ON A PROPERTY OF POSITIVE DEFINITE TERNARY
QUADRATIC FORMS.

Kurr MAHLER].

[Fatracted from the Jouwrnal of the London Maihematical Sociciy, Vol. 15, 19441

Recently, H. Davenport gave a very elegant new proof§ of Remak’s
theorem on the product of three linear polynomials|. Davenport’s proof
(like Remak’s original proof) is based on the follov-ing lemma, which
presents the chief difficulty :

Lemma A, Let f(x, y, 2) be a positive definite terna "y quadratic form of
determinant 1 which assumes its minimum in three | aearly independent
lattice points.  Then, given any three real numbers xy, 1,. z,, there are three
integers x1, yl, 2t such that

f(x0+x1> yo+?/1: zo+zl) < %7

1 Received 17 August, 1940.
§ Journal London Math. Soc., 14 (1939), 47-51.
Il Math. Zeitschrift, 17 (1923), 1-34 and 18 (1923), 173-200.
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with equality if and only if [(x, y, 2) = a*+y*+2% and 2w, 2y, 2z, are odd
integers.

Davenport derived this lemma from the theorem of Korkine and
Zolotareff on the minimum of quaternary quadratic formst. While this
method is extremely elegant, it does not seem to lend itself to generalizations.
I therefore give in this paper another proof of the lemma by a method which
I have already applied to Hermitian forms$ and which may also be applied
to other problems. The method is geometrical and very simple in its idea.
It easily leads to an upper bound for the expression f(x,+, ¥4+ zo+21)
in the form of a certain algebraic function of two parameters. That this
expression is not larger than  can be proved by elementary calculations.

T am indebted to Dr. Davenport for the proof given in §7, which he
supplied at my request while 1 was interned.

1. The problem.

As usual, we describe two real numbers x, and 2, as congruent modulo

1, in symbols
Ty =Ty,

when the difference x,—, is an integer.

In the following paragraphs we prove

Lemma B, Let
(1) [z, y, 2) = a(@?+y?+-2%) -+ 2bxy -+ 2cxz-+ 2dyz
be a positive definite ternary quadratic form of determinant 1 with coefficients
satisfying the inequalities '
2) l<a<v2, 0<b<la

Then, given any three real nummbers x,, Yy, % there are three real numbers
Xy, Yy, 2y, Such that

(3) €y =2, Y1 =Y F1—2e J@n Y 7)) i

with equality of and only 1f

n=ph=n=h J@ g D)=ty

1 See, for example, Bachmann, Die Arithmetils der quadratischen Formen, zweite
Abteilung (Leipzig, 1923), 270.
I Journal London Math. Soc., 15 (1940), 213-236.
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Lemma A is contained in this theorem. For the form

3

f(x: Y, z) = ; % lahk Ty, Ly (ahk =y X=X, By=1]Y, Xy= 2)
h, k=

in Lemma A may evidently be replaced by any equivalent form, and there-
fore may be assumed to be reduced in the sense of Minkowskit, Its
coefficients then satisfy the inequalities

1
0 <ay <agy <agg, 0 <ay < <, ap] <lay, 0<ay < 201y,
Qg3 — g+ gy < (AT Cyp), 1<ty tgg gy < 2.

By hypothesis, f(v, y, z) assumes its minimum a,, in threc linearly
independent lattice points. Therefore

—_ j— y 3
Qg1 = Ugg = Qg3, 1.6, 1 <La3}; <2,

for ay;, @y, ayy ave the first three consecutive minima of Sflx, y, z) in all sets
of three linearly independent lattice pointst. Hence the inequalities for
the coefficients of f(x, y, 2) include the conditions

11 == Qgp = Ug3, Ka <V2, 0<ay, < dayy,
and so f(#, y, 2) is of the form required in Lemma B. Lemma A therc-
fore follows at once when Lemma B has been proved.
For the proof of Lemma B, we put

(4) F(x, y)=f(z, y, 0) = a(@>+y?)+ 2bay,

and write f(z, y, z) as

(5) S 3, 2) = Flatde, y--uz)t 5o,
ac—bd ad—bc
where A= m, B= m.

