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Minkowski, in his ‘“Geometrie der Zahlen” (Leipzig 1910), studied properties
of a convex body in a space R, of n dimensions with respect to the set of all
lattice points. Let F(X) = F(z:, ---, z.) be a distance function, i.e. a func-
tion satisfying the conditions

F(0) = 0, F(X) > 0if X = 0;
F(tX) = | t| F(X) for all real ¢;
F(X —Y) £ F(X) + F(Y).

The inequality F(X) =< 1 defines a convex body in E, which has its centre at
the origin X = 0. Suppose that this body has the volume V. The well known
result of Minkowski asserts that if V' = 2", then the body contains at least one
(and so at least two) lattice points different from 0. This theorem is contained
in the following deeper result of Minkowski (G.d.Z. §§50-53): “There are n
independent lattice points X W x® ... X™ in R, with the following properties:
(1) F(XV) = ¢ is the minimum of F(X) in all lattice points X # 0, and for
k= 2 F(X®) = ¢ is the minimum of F(X) in all lattice points X which are
independent of X, ..., X*™. (2) The determinant D of the points X",
coo, X™ satisfies the inequalities

1 =|D| = nl

(3) The numbers ¢ depend only on F(X) and not on the special choice of the
lattice points X® | and they satisfy the inequalities

(n) 2
g , o

0'(2) é ... ' Va(l) 0,(2) . o,(n) é 2'1.77
ni

0 <o

1A
IIA
IIA

(A new simple proof for the last part of this theorem was given by H. Davenport,
Quart. Journ. Math. (Oxford Ser.), Vol. 10 (1939), 119-121).

From Minkowski’s theorem, properties of general classes of convex bodies
can be obtained. For instance, there is a conver body G(Y) =< 1 polar to F(X) =
1, and to this body correspond by the theorem n minima T
I have proved (Casopis 68 (1939), 93-102), that these minima are related to the

o’s by the inequalities

1 £ oPM0 < ()’ (h=12--.,n).
488
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From this result, applications to inhomogeneous Diophantine inequalities can
be made, and in particular, generalizations of Kronecker’s theorem can be
obtained.

The present paper does not deal with ordinary convex bodies in a real space.
The n-dimensional space P, with which we shall be concerned has its coordinates
in a field & with a non-Archimedean valuation | z |; a distance function is any
function satisfying

F0) =0, F(X) > 0if X 5 0,
F(X) = | t| F(X) for all tin 8,
F(X — Y) < max (F(X), F(Y)).

The inequality F(X) = = then defines the convex body C(7), if = > 0. We
show that every convex body is bounded, and that it has properties similar to
a parallelepiped in real space.

In particular, let & be the field of all Laurent series

f f—1 f—2
T = a2 + ar 4% + Oy 9@ + R

with coefficients in an arbitrary field f; the valuation | z | is defined as | 0 | = 0,
and |z | = ¢ if a; # 0. Further let A, be the modul of all points in P, , the
coordinates of which are polynomials in z with coefficients in f; these points we
call lattice points. We consider only distance functions F(X) which for all
X # 01in P, are always as integral power of e. We shall define a certain posi-
tive constant V as the volume of C(1); this constant is invariant under all linear
transformations of P, with determinant 1, and the volume of C(1) and that of
its polar reciprocal body C’(1) have the product 1. In analogy to Minkowski’s
theorem, the following theorem holds: “There are n independent lattice points
X® ..., X™ in P, with the following properties: 1) F(X") is the minimum of
F(X) in all lattice points X 5 0, and for k = 2, F(X®) is the minimum of F(X)
in all lattice points X which are independent of X©, ..., X*™. 2) The deter-
minant of the points XV, ..., X™ s 1. 3) The numbers F(X®) = ¢, which
depend only on F(X) and not on the special choice of the lattice points X, satisfy
the formulae

0<o® <6®< ... <o% ORI R _117.,,
Further, we have similar minima 7, ..., 7 for the distance function G(Y)
which defines the polar body C’(1); these are related with the ¢’s by the equations
oMY = 1 (h=1,2---,n).

These two results can be used to study special Diophantine problems in P, ;
a few of them are considered as examples. All the proofs in this paper are
based on the methods of Minkowski, and in one final paragraph I make use of
ideas of C. L. Siegel.
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I. ConveEx DamaINs IN NON-ARCHIMEDEAN SPACES
1. Notation. In this chapter, we denote by

R an arbitrary field,

|z | a non-Archimedean valuation of the elements z of R,
R the perfect extension of R with respect to this valuation,
P, the n-dimensional space of all points or vectors

X= (1'1,'--,23"),

where the coordinates x, , - -- , x, lie in &,
| X | the length of the vector X, viz.

| X | =max (||, .-+, |2 ]).
We apply the usual notation for vectors in P, ; thus if
X=@, -,z) and Y =(y1,--+,¥n),
and a belongs to &, then we write
XFY=@Fuy, -, ¢+ y),

aX = (axy, ---, ax,),

XY = Z ThYn.

h=1

For instance, the length | X | of X has the properties:

(1) | X | = 0, with equality if and only if X = (0, --.,0) = 0;
(2) |aX | = |al| X |, if ais any element of &;
@ | X+Y|smax(X[|[Y]);
(4) XY | = XY

If D is any sub-ring of &, and X, ..., X are vectors in P,, then these
are called D-dependent, or T-independent, according as there exist, or do not
exist elements a,,' -, a, of © not all zero, such that

aX® + ... +a,X7 =0.

A set of vectors of P, is called a D-modul, if with X and Y it also contains
aX + bY, where a and b are arbitrary elements of ©; the modul has the dimen-

't This means that the function | z | satisfies the conditions:
0] =0,but |[z| > 0forz #0,
lzy | = lzllyl,
lzF y| Emax (|z|, |y ).
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sion m, if there are m, but not m 4+ 1, D-independent elements in it. The di-
mension of a f-modul is at most n, while that of any other class of moduli need
not be finite.

