cannot be one of the points (L, ; Lg) or (L,; L,);
e.q. if 4 were (L,; L) then 1 lying on the line {4, —5} would coincide with
4. Hence 0 lies on L., since 4, —4 and 0 lie on a straight line. But now
none of 1, 2, or 3 can lie on L, since —5 lies there, and so they would lie on
L. Hence —1 cannot lie on L.

If —1 lies on Ly, then 2 is the only one of 0, 1, 2, 3, 4 which can also lie
on Lg.  As before, 2 cannot be one of the points (Lg; L,) or (Lg; L,).
Therefore the points 1, 4, —2 lie on L., the points 3, 0 on L,. This case is,
in fact, possible, e.g.:

0=(1,1,1), 1=(1,0,0), 2=(0,0, 1), 3=(0, 1, 0), 4= (3, 2, 1).

If finally —1 lies on L., then none of 0, 1, or 4 can lie there. Hence
2 and 3 lie on L. As before, 3 cannot be one of the points (L,; L,) or
(Ly,; Lg). Hence 0 and 4 lie on Lg and then 1 and so also 2 lie on L,.
Therefore 2 must be the point (L, ; L,), and —2 must coincide with 2.
This cases arises, for example, if the points 0, 1, 2, 3, 4 form the consecutive
vertices of a regular pentagon.

7. We now construct further points 5, —6, 6, —7, ... on C by the
following recursion method. The point & (k = 5) is taken as the common
point of intersection of the lines

ey —k, —kyj (0 ky < 5k);

W

the point —A’ (£ = 6) as the common point of intersection of the lines
(' —ky', ky'} (1<l << b,
We show that the new points are uniquely determined and that they lie
on C.
We prove that there is a unique point & on € such that the points
k, by—k, —k; (0 < k; <-}k) are collinear for any k;, and a point —&" on ¢
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such that the points —&', &'—Fk,", k' (1 <<k, < }k’) are collinear for any
k. Suppose that this assertion holds for all &£ < k., and &' <k,. Then
it also holds for k=t#k,.

Let kyy, kyy, be two values of &y satisfying 0 <Ckqy, kyy << 3k and such

that the lines {k,;—*k,, —k;} and {kyy—Fky, —ky,) are determinate and
do not coincide. There exist two such values &y, ky,.
For ky, = 5 or 6 the values &y, = 1, ky, = 2 give two such lines.

For k,, > 6, consider the four lines

{—Fky, 0}, {1—ky, —1}, {2—Fk,, —2}, {3—ky, —3)

No three of these coincide, since no three of the points 0, —1, —2, and
—3 are collinear. Also at most one of them is indeterminate. For
suppose that the points /—Fk, and —{ coincide and also the points I’ —£k.,,
and —!’, where 0 </ <<{’<{3. The line through the points —! and I'—k,,
has a third point of intersection — (—I+1'—k,,) =1—1U'-+k, with C, and the
line through the points l—ky, = —I and [—1'+4k, has a third point of
intersection — (I—ky+1—0'"-+ky)=10'—2], which then coincides with

—ky = —U'. But this is impossible from §3, since the only possible
values for I’—2l are 3, 2, 1, 0, and —1. Hence there exist values k; and k,,
with the required properties.

Denote by k, the point of intersection of the two lines {k,—k;, —k;}
and {k;,—k., —k,}. Consider the two degenerate cubics

{k*: kll'—k%w *kll}> {klz“’k:iw k:i=_k12_1: 1}’ {”klzﬁ ]"'12_]611_}'1’ kll“ 1}
and
kg, kyo—Fy, —kio}, {kp—hy kg —kyn—1, kyp—Fkyy 1}, {—Fku 1, by —1}

Since eight of their nine common points lie on €, the ninth, £, also lies
on C.

By considering the two degenerate cubics
kg kyy—ky, =k}, {ky—ky, by —ky—1, 1, {—ky, ky—ky+ 1 ky—13
and

{A —k, # 'l‘lh {k’ll_’k:ka k:{:‘“kl—l» kl"“kll_!_l}’ {_klla L kll‘—l}’

where 0 <k, < 3k, we find that the points k., k,—k,, —k; are collinear
for all the values of k.

Similarly, if the assertion holds for &t <k, and &’ <k, then it holds
for &' = k.