By comparing the coefficients of 2 in (1) and (5), we obtain the equation

(6) PO p)=a— 2.

T Bachmann, loc. cit., 279.
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It is this equation and not the actual value of A or p which enters into the
proof of Lemma B.

Obviously, the three numbers x,. %,. z, may be replaced by any three
numbers @yl 7, z,' congruent to them or congruent to —wy, —¥,, — %
Hence it is permissible to assume that

(7) — 5 L7y <0,
and that, with this fixed value of z,
F ey +-Xzg, yopzg) << (e 4-Azg, y1-4-pz) for allwy —wpand all y, =y,
Put
(8) Sy =myFA2, Mg = Yo 1505
then the last inequality may be written as

() B (&g, me) << F(&p, my) for all & & and 5, ;.

2. The hexagon nel.

We use a geometrical representation of F (v, y) which goes back to
Gauss. :

Draw two lines inclined at an angle ¢ through an arbitrary origin O in
the plane Il such that

cosp="bla, 0<¢<im

Take these lines as oblique coordinate axes, and represent the pair of real
numbers x, y by the point I with coordinates (x, y) measured on such
a scale that both the point (I, 0) on the wx-axis and the point (0, I) on
the y-axis are at distance y/a from the origin O. Then, as is casily
verified, the distance of P from O is

VAE (@, y)} = A/ {a(@?4-y?) - 20xy).

The lattice points 22, with integral coordinates @ =g, y=/h form a
parallelogram lattice in the plane Il. Let I1,, be the set of all points
(@, %) in Il whose distaince from the lattice point P, is not greater than
that from any other lattice point. All sets I, are congruent to the
special one H, which is defined by the inequalities

F(x, y) <min(F(l—z, —y). F(—v, 1—y), F(—1—z, 1—y),
ﬁy("l_w: _y): Iﬂ(“"”: —l_y)’ -F(l_—x: _1"‘.7/)):
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v.e., by (4),

b
(10) oty <1 leyl<

b
x+a

Hence H, is a hexagon with its vertices at the points

a a a—+2b a—2b @ )
¥<2(a—{—b)’ 2(a—|—b)>’ ?(2 (a-+b)" 2(a l—b)\ :‘:(2((&—{—1))’ 2(a+b)>’

it degenerates into the square || <1, |y| <1 for b =0. All six (or four)
vertices of H, are at the same distance

V ewr
p= <2(a+55)
from the origin; hence, for all points (z, y) in Hy,

a2

(11) I (x, y)<P2:2((l+b)'

By the translation
x->x+4¢g, y->y+h,

H,, is changed into H,,. No two different hexagons /,, have inner points
in common, and the set of all hexagons H,, therefore covers the whole
plane IT without overlapping. Hence it follows that to every point (x, y)
there is a point (1, ') in H,, for which ' =, ' =y ; there is only one such
point if (x, ) is an inner point of one of the hexagons. Tet I" be the graph
consisting of all points in the plane I which lie on the boundary of at least
one hexagon H .

3. The case of large .
It is evident from the inequalities (9) for &, and n,, that (&, 3,) is a

point of the hexagon /. Hence, by (11),

a?
(12) F(fo, N9) < 2”‘((;—;5),

and therefore, by (8) and the identity (5),

? 1

(13) S (@ Yor 79) < (a+b)+4((l.2~—b2)'

If in this inequality the right-hand side is less than %, then Lemma B
is already proved. Now
a? 1
Satb) Ti@—p <1
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if 3(a2—b2) > 2a%*(a—b)+1,

i.e. (3b—a2)? < a*—3(a—1)2(2a-+1),

and therefore

(14) 1a?—/{at—3(a—1¥(2a - 1)}] < b < Ja2-/{a'—3(a—1)*(2a+ 1D}

In this inequality the right-hand side is greater than {a. For 1 <a <<V/2,
and therefore