2. The distance function F(X). A function F(X) of the variable point X
in P, is called a general distance function, if it has the properties:
(A): F(X) 2 0;
(B): F(aX) = |a| F(X) for all @ in &, hence F(0) = 0;
(©): F(X + Y) = max (F(X), F(Y));

it is called a special distance function or simply a distance function, if instead
of (A) it satisfies the stronger condition

(A"): F(X) > 0for X = 0.
If 7 is a positive number, then the set C(r) of all points X with
FXY=r

is called a convex set;” if F(X) is a special distance function, then it is called a
convex body. It is clear from the definition of F(X) that a convex set C(7)
contains the origin 0, and that with Y and Y also aX + bY belong to it, if a
and b are elements of & such that |[a| < 1,|b| < 1. Further, if

E(l) = (1;0; ;0)7 E(2) - (O; 1’ ;0); )E(n) = (O)OJ ctt 1)
are the n unit vectors of the coordinate system, then

X =2EY+ ... +2,E™, ie. F(X)< max (|z|FE™)),
h=1,2,"**,n

and therefore
5 FX)=srT|X|
where T is the positive constant

I = max (F(E™)).

h==1,2,:-+,n

C(7) contains therefore all points of the cube
X|=<ZI.
x5

We prove now that for special distance functions there is a second positive con-
stant vy, such that for all points in P,

(6) FX)zv|X|.

2 We consider only convex sets and bodies as defined; they are obviously symmetrical
with respect to the origin.
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Proor: We assume that (6) is not true and show that this leads to a con-
tradiction.
By hypothesis, there is an infinite sequence S of points

X® = @, ...,z =0 (h=1,23,-..),
such that
®)
Since
FX) _ FX)
laX | | X]|
for all @ 0 in &, we may assume that for the elements of S
}1‘_13510 FX®) =0, |xX%|=1,
so that in particular the n real sequences
|z |, |z |, |2 |, - - k=12 ...,n)

are bounded.

Hence we can replace S by an infinite sub-sequence which we again call S:
X® X® X® ... such that the n real limits
@ = lim |z{® | k=12 ...,n)

h— o0
exist and satisfy the equation

max a; = 1.
k—l,2.' *,n
We call S a sequence of rank m, if exactly m of the limits a,, as, - - - , a, do not
vanish; without loss of generality, these are the m first limits a,, @z, --- , @n.
Obviously 1 = m =< n.
If the rank m = 1, then for large h

) (») »
(€Y X _ X2 Tn _ x(h)
lx I and Tl-)——(l!ﬁ),"' ‘m ,—E +X
T, X )
say, where
lim | X+ | =0
—*

Hence by (5)

(h)
F(E®) = F(L
T

(h)
1

- X*”") < max (F( X) F(X*(")))

Edh

< max (F(X®), T | X** ),
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and therefore for h —
0 < F(E®) £0,ie FE®) =0,

which is not true.
Hence the rank m = 2. Put

(g.h) (9.,h) (g.h)
xom =& Lo P L g,

Then from (7) for large g, h

(g) (R)
R e ) = f;max (FX), FX™)),

ESREd e

F(X9» < max(

and therefore
lim F(X“?) = 0.

g—*o
h—o0

Two cases are now possible:

a: The limit
lim | X“" | = lim max (| z{°” |, ..., |z )
g—® g
h— h—c0

exists and is zero. Hence the n limits in &

(h)

8) z = lim %, (k

all exist, and in particular
zn=1lim1l =1,

h—o0

so that
X* = (zf,.--,zn) # 0.

By the continuity of F(X),?

X(h) 1
F(X*) = lim F (_(h—)> = — lim F(X*) =0,
h—>c0 Z. Ay h—

m

which is not true.
b: The limit.

lim | X" |

g—*x
h—00

1,2,...

493

3 If ¢ > 0is given, then thereisa 5 > 0,such that | F(X) — F(Y) | < efor | X — Y | < 3,

as follows easily from the properties (B), (C), and (5).



494 KURT MAHLER

either does not exist, or exists and is different from zero. That implies that at
least one of the limits (8) does not exist. Now obviously

lim]x,ﬁ""')[=0 (k=m:m+1)"':n))
e
since for large g, h
(@) (k)
z z 2
it =0; @ = 5 — S| S —max (&, |2 ])
T Tm Am

k=m+<+1,...,n).

Hence the index u of this non-existing limit (8) is < m — 1. For this index,

(g,h)

lim z,

g
h~>c0

either does not exist or exists and is different from zero. Hence there is an
infinite one-dimensional sub-sequence

9) Xt ¢=123,-.-)
of the double sequence X, such that for all 4

|25 2 ¢,

where ¢ is a positive constant. Further obviously

lim F(X“*) = 0,

1—+c0

liml:z:,(,“‘h")t=0 (k=m;m+1y"')n);

and all m — 1 first coordinates
zos ) k=12 ...,m—1)

are bounded for ¢ — .
Let &;, for every 7, be the coordinate

L) k=12 -..,m—1)

. ke
of maximum value | z&%*"" |; hence

| & 2 ¢ since | & | 2 Ix‘(‘a.’.hg) .

Then there is an infinite subsequence

X @ik (Gj=123-...)
of the sequence (9), such that, if
X @i ki)

X/(j) —
&

= (x;(j), cee, :v;(j)) (1=1,23,-.-.),
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then all n limits

lim |2 | = a k=1,2 -..,n)
i
exist and satisfy the equations
maX(a{’-..’a:‘)=1’ am=am+1="'=an=0,

and
0 < lim F(X'?) < (1; lim F(X“*7) = 0, ie lim F(X'?) = 0,
= j—*o i—®
Therefore the new sequence S’

1(1) 1(2) 13)
xX'w x® x® ..

has the same properties as S, but is of lower rank. Hence by induction with
respect to the rank, a contradiction follows also in this case.—
By the inequality (6), all points of the convex body C(7) lie in the finite cube

PAESS
Y

a convex body is therefore bounded. Conversely, if a convex set is bounded,
then it is a convex body. For if its distance function F(X) is not special, then
there is at least one point X s 0, such that F(X®) = 0; hence all points of
the straight line passing through X and the origin 0 belong to the set.