From the above it follows that any points &y, ks, kg with &y +ky+ks =0
are collinear. This also holds if two of these £’s are equal, 7.e. if the tangent
to C at the point k£ passes through —2£k,
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8. Suppose now that C is of genus 1, and that its coordinates are
expressed by means of elliptic functions, with the primitive pair of periods
w, w;.  We may assume that the argument of the point 0 is congruent to
0(mod w, w;). Denote by u, the argument of the point k. Since 0 is a
point of inflexion, w; +-uy,+uy, =0 if ky, ky, ky lie on a straight line, 4.e. if
ky+ky-1-ky=0. Hence, since u,+u_,+u,—~0 and u,=0, we have

Uy Uy == Uy,

Uy |-y == 20y -2y T Uy,

Uyt = Uy F 2y = Up Uz = Uy - 20, = Uy,
and Uy = 2u, = 2u

say, and generally wuy, = ku.

9. We consider now the special cases in which three of the points
0, 1, 2, 3, 4 lie on a straight line.

The points -k are constructed as above. In most of these cases, it
can be proved that the cubic degenerates into three straight lines. It
may, however, happen in some cases that more than one and so an infinity
of cubies pass through the points 4%, or that some of these points become
indeterminate. We give some illustrations without detailed proof.

(a) 0,1, 2 lie on a straight line. If the line {3, 4} does not pass through
any of the points 0, 1, or 2, then it can be shown that C degenerates into
three straight lines L,, Lj, L,.  On one of them, say L, lie all points
congruent to 1 (mod 8), on another, L, say, all points congruent to
3 (mod 8), and on the third L, all points congruent to 4 (mod 8). All
points congruent to 2 (mod 8) coincide in (L, L) and all points con-
gruent to 0, 5, 6, 7 (mod 8) in (L, L,).

If the line {3, 4} passes through 0, then the points -k are distributed on
three lines L,, L, L, according to the residue of -k (mod 15). All the
points congruent to 1 (mod 15) lie on one line £, and their positions are
arbitrary except for the point 1. All the points congruent to 4 (mod 15)
lie on another line Ly, but, except for the point 4, these are also indeter-
minate. On the third L, are all points congruent to —5 (mod 15), all
indeterminate except the point —5. The points congruent to 2, —6
(mod 15) coincide in (L, L,), the points congruent to 3, —4 (mod 15)
in (Lg, L,), and all points belonging to the remaining residue classes in
(L Lig).

Configurations of a similar kind arise if the line {3, 4} passes through the
point 2; the position of the point % is, however, determined by the
residue of 4% (mod 10).
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In the case in which {3, 4} passes through the point 1, every point
-k coincides with one of the five original points, the points congruent
to 0, 5, 6, 7 (mod 8) with 0, the points congruent to £’ (mod 8)
(k"=1, 2, 3, 4) with &’. The cubic €' degenerates into three straight
lines {0, 1, 2}, {4, 0}, {3, 2}.

10. (B) In the following five cases, the points -k form groups of
5, 6, 7, 8, or 9 exceptional points respectively.

(i) 0, 1, 4 are collinear and 0, 2, 3 are also collinear. All points
congruent to £’ (mod 5) (£’ =0, 1, 2, 3, 4) coincide in £ and the tangent
to any one of them passes through the point congruent to —2£&" (mod 5).
There is a simple infinity of cubic curves satisfying these conditions,

since
042.142.242.34+2.4=0 (mod 5),

and an infinity of these curves are of genus 1 and have a group of five
exceptional points in 0, 1, 2, 3, 4.

(ii) 0, 2, 4, are collinear and 1, 2, 3 are collinear. All points congruent
(mod 6) coincide, and both 2 and 4 are points of inflexion, if the curve does
not degenerate, since 3.2—=3.4=0 (mod 6). In this case, we get an
infinity of cubics of genus 1 with a group of six exceptional points in
0,1, 2, 3, 4, and —1.

Note. 1f 0, 2, 4 are collinear, but the line {1, 3} does not pass through
any of the points 0, 2, or 4, the general case of a cubic degenerating into
a line and a conic arises. All points congruent to 0 (mod 2) lie on the
straight line and all the others on the conic.