3(a—1)2 (20+1) <3(¥2—1)2(2/2+1) = 15—9 74

A

§<fa';
hence
Mazty/fat—3(a—1)? 2a+1)}]> a2/ (at—ad)} = Ja? > Ja.
By the second formula (2), the inequality (14) is therefore identical with
}at—/{ar—3(a—1)* 2a+1)}] < b < a

and, when these inequalities hold, Lemma B is proved with the sign
“ < 7 instead of ¢ <.
Hence we may suppose from now onwards that

(15) 0 <b <(a>—+/{a*—3(a—1)%(2a-+1)}).
It is useful to remark that the expression on the right-hand side is
a?—/{a*—3(a—1)2 (2a-+1)}]

_ (@a—1)2(2a--1) _ (“”‘1)2(2(6—{—1)
BGERY G (e VI ETea T T

and so b also satisfies the weaker conditions

(16) 0<b<2a—1)

As a consequence of (15) or (16), the right-hand side of (13) is not

less than 3. We may assume that even the stronger inequality

S @, Yo» 29) = F (&g, o)+ ‘“‘Lb'g =3

holds, since otherwise Lemma B would again be true with the sign < <<’
instead of ©“ <. From (7) and (12), we get the further inequalities

(1) Fléo 1) = d— s
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and

v 2
(18) z2p" = (a?—0?) (\%‘*2(7(:_7))-

The formulae (15)-(18) form the basis of the following considerations.

4. A geomelrical maximum problem.
Let us solve the following extremal problem :

Let P(x, y) and P’ (2, y') be any two points in the plane 11 such that
the wvector of components &' —x, y'—y connecting P with P’ has length

= A/ o= te)

and that the distance of P from the nearest latlice point is not less than

)

To find the maximum A (a, b) of the distance 8 of P’ from the nearest lattice
point.

If @ = 1 then, by (19) below, b =0, I =0, and r=4/%. The hexagon
I, is now a square of side 1 and diagonal 1/2, so that both P and P’ fall
at the centre of one of the squares. Hence

A(la 0) = V‘}l

From now on, we suppose that 1 < @ <<+’2. Then, first, the distance

is not greater than the radius

A=)

of the circumscribed circle of H, (§ 2), for, by (15),

P o et Vi I VI VRV B
12(a?—0%)

Secondly, the difference

2__ 2__ (4 b — 1)2(¢ L__92a—0b) b2
[y (bt = EP (30 et 1) 2 e

steadily decreases from positive to negative values, if b runs from the left
to the right of the interval (15). Thirdly,

ri—ta =} >0,
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since @ <v/2 < £ hence, by (16),
T2_a—i—1 _(a—=1)(14-a—a*)—(2—a)b?

FE £(a2—1?)
_ (a—=1){14-a—a?—4(2—a)(a—1)%
4(a2—1?) ’
and therefore
. 1 a—1 )
P > e (1 - P ) o

Consider the hexagon H, with centre at the lattice point (9. »). It has
— /
four long sides L of length \/ <a Z-—é and distance ﬂ from (g, L), and

two short sides S of length b \/ <£7}> and distance V/ (ti) from (g, h).

These sides follow each other in the sequence L, L,S;L; L,S; on the
boundary of H,,, where parallel sides have the same index. Tn the graph
I consisting of the sides of all H,, (§ 2). there are two long sides and
one short side radiating from each of its vertices (the short sides degen-
erate into points for b = 0; it seems unnecessary to mention this trivial
case in what follows).

Let us now draw with each lattice point (g, &) as centre a circle of radius
r. By the last inequalities, this circle C,, intersects the long sides of /,

( not their end points, unless b has its largest value
Ha2—/ fat—3(a—1)? 2a+ 1)1},
since /e <r <p.

It depends, however, on b whether the circle has or has not points in
common with the short sides of this hexagon.