3. The character of a convex body. Let C(r) be a convex body, F(X) its
distance function. If X’ $ 0 is an arbitrary vector, then the point X = aX’,
where a is an element of &, lies in C(7) provided that | a | is either sufficiently
small and positive, or 0. Hence for every index h = 1, 2, ... | n, the set S,
of all points

X = (1, ,Zs) with Ty = ... =23 = 0, zn # 0
of C(7) is not empty and contains an infinity of elements. By (6),
|z = =
Y
for the points of S,. Thereforc | z, | has a positive upper bound &, in this set,
and to every ¢ > 0 there is a point
Xﬁh) = (xff), crey, xy?))

for which

B 2,

(h) (h) (k)
F(Xe ) é T, Tie = ¢+ = Tp—1e = 0;
1 +e€
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whereas there is no point X for which
FX)=17, o= -v=ma=0 |&=]>&.
The system of the n points
X0 x® ... xm

corresponding to e is obviously f-independent, and any point X of P, can be
written as

X = ullel) + e + umXEn))
where the u’s belong to & and are given explicitly by

u,.¢=kZ:,a;.k¢xk (h=1,2 ...,n)
with a matrix
(ahke)h.k-l.z ..... n

of non-vanishing determinant and elements depending on ¢, but not on X.
We distinguish now whether the valuation | z | of R, is discrete or not.
If | z | is discrete, then there is a constant b > 1, such that for all z £ 0 in £*

2] =¥

¢If | z | is discreet, then #(X) has a similar property: The set s of its values for X in
P, has no point of accumulation except 0. This is clear for n = 1, for then all vectors are
multipla of the unit vector (1). Suppose that the statement has already been proved for
all spaces of n — 1 dimensions, but that it is not true in P, . There is therefore an infinite
sequence Z of points

X® = (z(b), ..., z(®) k=123 ---)
in P, , such that all numbers
F(XW), F(X®), FXW), ...
are different from each other, and that the limit

lim F(X®) = )\

k—oo
exists and is positive. Write
X® = z(b EO 4 XWb* k=123, ---)
where

X®* = (0, z{®, -+, z(k) k=123, ---)

lies in the (n — 1)-dimensional subspace P,_;: z; = 0, of P, . By (6), | z{* | is bounded in
Z; hence we may assume that

lim | z{*) | = 4,

k— o0
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with a rational integer g depending on z. In this case the set of values | z5e |
satisfies the equations

‘I'I(xl:) =Eh (h=1’2r"'7n)
for all sufficiently small e. We assume that ¢ is sufficiently small and omit the
index e. Put

n
Z Qhk Tk D
k=1 |

®,(X) = rmax ((wl, -+, [ua]) = 7 max (

Then obviously
F(X) = if ®(X) = 7.

Conversely let X be any point in C(7). Then

|z1 [ =&
and therefore
— | 21 |
Iull = |-’D§l)1 =1

since, if necessary, we can replace = by an infinite subsequence. If u = 0, then for all
sufficiently large &

F(X®) = F(X%),

80 that the sequence X* X @* X®* ... has the same properties as Z, contrary to the
hypothesis on P,_; .
Hence if

PLERY

o = a®, then  lim [qw| =1,
1 k—

80 that for all sufficiently large k
lg® | = 1.

Obviously
X0 = XU — X B = X k0¥ — gl X k*

lies in P, , and for all large &
F(X®) = F(g®X®) = F(X&D),
Hence
F(X*®) = max (F(X®), F(X®*+)),
Therefore the sequence of positive numbers
F(X*W), F(X*®), F(X*®), -..

contains an infinity of different elements and has the limit A, so that again a contradiction
is obtained.
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Hence, if
X' =X —wuX® =02, -, ),
then
F(X') < max (F(X), |w | FX™) = 7,
and so X’ also belongs to C(7). Therefore
|22 | < &,
so that

|22 |
ul = 2L < 1.
l 2 xéz’)l

Continuing in this way, we obtain all inequalities

|ul|§1)"'71uﬂ|§

[u—
-

1.e. we have proved
¢, (X) = ¢, if FX) =1
The domain defined by

h=1,2,++-,n \|

1—1_<I>,(X)= max (

n |

|
Z Ohic Tk ‘) =1
k=1

is called a parallelepiped; our result may therefore be expressed in the form:
If the valuation | z | is discrete, than every convex body C(7) is a parallelepiped.
As we have proved, the two domains

FIX) =+ and & (X) =~
are identical. In general, this does not imply the identity’
F(X) = &.(X)

for all X, and the function ®,(X) depends on r. Suppose, however, that the
set of values of F(X) is the same as that of the values of | z |, and that r is also
an element of this set.® Then

¢, (X) = ®(X)
becomes independent of 7, and for all X in P, identically
(10) F(X) = &(X),

as follows easily from the property (B) of the distance functions.—

SE.g., if R = R is the p-adic field (p = 3), n = 2, and
FX) =max (|z11p, 2] 2 |p) .

8 It suffices to assume that F(X) does not assume every positive value, and that the
equation F(X) = = has no solution.



ANALOGUE TO MINKOWSKI'S GEOMETRY OF NUMBERS 499

Next assume that the valuation | z | is not discrete, so that its values lie every-
where dense on the positive real axis. Now the n vectors

(1) (@ (n)
4\5 ) X: y Tt Xen
will depend on ¢, and so does the function

)

]
&, (X) =7 _max (| ure|) = v _max <‘ 2; ke Tk
ﬂl' RN Y “n !

Evidently
(11) F(X) £, if & (X) =7
Conversely, suppose F(X) < 7. Then
|21 | =
and therefore
| ure | = lei”{‘l)'— <l+e
Hence, if
Xe=X — e X = (0, x2¢, - -+, Tud),
then

F(X)) = max (F(X), |ui | F(XP) < (1 + o

There is a number a. in & such that

F(X) S |la|r= A +or, ie. F'X) =+
Hence

| 28, |zl =1+ 9k,
and therefore
] = 12 ‘”;;,' <a+9
so that, if
X/ =X —wX? = X — X" +wuX®) =(0,0z5, -, 2.0,

then

F(X!) £ max (F(XJ), | | F(X?)) < (1 + o’r.
Continuing in the same way, we obtain the n inequalities

lune | < (1 + ¢° (h=1,2 .., n),

hence
(12) & (X) < 1+ ¢ if F(X)=r

From (11) and (12), since ¢ > 0 is arbitrarily small:
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If the valuation |z | is everywhere dense on the positive axis, then the convex
body C(r) can be approximated arbitrarily near both from the inside and outside

by means of parallelepipeds.
Z Qhke Tk )
k=1

Take now, say 7 = 1 and put
®.(X) = ®1(X) = max (
To every point X, there are two elements « and 8 of R, such that
$(X) < |a| =1+ §2.(X) and FX) 28] =0+ ¢F(X).