(iii) 0, 3, 4 and 1, 2, 4 lie on straight lines. In this case we can
construct a simple infinity of cubics with a group of seven exceptional
points in 0, 1, 2, 3, 4, —1, and —2. The points of intersection of a line
through 3, arbitrary but different from the lines {3, 2}, {3, 0, 4} and {3, 1},
with the lines {1, 0} and {2, 0}, give two new points, —1 and —2 respec-
tively. Every point congruent to " (mod 7) (k' =0, 1, 2, 3, 4, —1, —2)
coincides with £’. By these points and two of the known tangents the
cubic is uniquely determined in this case. But since there is a simple
infinity of lines through 3 we also get an infinity of curves, viz. one
corresponding to each of these lines.

(iv) If the points 1, 3, 4, but no other three of the points 0, 1, 2, 3, 4, are
collinear, we get only eight points 0, +1, 42, 4-3, 4 which together with
one of the known tangents determine a unique cubic. In general, this
curve is of genus 1, 4.e. the points form a group of eight exceptional points.
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(v) If finally the points 2, 3, 4, but no other three of the points
0,1, 2, 3, 4, are collinear we get nine different points only, which together
with one of the known tangents determine a unique cubic which is
generally of genus 1. The nine points then form a group of nine
exceptional points on this curve.

Representation of the points k in homogeneous coordinates.

11. In this paragraph we suppose that no three of the points 0, 1, 2, 3
are collinear. We use homogeneous coordinates x;, x,, x;. The lines
{2, 3}, {3, 1}, {1, 2} are taken as &, = 0, x, = 0, ¥, = 0 and the coordinates
of the points 1, 2, 3 as (1, 0, 0), (0, 1, 0), (0, 0, 1). There is no loss of
generality in taking 0 to be the point (1, 1, 1). Let the coordinates of
the point 4 be (v, @,, @;). Then the coordinates of all points 4k
become functions of x;, x,, x;, thus

0=(1,1,1)

1= (1, 0, 0), — L= (@, —2,+u;, 23 x;),

2=(0.1,0), —2 = (¥, — 2y, T3, ¥ —Ty+,),

3=1(0,0,1), —3=(1,1,0)

= (2, ¥, T3), —4 = (2, 0, 3—,)
5= (“ T4y X3 —,%, @) @y, x2(x1—x2+x3)>, —5=(0, @, ay),
6= ( (0 —@y3) ()2 Xy — 2y By — ) X2 +-2,2 ),
Xy (X —23) () T+ By —2,7), xlxg(xz——w3)(x1—x2+x3)),

—6= (”1 Ty (¥ — 2y F-15), @257, o @y(2y ‘}‘13))

7= (=@ bag) (X2 —y @), @2y —w) 2® — 2y 2y Fwp2

(@ —y) () Xy + 2y 23 —,7) ) ]
—71= (xl(xlx2+x1x3_x22)> Xy () Xy -2y X5 —57), @y 5 (2, xo+x3))

8

I

3 2
(~r1 W2y BB A2y 2 02—y BB w2 w2, w2 (w2 — 1y ),

g (%2 Xy 0o — ) T3> — 2,7 205) ) .
—8= ( (0 @10y X3 —29%) ()2 Xy — 2y By — ) X7 -2 ),

) g ()% Xy — By X — 1y B2 +2,205), @y W(Xy—23) (¥, X+, 23— 2,52) ) .
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Exceptional points.

12. LEmMA 1. A necessary condition for the points +k (k=0, 1, ...) to
form a group of m (n = 5) exceptional points is that any set of three points
ky, ko, ks, satisfying

kyFky-Hhy -0 (mod n)
lie on a stratght line.
If a particular set ky, ky, ky, where |k -|-ky+-ky

line, then the points =k (k-—0, 1, ...) form a group of n exceptional poinls
provided that

—=mn =5, lic on a straight

(1) the cubic considered is of genus 1,
(2) no points k', k', ky with

0 <<y Aky -1l | <

lie on a straight lLine.

Proof. Since exceptional points are defined only on curves of genus 1,
the first part follows immediately from the parametrical representation in
§8.

If the curve is of genus 1 and u is the argument of the point 1 and
|ky-Fkytky| = n, then

w=w/n (mod w, wy),

where w is a period. Hence all the points k form a group of #” exceptional
points, where n'|n. But if n’ <, there would be points k', &y, k3" on
a straight line with

0 <[ hy/ - hoy -l | == <,

contrary to hypothesis.