We denote by IT# the set of all points of the plane IT which are not inner
points of any of the circles (',,. This set consists of an infinity of separate
parts, one belonging to each parallelogram of the lattice and all lying in
congruent positions. It suffices therefore to consider only that part which
lies in the parallelogram € with vertices

(0. 0), (1, 0), (1. 1), (0. 1).

There is exactly one short side S in ) with vertices at

. a a ; , fa—20  a—2D
@ ('2(a,+b)’ z"(,,,u))) and Q' (5 2<a,+/»>)
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and satisfying the equation
y—x =0,

The equations of the long sides radiating from @ and )" are
, b
Ly wboy=1}

L,: 12 (x—T1)4-y =1,

(22

b

Lot @b (1) = L
pr T a (o )= 2

: b
. " NN
L,: e Ty =g
exactly one half of each side lies in Q.

Put g Via{(3—a)(@*—b%)—1}] )

2(a?—b?)

Then the four points

belong to Q. and each point p, lies on the line 2, with the same index. The

only points of intersection in ) ol

( (,'OMI (Hool [7)4 and py,

) [ EPP I ) R P and p,,

the cirele | 0L with the long sides of 1 'L are P p“
O ' H,, [ po and py,

Ly ) VHy, Py and py.

The circles Oy, and C; may or may not intersect the short side S which is
common to Hy, and H 5 this depends on b.

The part 1% or 11# lying in Q consists now of all those points in
which lie outside or on the boundary of the four circles. Therefore IT,*
is a curvilinear parallelogram with vertices at p;, p,. Py, p, if the circles
(o and (g, do not meet the short side S.  If, however, they intersect this
line at, say the two points ¢, and ¢, (which may coincide), then I1* consists
of two identical curvilinear triangles. one with its vertices at py, py, ¢4,
and the other one at p,. py, ¢ In both cases the greatest distance

o
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between any two points in 1I* is evidently that between two opposite
vertices like p; and p;. Now, by § 2, the distance between two arbitrary
points (1, ¥,) and (@, 9,) is equal to

VAF (0, =2y, Y1)}

Hence the maximum distance between two points in ITy* (namely that
from p, to p,) has the value

(19) o= \/ r <—~2 f—; T, 27— 1) = \// (HQZWM)(;-2"—7-)%‘“2) .

I now prove that
(20) o<l

it is therefore impossible for both P and P’ to lic in 11,#.  In order to prove
this inequality, we start from the formula

(21) (@—1)(—5a2- 13a-+4)—8b2 = 0,
which is true since 1 <<a <}, 0<Ch<2(a—1)% 02<"4.(§)* (a—1) and
therefore

(a—1)(=5a2 1 13a-b4) = (5. (2213 )(a,—wl)

The inequality (21) implies

(3 »~(z)
e — AT
(a2 =%’
The last inequality changes into the square of (20), if 72 is added on the
left-hand side, its expression in @ and & on the right-hand side, both
sides are then multiplied by 4(a2—0%/a, and finally « is added.
We next determine the shortest distance between a point in Hy# and
a point in any other part of 1%, For reasons of symmetry, this minimum
distance is equal to that of the point p, from the point

which lies symmetrically to p, with respect to the a-axis, and can be derived
from p, by the lattice translation

TR TR
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Hence this distance

so that

e @D Fa—a?)— (2—a)b?
at—b?

=1 20, o¥ 21,

by the inequality proved at the beginning of this paragraph.
On the other hand

=/ o) </ (o= </ (o) - <.

Hence we have proved that, under the conditions of the problem, the second
point P cannot lie in the set 1% if a > 1.

5. Solution of the geometrical maximum problem.

It is now easy to determine A (a, b) for a > 1. Let P again be a point
in IIy%. Then, since I < 1/4/2, the second point I’ can lie only in one of the
four hexagons H y,, Hm, Hu, 1,[01 which contribute to Hy®.  Fix P for the
moment anywhere in 1%, and assume that under this restriction P has
such a position that its distance from the nearest lattice point, which
is necessarily one of the four points

(22) (0. 0), (1,00 (L 1), (0. 1),

is a maximum. Then I’ lies on one of the long sides Ly, L, L,, L, which

radiate from the vertices py, py. Py, py 0f L F ;1 for otherwise £’ is nearer to
one of the four points (22) than to the other three, and it is therefore possible
to move it a little on the circle of radius I and centre P so that its distance

from this nearest lattice-point increases while still remaining smaller than

3

its distances from the other three lattice points.