= ,2,. e
Hence from (11)

q>e(§> <1, F(‘%{) <1, FX el £ (1 + 98.%),

[24

and from (12)

X X n n n+1
F(F)gl, QE(E)§(1+e), 3(X) £ (14 9"[8] = (1 + 9™ F(X),

and therefore uniformly in X
(13) 14 e "9 (X) < F(X) £ (1 + %(X).
In general, these inequalities cannot be improved to an equation analogous to

(10), e.g. if F(X) = 7 has no solution.

4. The character of a convex set. If F(X) is not special, then the set M of
all solutions of F(X) = 0 contains elements other than X = 0. From (B) and
(C), with X and Y also aX + bY belongs to M, if @ and b are elements of {.
Hence M is a ®-modul, say of dimension n — m. Obviously m < n; it is pos-
sible that m = 0, but then F(X) vanishes identically and C(7) is the whole
space. Suppose therefore, that 1 < m < n — 1, and let

P(m-H) P(m+2) L. P(n)
be n — m&-independent elements of M,
P(l), P(2)’ . ,P(m)
m other points of P, , so that the system of n vectors
P(l) P(Q) L. P(n)
is still ®-independent. Then every point X in P, can be written as
X =oPY + ... +9,P"

with elements »;, ..., v, of &, viz.

vh=l§ﬂhkmk (h=1,2...,m),
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where the constant matrix in &

(Br)n k=1,2,...,n

has non-vanishing determinant. Since

F( > ka"”) =0,

h=m+1

we have
F(X) = F(Z th"") = w(V),
h=1
where

W(V) = V(vy, oo+, m) = ‘I’(kgl Bk Tk ”',léﬁnkxk)

is now obviously a special distance function in the m-dimensional space P, of
all points V. = (v, ---, vm). Every convex set with m > 0 can therefore
be considered as a cylinder, the basis of which is a convex body of m < n di-
mensions.

5. The polar body of C(r). Let F(X) be the general distance function of §4,
Y an arbitrary vector in P,. Then we define a function G(Y) by
(14) G0) = 0; G) = limsup (| XY |) for all X with F(X) < 1,4 Y # 0,
In order to determine this function, let

61 2 )
Q )’ Q(), "',Q(n

be the n points in P, , which satisfy the equations

PO o _ {1 for h =k,
0 for h = £,
and write
Y = wi Q% + .o + w.Q™;
then

wh:lc—zl’)/hkyk (h=172"";n))

where the determinant of the matrix in &

(Yre)hok=1,2,....n
does not vanish. Then

XY =vwi + --- 4+ vaw, .
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Hence obviously

G(Y) = <, unless Wppr = +-+ = w, = 0.
Suppose therefore that
(15) Wit = Wz = +-- = w, = 0,
and put
G(Y) = X(W),
where W = (w, --., w,) is a vector in P,,. Then from (14),

(16) X(0) =0; X(W) = limsup (| VW |) forall Vwith ¥(V) £ 1, if W 0,

so that the relation of X(W) to ¥(V) is the same as that of G(Y) to F(X).
By §4, ¥(V) is a special distance function, and so is X(W), as follows easily
from (16) and the properties (A’), (B), and (C) of ¥(V).

We call G(Y) the polar function to F(X); for m < n it ts not itself a distance
function, but becomes one in the m-dimensional space (15), where it coincides
with X(W). The set C’'(1/7): G(Y) = 1/, is further called the polar set to
C(7); it lies entirely in (15) and here is identical with the convex body
X(W) =1/~

Suppose now that m = n, i.e. both F(X) and G(Y) are special distance func-
tions; then the polar set C’'(1/7) becomes a convex body. We shall prove that
in this case the relation between F(X) and G(Y) 1s reciprocal, i.e. F(X) is the polar
function to G(Y) and C(7) the polar body to C’'(1/7).

This assertion is evident, if F(X) = | X |, for then obviously G(Y) = |Y|.
Further let :

Q = (AQnk)hk=1,2,..0m } O = (AR )him12s..n

be an arbitrary matrix in & with nonvanishing determinant, and its comple-
mentary matrix, so that for all X and Y the scalar product’

0X.0%Y = XY.

Then the transformed distance functions G’(Y) = G(Q"Y) and F/(X) = F(QX)
have still the property that the first one is polar to the second, since

G'(Y) = GQ¥Y) = lim sup (|X-@¥Y))

= lim sup (|2X.Q*Y|) = hm sup (| XY |).
F(ﬂX)Sl )Sl

Further, if F1(X) and F:(X) are two distance functions such that for all X
F\(X) = Fy(X),

* The vector X’ = (z;, - - , z,) = QX is defined by z, = Z'?-l amty for h=1,2, ... | n
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then the polar distance functions Gy(Y) and Gi(Y) satisfy the inverted in-
equality
Gi(Y) = Go(Y).

We distinguish now the same two cases as in §3. If the valuation |z | is
discrete, then we showed the existence of a matrix

A = (am)nr=12,...n
in ® with determinant different from zero, such that
F(X) = ®X) = |AX|
identically in X. The polar function to F(X) is therefore
G(Y) = |ATY |,

and since (A¥)® = A, the statement follows at once.—In this case, the definition
of G(Y) can obviously be replaced by the simpler one:

| XY|
(17) G(Y) = max Frs

Secondly, let | z | be everywhere dense on the positive real axis. Then to
every § > 0, there are two matrices

Av = (@ Mamrgn  80d Ap = (@i npmtzm
in & with non-vanishing determinants, such that if
Fi(X) = |AX |, FuoX) = |AX],
then for all X
Fi(X) £ F(X) £ Fu(X) = (1 + 8)Fi(X),
as follows easily from (13). Hence if
G(Y) = [ATY ], GuY) = [ATY |
are the polar functions to F(X) and F(X), then also
G(Y) = G(Y) = Gu(Y);
and®
Go(Y) = (1 + 28)Gy(Y)

8 There is a number « in & such that

1+8=|a| =1+ 25
Then by hypothesis polar
Fiia) =2 (1 4+ 8)Fo(X) £ Fy(aX).