From this lemma and § 11 we obtain the following necessary conditions
for the coordinates of the point 4, in order that all the points +-& should
form a group of n exceptional points:

n="7: Xy —xy =10, 3= 0.

This determines 4 as the point (1, 1, 0), but then the point —1 has
coordinates (,’, 1, 1) with ;" indeterminate. In this case the value of
x," specifies the cubic.
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n=28: wy=20
n=9: x; =10
n=10: ¥ &2, T3—2,%=0
n=11: axlx,—r 22—, x2Fx,2 w5 =10
n=12: x> —x,xy=10
n=13: w2x2—r 2 —w, vy w242 wl vy —a, w2 =0
n=14: 3w, —x 2w —r vy vy —a 20—, 83wy vy w5yt —ad v, =0

n=15: x 2w, tr 2wy wgta 2y —w, 00 —xy w2l wg—xy Xy x5t +ad wy =0,

The case n=11.
13. Lumma 2. The curve
(1) )2y — 0y By 2y WgP P 25 = 0
has five and only five rational points (xy, s, ), namely
(X) (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), and (1, 1, 1).

Proof. By the birational transformation

ay (1246 _ap .
oy 6(108—n)’ §=362-—12
x,  6(124-¢) 1o 26 ay
xy  108—y° n=108mT e
the curve (1) is transformed into
(2) = B 16.276+19.16 .27 = f(£),

say. The five rational points (X) on (1) correspond to the five points

(& m)
(Y) (o0, 00), (—12, 4+108), (24, --108)
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on (2). It is sufficient to prove that these five points are the only rational
points on (2). We do this by the method given by G. Billing [1, 41-46].
Let 0 be the real root of the equation f(6) = 0 and & the real root of

3—4t—4 = 0.

The two numbers 6 and ¢ generate the same algebraic field K. We have,

in fact,
— 24092 = —12(1--3/9).

The field K has the basis 1, ¢, 19? and the discriminant D = —44; the
discriminant of 6 is A() = —11.162. 274,

In order to find the class-number of K, we have to examine the
factorization of the rational prime numbers p <|4/D|< 7 into prime
ideals in K ; the result is that (2) = (39?3, and that (3) and (5) are prime
ideals in K. Hence the class-number A = 1.

The coordinates of every rational point on the curve (2) can be written

as

x
5252“, ’7]:*(1*,

where z, y, z are integers and (v, z) = (y,2)=1. By 1, Satz 1, 41 the
rank of the curve (2) is not greater than 2, and, if the curve has ordinary
rational points (z/2%, y/2°), there must exist rational integers x, z satisfying

' 2
x—02% = na?,

where a is an integer in K, and 7 is a positive unit which is not the square
of another unit. The number —1-+39? is a unit of this kind and we get

(— 14 19%) (r— 2422922 02) = (50)* — (@--bO—+Jod?)2,
where a, b, ¢ are rational integers. Hence
—ax-+2422 = a2--4bc,
1822% = ¢24-2ab - 4bc,
Tr—32%2 = b2-Fc2tac.

From the third and first of these equations, x and « are even. Hence z is
odd, since (z, z) = 1, and so the second equation leads to the impossible

congruence
2=c¢? (mod 4).

The curve (2) has, therefore, no ordinary rational points.
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It now remains to determine all exceptional rational points (¢, ). By
a theorem due to T. Nagell [7, p. 14, 15], these points, excluding the point
at infinity, have the following properties: (1) £ and 5 are integers, (2) 52 is
either 0 or a divisor of A(f)= —11.16%2.27% There is only a finite
number of possibilities for n and ¢, and a discussion which we omit shows
that the curve has only the above-mentioned exceptional rational
points (Y).

14. THEOREM. There is no cubic of genus 1 with a group of 11 rational
exceptional points.

Proof. If such a cubic exists, then from §12 and Lemma 2, the point
4 must be one of the points
(1,0,0), (0, 1,0), (0, 0, 1), (1, 1, 0), (1, 1, 1),
ie., (§§8, 11),

w
1

4 Ek{“ﬂl (mod w, w;) (k=1, 2, 3, —3, or 0),

[

which is impossible, since w/11 is not a period.
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