For reasons of symmetry, we may assume that P’ lies on the long sid-
Ly ; P’ has therefore the same distance § = §(.2’) from the two lattice points
(0, 0) and (1, 0) which are nearest to it. ‘We have to find that position
of P in Hy* for which 3(P’) becomes a maximum. Now 8(P’) increases
when the distance of P’ {rom the z-axis increases.  Let P’ fall into the
point Py on L it Poin HF colncides w 11}1 m, aud into the point P, if P
coincides with p,;.  Then, for variable £ in {I#, P’ can be any point in the
closed interval from P, to 7/, F)m it mmnm lie outside this interval.

1
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Hence finally
Afa, b) = max(3(P,), 3(Py)).

The values of 6(P,) and 3(P,) are casily determined. Both points
P, and P, lic on the line perpendicular to the z-axis,

b
Ly a2y —1
1 } a Yy 2

and belong to the hexagon H,; the first one has the distance  from p,.
and the second one has this distance from p,. The point p; has the distance

o = \/ (7-2___
from the x-axis, the point P,’, therefore, the distance

IV (rP—ia—1)],

since both lie on L,. Since the distance of this line from the origin (0, 0)is
L y/a, we find that

@)

s

[

(23) AP = (Vi J) (V).

The point p, has the same distance Lo™ from the line y == 1 as p, has from
y = 0. Now the distance between the two lines y— 0 and y=1 is equal to

Jlad—b% L. . . .
d — A/ <~—~’7 ) ; for L, is perpendicular to both, intersects them in the
A /

points (4, 0) and (L--b/a, 1), and the distance between these points is

o . /(a2 —b2
o) (),

Hence the perpendicular from p, to the x-axis has length

" / (a?—b? [ @
od— :130‘"' = \// (___(;7) -, // (’) 2 T) .

Now py lies on the line L, x-4-(b/a)(y—1) =14, and P, on L,. The
distance apart of these two parallel lines is /y/a; for both are perpen-
dicular to the w-axis and intersect it in the two points (4, 0) and
{4 (b/a), 0}, whose distance apart is
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The point P, has the distance  from py, has a smaller ordinate, and lies on
L,. Its distance from the x-axis has therefore the value

G VA I AN < =
i\\ (I/)\( 1) /
and we find that

ey sy =y (S e () ()

We substitute the values of 7 and £ as functions of @ and b in (23) and
(24), and so get finally

(25) A, b) — max (64, 0,),
where

a?—0b2 2

s /. 1 /(a?—0? I \i*, a
8=/ <*“") )\/ o)V (S ame) T

Which of the two numbers &, and &, is the larger depends on ¢ and b.
The formula (25) holds also in the limiting case ¢ = 1, b = 0, for then it
gives A (1, 0) = /&, as we found before.

6. An upper bound for f(xy, yy. ).

By means of the results in §3 and in the last paragraph, we now casily
find an upper bound for f(xy, yy, z,). it @, ¥y, 7 ave suitably chosen.
2

Put A

so that 2, =z, By (7) and (18),

. S o [ @ )
Dz 1= \/ i (0*—0%) I 90 *> 5

and therefore
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If @y and y, remain unaltered, while z, is replaced by z;, then the
numbers &= x,-Az, and = y,--pz, change into
Gl =wgtAzy = G b A and 9t ==y bz ==y b
By (6). the distance hetween the two points (&, 7,) and (&% nt) in 1 is
(el g 1 Lo R .
VAL (G &g g )t = VAF A ) =
The point (&, 7, lies in [y, and satisties (17).  lts distance from the

nearest lattice point (namely the origin) is therefore not less than

//) 1 \

fer—— 5

42— bz"

and it follows that (&, n,) belongs to the set 11%. Hence, by the last two
paragraphs, there exists a lattice point (¢, A) such that the distance between
(&1 moh) and (g, £) does not exceed the number A (g, b) defined in (25);
in symbols,

VAL (Eg =g, myt—h)} << A(a, ).