1 Y
Ry G:(Y) = (;) = G.(Y),

Hence

. Y
since the polar function to Fu(a\) is G (—)
x
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for all Y. Since é can be taken arbitrarily small, the assertion follows again for
the same reason.—In this case, the definition of G(Y) is easily replaced by

/ o | XY |
17 QYY) = hxg#soup X))
By the proved reciprocity of F(X) and G(Y), the formulae (17) and (17’) re-
main true if G(Y) is replaced by F(X) and vice versa.
I1. “GeoMETRY OF NUMBERS’ IN A DomAIN oF POWER SERIES

6. Notation. We specialize now the fields  and & of §1, and denote by
I an arbitrary field,
z an indeterminate,
T = kl[z] the ring of all polynomials in z with coefficients in f,
R = k(z) the quotient field of T, 1.e. the field of all rational functions in z with
coefficients in T,
|z | the spectal valuation of R defined by

2| 0, #fz=0,
T =
', if x # 04s of order f,’

R the perfect extension of R with respect to this valuation, t.e. the field of
all formal Laurent sertes

I f—1 f—2
T = oz + oy 12 + oy ok + e

with coefficients in t; if ay ts the non-vanishing coeffictent with highest

index _>2 0, then |z | = ¢,
An the set of all “lattice points” in P, , t.e. that of all points with coordinates
mn .

The valuation | z | is by definition a power of e with integral exponent. We
assume the same for all distance functions which we consider from now onwards,
and we shall consider only convex sets or bodies C(7), where 7 is an exact power
of e, say 7 = e'.

7. The volume V of a convex body C(1). Let F(X) be a special distance
function, C(e") the convex body F(X) =< e, where ¢ is an arbitrary integer. It is
obvious that the set m(t) of all lattice points in C(e’) forms a f-modul. In the
special case F(X) = | X |, this set has exactly

Mo(®) = n(t + 1)

f-independent elements. Hence, by the inequalities (5) and (6), m(f) has always
a finite dimension M (f), and this dimension is certainly positive for large ¢.

9 The order of a rational function is the degree of its numerator minus the degree of its
denominator.
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Obwviously
(18) Mot + 1) = Mo(t) + n.
Suppose that ¢ is already so large that

1
et > 1.

Then a lattice point in C(e'™) can be written as
X = Xo + ZXl y
where X, and X, are again lattice points, and the coordinates of X, lie in f, i.e.

| Xo| =1, F(Xo) =T =M.
Hence
F(zX)) £ max (F(X), F(Xo)) £ ', F(X)) < ¢,

so that X, lies in m(¢). Conversely, if X; belongs to m(t), then
F(X) £ max (F(zX,), F(Xo)) < ',

Now the two vectors X, and 2X, , where X, and X are lattice points and | zo | <
1, are f-independent, and the X, form a f-modul of dimension n. Hence

(19) M@+ 1) = M@ + n.

The two equations (18) and (19) show that for large ¢, the function M(f) —
Mo(t) of ¢ is independent of ¢. Hence the limit

(20) V = lim eM(t)-—Mo(t)

t—o0

exists; it is called the volume of the convex body C(1)." In particular, if F(X) =
| X |, then obviously V = 1.

8. The invariance of V. Let
Q= (ahk)h,k=1,2,....n and QI = (allzk)h.k=l,2.....n

be a matrix with elements in & and determinant D # 0, and its inverse matrix.
The linear transformation

Y =0X or X=20Y
changes F(X) into the new distance function
F'(Y) = F(X) = FQ'Y);

let C’(e") be the corresponding convex body F’(Y) =< €', and V’ the volume
of C'(1). Then

(21) V' = |D|V.

10 This definition is analogous to that of the volume of a body by means of lattice points
in an ourdinary rea: space.
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Proor: We denote by m’(t) the f-modul of all lattice points in C’(e’), by
M'(t) the dimension of m’(t), and prove the statement in a number of steps.

1: The elements of Q lie in E, and D belongs to f.

The formulae ¥ = @X, X = Q'Y establish a (1, 1)-correspondence between
the elements X of m(¢) and Y of m’(¢). Obviously, this correspondence changes
every linear relation

aX® 4+ ...+ a.X” =0

with coefficients in [ into the identical relation in the Y’s, and vice versa; there-
fore f-independent elements of m(tf) or m’(f) are transformed into f-inde-
pendent members of the other modul. Hence both moduls have the same
dimension: M(t) = M'(t), q.e.d.

2: Qis a triangle matrix

a.nl a'n2 Qnn
with elements in ¥ and determinant
D = anaz --- @ # 0.
The equation ¥ = QX denotes that

Y = aun,
Y2 = anZ; + G2,

Yn = Gy + Qa2 + -+ Gnaln ;
hence every lattice point ¥ can be written as'
Y = QX* 4+ Y
where X* and Y* are again lattice points and Y* = (yf , - -- , yn) satisfies the
inequalities
|yt | < laul los | <laml -+, |y ] <|aml.
Therefore
| Y*| < ¢, 1e. F/(Y*) £ oY,

where ¢, is a positive constant depending only on €, and I'" is the constant in (5)
belonging to F’(Y). The set of all vectors Y* forms a f-modul m* of dimen-
sion d, where

¢ =lanllan| - am|=|D]

1 We use the trivial lemma: “To a and b = 0 in T there is a g and an r in I, such that
a=bg+rand|r| <|bl.
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Let ¢ be so large that
e = el
Then for X* in m(¢)
F'(Y) = F(Q@'Y) = F(X* + @'Y*) =< max (F(X*), F'(Y*)) £ ¢,
and conversely for Y in m’(f)

F(X* + Q'Y*) < ¢, ie. F(X*) < max (F(X* + Q'Y*%), F'(Y%) < ¢,

There is therefore a (1, 1)-correspondence between the elements Y of m’(f) and
the pairs (X*, Y*) of one element X* of m(¢) and one element Y* of m*. Hence
M) = M(t) + d, qed.

3: The elements of Q belong to <.

The result follows immediately from the two previous steps, since €, as is
well known,” can be written as @ = 0Q, , where the two factors are of the
classes 1 and 2.

4: The elements of Q lie in R.

Now Q@ = Q,Q; , where both Q, and Q, are of the class 3, so that the statement
follows at once.

5: Q has elements in &, such that

ID| =1, |aw| =1 (hybo=1,2,...,n).

Then the same inequalities hold for the inverse matrix Q’, so that for every
point X

leX | = |X|, |X|=|eeX]|=|eX]|,
and therefore
| X|=|0X|=]|Q'X|.
Now to every lattice point X there is a second lattice point ¥ such that with

a suitable point Y*

QX =Y 4+ Y | Y*| < 1;
then conversely

Q'Y = X + X* | X*| < 1,
and

X* = —Q'Y* QX* = —Y*,

The relation between X and Y is therefore a (1, 1)-correspondence which ob-
viously leaves invariant the property of f-independence. Suppose that

et =T,

12 This can be proved, e.g. by a method analogous to Minkowki’s “adaptation’’ of a lat-
tice; Geometrie der Zahlen §46.
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Then for X in m(?)
F(X*) <T < ¢,
and therefore
F/(Y) = F@@'Y) = F(X + X*) < max (F(X), F(X¥) = ¢,

so that Y lies in m’(¢); conversely, if Y belongs to m’(f). then X is an element
of m(f). Hence M(t) = M'(t), q.c.d.
6: Finally, let @ have elements in . Then it can be split into
Q=+ Q

where €4 is of the class 4, while the elements of @* lie in & and have so small
values that

Q = UQ

is of the class 5. Then the result follows at once, since € = Q5 .

Two conclusions are immediate from (21). The convex body C(e’), 1e.
F(z™'X’) £ 1, is obtained from C(1) by the transformation X’ = z'X; hence
it has the volume V(e*) = e™V. Secondly, let G(Y) be the polar distance func-
tion to F(X), and V' the volume of the convex body C'(1), i.e. G(Y) = 1. Then V
and V' are related by the equation

(22) VvV’ = 1.

For by §5, there is a matrix A with non-vanishing determinant, such that
F(X) = |AX| and G(Y) = |A*Y |,

hence
= (AD™ and V' = (AT = |A[;

the statement is therefore obvious.

9. The minima of F(X). To the distance function F(X), there exist n &-
independent lattice points

X% = P, ... 2®) k=12 ...,n),
such that
F(X®) = ¢V = €° ¢s the minimum of F(X) in all lattice points X # 0,
F(X®)y = ¢® = ¢ is the minimum of F(X) in all lattice points X which are

R-independent of X, etc., and finally
F(X™) = ¢'™ = €° is the minsmum of F(X) in all lattice points X which are
R-independent of X, X® ... X",
The numbers ¢, ¢®, ..., ¢'" are called the n successive minima of F(X). By

this construction, the determinant

D = lx;(,k) hke1,2, -1
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lies in ¥ and does not vanish; further obviously
(23) 0<d”=e”=...2¢" and ==  Sg..
We shall prove the two equations

(24) D] =1,

(25) sD @ L™ = Tlf_;

in the second one, V is again the volume of C(1). Thus, in particular, D s an

element of t, and may obviously be taken as equal to 1.
A: Proor oF (24). Every point X in P, can be written as

X = le(l) + .. + ynX(n),

where the y’s are elements of . Then the coordinates z, of X are linear func-

tions with determinant D of the coordinates y, of ¥ = (y1, -+ ,y.). We
define a new distance function II(X) by
nXx)=\|Y|

By (21), the convex body II(X) =< 1 has the volume | D |; we determine it in
the following way:

If X is a lattice point, then Y also has its coordinates y, in £. For since
with Y also X is obviously a lattice point, we may assume without loss of
generality that

(26) nx) =1Y| <1,

and have to show that no lattice point X > 0 satisfies this inequality. Let m,
where 1 < m = n, be the greatest index for which y, # 0. Then

X = Z yhX(h), X(l), e X(m—l)

h=1
are N-independent lattice points, and by (26)
F(X) < max (| y: [F(X?), -+, | ym | FX™)) < 0™,

in contradiction to the minimum property of ¢™.

Hence there are exactly M,(f) = n(t + 1) f-independent lattice points such
that II(X) =< e, viz. all points corresponding to a basis of f-independent points
Y with | Y| < ¢'. Therefore

|D| = lim MW7 — 1 q.ed.
t—>c0

B: Proor oF (25). Now we use the fact that every point X in P, can be
written as

X = ylz_a’X(l) . y,,z_”"X("),
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where the y’s belong to & Let =(X) be the distance function given by

(X)) =1Y|
Since

Fz*X™) =1 (h=1,2 ... ,n),
obviously

FX)=1, if ZX) £1.
But the converse is also true: If
F(X) =1, then Z(X) =1,
and therefore evidently
F(X)=2z2(X) = Y],

identically in X.
For suppose that on the contrary for a certain point X in P,

F(X) =1, but Z(X) > L

Then let m with 1 < m =< n be the greatest index for which | y» | > 1; hence
ifm<mn

[Ymit | S 1, -, |yn| S 1.
Write
yh =2z + U (h=1,2-.,n),
where the ys are elements of T, the yr ' elements of &, and
Un#Z0, Ymu=--=ya=0, |y =1L,y | S,
and put
Y=, ), Y= e ),
so that
Y = zYV* 4 Y*

Obviously, Y* is a lattice point, Y** a point such that | Y**| < 1. Also write

n m n
X* =D yrenXx® = 3 yr s x®, X = Dyt x®,

Ae=1 he=1 hw=1

so that
X = 2X* 4+ X*
Then from Z(X**) = | Y**| £ 1,
F(X**) < 1.
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Hence
F(zX*) £ max (F(X), F(X**)) < 1, F(X* <1,

and

F(X% < o™,
where X° = 2~X*. This inequality, however, is impossible, since the m lattice
points

X0 = i y: 20mTIh X(h) X(l) Ve X(m—l)
] ’ )
h=1

are R-independent, so that by the minimum property of ¢™

F(X(O)) g a_(m).
Therefore (27) is true, so that by the invariance theorem of §8

|D|

oW g® . g

V =

1 (2 (r)y—1
=(g- g ...a’n) ,

since the transformation of X into Y has the determinant

Dz—(01+az+- «otgp)

The equation (25) is therefore proved.
From this equation and from (23) in particular

1 1
a,() < V—/n;

i.e. to every distance function F(X) there is a lattice point X = 0 such that

1
F(X) = TV

Here equality holds if and only if all minima

m __ (@ _ — (m
g =0 = ... =0 ,

thus certainly not, if V is not an integral power of e".