It Xy =, Yr="Yo—h,

and §r=wphAn = &ty =tz = —h,
we have

(27) F(&y, 1) < {A(a, D)}

We now combine the identity (5) with the inequalities (25), (26) and
(27), and obtain the following result: if the conditions (15)-(18) for
a and b, g, Yy, and 2y are satisfied, then there cxist three numbers wy, yy, and
2y, such that

Ly, YL =Yg

and

2

(28) Sy 2) = F(& my)- ‘f /3 < prmax (dy, dy),
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(30) xil 2 LI e Z

a0 a8 1 St 12
A < a ) “é\/ (J““Wﬁj{)ﬁ%) Y4 k—av ’ (az——-b‘~’> j
‘ 174 ] ( ) Y / . ([}J i 4

SR EER VAT z(u,fb'\ |

We prove in the next paragraph that neither A; nor A, is positive
if, as we have assumed,

(B 1<<a<v2 00 >~/ {a"—3(a—1)2(2a D << 2(a—1)%,

and that both numbers are in fact negative except for @ = 1, b = 0.  Hence
the first assertion of Lcmnm B is true. The second assertion is also true:
for if f(x,, 'Jl z) =4 for all wp wy. yy ~y, 2z 2z, then, by the last
remark, @ = 1, b = 0, and therefore also ¢ == d == 0, since the determinant
1—c2—d? otf ¥, ) is 1 by hypothesis. Hence

f(‘/v‘ Y, 2) a® F’/“ 22,

and therefore wy =y, -z, = 1.

7. Proof that A, and A, are not positive.
The inequality 4, <{ 0 may be written
[V{(3—a) (@2 %) —1}— 2/ {a(a>—b3)— 1}]2
-[2—/{3(a*—0%) - 2a*(a—D)}]* < (3—a) (a2—b?)
or say B2 Ry2 << (3—a) (a2—02).
If we put @ = 1-4a, the right-hand side is
2480 —ad— (2—a)b?,

which is greater than or equal to 2, since 076 < 2¢? and 0 <Za < 0°26.
Hence it suffices to prove that

R+ Ry <2
The expressions for By, R,, are
By = /{14 3a—a’— (2—a)b? — 24/ {3a+ a2+ a®— (L+a)b?},
Ry = 2—/(1—Ba2— 263 — 32| 242).
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We have

By <\ (T43a—a?)— 2/ (3a-|-3a> |- o’ Sa!
1550 ) \

: - o n O T "
oA/ (T3a--a?) 2 \ l\(.}f.zﬁfia* | .M“——~b(1}'2())“(1.2>
< 1da—"Ta;

and Ry < 2—4/(1—3a*-2a%) < 1 {-3a |- 2¢% < |- 2a;

whence the result.
The inequality .4, << 0 may be written

(@) — [ (B a) (b2 — 1} =2\ [P — b))
a J J

2=V B —0%) —2a* (@ —0) | [* << (3—a)(e*—b?),
or say % R4 R2 < (3—a)(a®—b?).

Again (a fortiors since ¢ = 1) it suffices to prove that
Ry+ Ry < 2.
We have
Ry 214 a)?— f\/{(l +a)(1-}-3a—a*—8at)}
—24/(3a46a*}-4a®4at—16al).
Now a?-}-8at < 2a,
fa3—15a = 0,
V (Ba-t6a2) = v/ (17a2) = da.
Hence ' By < 244a-[ 2%~ (14a)—8a
o -4

Combining this with the previous inequality for £,, we have the result.
1t is elear that A, and 4, arc negative except when a = 0, in which case
a=10=0.
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