10. The relations between the minima of F(X) and G(Y). To the n lattice

points X, X® ... X defined in the last paragraph, we construct n points
YO, Y® ... Y™ satisfying
(27) X(h) Y(n—lc+1) —_ 1 for h= k’

0 for h#k;
since | D | = 1, these points are lattice points. We further define n positive
numbers
(28) = o et h=1,2...,n),
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so that
(29) 0< ™= <...27™ and 1R = Sga.
Then F(X) and the polar function G(Y) can be written as
(30) F(X) = max (¢ |XY")),
h=1,2,"**,n
31) QYY) = max WYXt
h=1,2,+-,n

thus in an entirely symmetrical way. For we proved in the preceding paragraph
that if X is written as

(32) X =2y X",
h=1

then
F(X)=IYIy Y=(y11y2)""yﬂ)-
But by multiplying (32) scalar with Y, ... | Y we get by (27)

Yn = zah‘(XY(n_h-H)) (h = 1) 2) e ’n)
and therefore (30). The formula (31) is a consequence of (30) by the results
in §5.1

From (27) and (31)
(33) GY®) = P = e

We prove now that these numbers 7 in their natural order are the n successive
minima of G(Y) in A,. Obviously it suffices to show that f

Z(l) Z(2) ... Z(ﬂ)

) ) ’ .

are any n K-independent lattice points, such that
G(Z®) = G(Z®) = ... 2 G(2Z™),

13 We can prove (31) directly in the following way: Obviously
X = (XY (r=a+D) X B
where the brackets are again the scalar products. Hence from (14)

3 (Xy-rrn) (XOF) D

A=1

G(Y) = max (| XY]) = max(

where the maximum extends over all points X of C(1), i.e. for which
1
| XYar| 5 = = ki (h=12 -, n.

By choosing X such that there is equality in one of these conditions, but that all other
scalar products XY (»=»*D vanigh, the assertion follows after replacing h by n — h + 1.
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then'*
GzZ%» = q¥™) = .
Consider the n + 1 vectors
X(l), X(2), .. ’X(n—h-i-l)’ Z(l), Z(2), cen Z(h).

At most n of these are f-independent; hence the scalar products

. .  =1,2 ..., n—h4+1
X(’UZ(J) (7' ) < ’ )
]=1,2’...’ h

do not all vanish simultaneously, and at least one of them, say X9z is
different from zero. Since it is an element of &, therefore

| X929 | 2 1.
Now by (17)
| XY | £ FX)&(Y),
for all points X and Y. Therefore
1

P

1 é lX(i) Z(j)! é F(X(i))G(Z(J')) < F(X(n-—h+1))G(Z(h)) = G(Z(h)),

as was to be proved.
From (28) and (29) in particular

W\ 1/n—1
T e
(34) 0_(1) é (“V‘) and T(l) é (O_(I)V)l/ ]’

so that if the minimum of F(X) in £ is small, then the same is true for that of
G(Y), and vice versa.

11. The relation between the homogeneous and the inhomogeneous problem.
The reciprocity formulae of the preceding paragraph can be applied to in-
homogeneous problems. Let P be an arbitrary point in P, which is not neces-
sarily a lattice point; it can be written as

P=pX? 4 ... 4+ p X7
where the p’s lie in . Put

ph=—'xh+7'h (h 1:21"'177’))

where z; is an element of ¥ and

|ra] < (h=1,2-.-,n).

D |

1 The minima ¢® of F(X) have the analogous property.
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Then the lattice point X = (x;, --. , x,) satisfies the inequality
(n)
F(P+ X) = (Z Th X"”) <%,
=1 e
or by (28)
(35) PP+ X) s .

This tnequality cannot in general be improved, since

1
(36) FG_ X™ 4 X) > —

eT

for all lattice points X, as follows immediately from the ®-independence of the
n vectors

2 —1
XP X 0 XV XM 42X

These two inequalities (35) and (36) relate the tnhomogeneous F-problem to the
homogeneous G-problem, in analogy with similar relations in many parts of
mathematics.

As an application, consider the two polar distance functions

F(X) =max (|, — 21|, -+, | @na®n — Tuer |, et xa ),
GY)=max ((yrl, -+, | Yna |, € |ays + -+ + @nalhna + ¥a ),

where ¢ is a positive integer. Assume that the numbers 1, a;, ---, an— are
R-independent, so that for all lattice points ¥ = (y1, ---,ya) # 0

ais + - + an1Yn1 + Ya # 0.
Then, as t — «, the first minimum 7 of G(Y)

P = .

Hence by (35), for every ¢ > 0 and for every point P = (p1, --- , D) there is a
lattice point X = (21, ---, xn) satisfying the inequalities

lalxn“x1+p1{ < 6,"',lan—-1xn_xn—1+pn—ll <e

Thus we have established a result analogous to Kronecker’s theorem.

12. A property of matrices. Let
= (ahk)h,k=l,2,---,n
be a matrix in & with determinant 1; then there is a matrix

U = (Wnk)nk=1,2,-1n
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with elements in T and determinant 1, such that the product matrix
QU = Q* = (a:k)h,k=1,2,...,n

satisfies the equation

n
max (lan|) = L
h=1 k=1,2,--+,n

Proor:® To the convex body C(1) belonging to the distance function

n
> G D,
k=1 |

there are n lattice points X, X @ ..., X" of determinant D = 1, such that
the n minima

Po0 = _mx (

F(X(h)) = a(h) (h = 11 27 ccc 7n)

satisfy

(n) m @ (n)
g, g @ .- 0 1.

0< 0'(1) < 0_(2) <.

Let X% = (&, ..., z{"), and X be the matrix

A

X = (xl(zk))h,k=1,2,---.n
with elements in € and determinant 1. We introduce new coordinates

Y1, -+ -, Ya Dy putting

X=X+ - + 1. X", 0e, 2= D 2" 2 (h=1,2 ---,n);

k=1

then F(X) changes into

F(X) = F'(Y) = max (

E al’zk Yk }>,
k=1 \

h=1,2,- - 0m
where
Q= ()hpet2,.n = QX.
The n points X = X* are transformed into ¥ = E® (h=1,2, ---,n);hence
F(E™) = o (h=1,2,--.,n),
that is
37) _max (| an]) = ¢® k=1,2 ---,n).

15 An analogous theorem in the real field was proved some time ago by C. L. Siegel in
a letter to L. J. Mordell. The present proof and theorem, though not stated in Siegel’s
paper, are obtained from it with only slight changes by making use of the results in §9.
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Hence every minor A,, of order m formed from the m first columns and m arbi-
trary rows of Q@ satisfies the inequality

(38) |A] £ 6cP6® ... 6™,
On the other hand, any determinant A of order m can be written as
A= Z ap0n,
h=1

where the a; are the elements of its last column, and the &, their cofactors;
therefore

max (o)) z[al{

_ (o D3
We apply this inequality repeatedly to the determinant
Ay =1=0"% ... o™
of ¢’ and use (37) and (38); then it follows that there exists
an (n — 1) order minor A,y of A, formed from the n — 1 first columns of &
and satisfying

X
=1,2,- -,

1) (2 —1
A | = e@6® ... g™,

an (n — 2)t order minor A,_» of A,y formed from the n — 2 first columns of
and satisfying

IAn—2l — 0'(1)0'(2) . O_(n—2);

ete.; a second order minor Ay of As formed from the two first columns of Q' and
satisfying

|A2i — G(l)d(2);
and finally an element Ay of Ay lying in the first column of Q' and satisfying
IAI I = 0'(1).

Without loss of generality, we may assume that the determinants so con-
structed are exactly the principle determinants

A, = | al’ﬂc hk=1,2,5 -« r r=12 ..., n).

We shall now construct a set of matrices of order n

(1 0---0 g™ 0...0])
1..-0 g™ 0-...0
Ce.iD 1 i) mrows
1 ¢ 0-.-0
= m = 1,2 n
Un 1 0...0{/ ( ™

n — m rows
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where the ¢’s lie in €, and U, is the unit matrix. If
Qn =QUWU; -+ Up = (a}(z;cn))h,kalﬂ.---.m (m=1,2,...,n),
then Qi = @, andforh, k =1,2, --- ,n

a’ = air "V if k = m, and afy) = gf™aiTV + .. 4 gihainct + afn .
The n principal determinants of ©, :
A, = [a;(.;,") I},_kg_.l’g,.,.,, (T = 1, 2, "o ,n)
are therefore equal to the corresponding ones of Q,,_, and so of Q’.
By construction, the elements of Q; satisfy the inequalities
laii)l_S_a(m (h1k=1)21"'}n’)’
and therefore also the inequalities
last | = o™ (h=1,2 ...,n).
Assume now that U,, ..., Uns_1 were determined such that
39) laae™ | = o™ (k=12 - m);
lase™ | < o forh=1,2 ... , m3k=12...,m — 1.

Then U, , as we shall prove now, can be constructed such that ©, satisfies the
stronger inequalities

(40) i | £ o (h b =1,2 -, m);
l(l)(z;c”)l§0'(h> forh=1,2 ... ,n;k=12 ... ,m

To this purpose put

m— 1 —
AT Py agm Y yma o =y, e ym) =t (A =1, 2,...,n),

and determine elements v1, y2, + - - , Ym—1 of & such that

h=t= ... =1, =0.

This system of linear equations has the determinant A,,_; . On solving,
Am_l‘yf = "T'Am-—l,r (7' = 1, 2, e, M — 1),
where Ap_1,- 18 the (m — 1)* order minor of A, obtained by omitting the mth

row and the 7** column. Hence firom (37),

j A1,y

' Am-—-l !

! 1) (m)
G 0 .((1) (m—n)_tf
(r) . g ceo e g Pl (r)
o o

(m)

1A
v
[y

I'Yri=

Let the clement g™ of U, now be the number in T satisfying the inequality

67 =yl <1 =12 ,m= D),
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so that
() o_(m)
m
l g" l - 6(,-) .
Then from the first system of inequalities (39) for h = 1,2, ..., n
(m) | __ \m) (m) _ (m) (m—1) (m) _(m—1) (m—1)
lawm | = | (@™, -+, gmo) | = | gi" @l + <+« + gmo1 Ghme1’ + G
™ ‘ o™ - (
< T G L. LMD gm )
< max (a‘“ ), ) gD " O , 0 a,

and from the second system for A = 1,2, ... ,m

lakm | = [ta(gl™, -+, gmmd) |
= 1™ = af™ + -+ + (g — ymainTl | < 1.0® = 0P

Since the remaining inequalities (10) are contained in (39), the matrix U, has
the required property. Hence if

U=XUUs;-..U,,

then this matrix satisfies the statement of our theorem.

13. A property of the product of n inhomogeneous linear polynomials in n
variables. Let @ = (@w)rr=1.2,....» be again a matrix with elements in R of
determinant 1. We form the distance function

FX|f) = | _max (€* | anz + anxs + -+ + anmzal),

n

where fi, f2, - - - , f» are n integers such that f; + --- 4 f, = 0. By the theo-
rem of last paragraph, there is a matrix U with elements in T and determinant 1,
such that the product matrix

Q* = QU = (any)

satisfies the equation

n

JI max (lan|) = 1.

A=l k=1,2,+,n
Let us choose the integers f) such that
(41) eh = max (an) (h=1,2-.-,n)

kw12, ,n
and put
A* kK 0 %
Ary = Z/ha}.k (h, k= 1: 2: *t % n)'

Then by the transformation X = UY, F(X) |f°) changes into a new distance
function

FX|f) = F(Y) = _max (lam¥ys + -+ + ann yn ),
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. %k %k . . o .
where now all coefficients ay, satisfy the inequalities |am | < 1, and their

determinant is still 1.  Obviously, for all n 8-independent vectors Y = E®,
Y® = E® ... Y™ = E™ the value of this function
Fr(y®y 1 (h=1,2 ... ,n).

Therefore by the equation (25), necessarily
F,()r(l)) - F/(}r(‘l)) = ... = Pv(),v(n)) - 1,

and so all minima of F(X |f°), where the f”s are given by (41), have the same
value 1, and in particular, the first minimum of F(X |f°) has the exact value

1
'\"/—I_/" where V = 1 is the volume of F(X |f°) = 1.
As an application, let a;, az, ---,a, be any n elements of & and 7,
n2, - -+, 1a 1 elements of { satisfying the equations
aam + -t ammt+a=0  (h=12-..,n).
If y1,y2, -+, Ys are the elements of T for which
1
th—ﬂhlég (h=1)27"';n):

then obviously
lafgi+ o+ g+ ar | <P (h=1,2, .., 0).

Hence the lattice point X = (x1, 22, --- , ) = U'Y satisfies the inequalities

\ah1$1+"'+ahnxn+ah|ée_fg—l (h=1;2y"'yn))

and therefore the inequality

Hl lamar + -+« + am®a + an| S "

h=

Here the constant ¢ " on the right-hand side is the best possible, as is clear if,
e.g. © is the unit matrix and all a;, = 1/z.

14. Distance functions in ®,. The field R of all rational functions with
coefficients in f has valuations different from the “infinite’’ valuation |z |,
which expresses the behavior of x at the point z = .

Let ¢ be any element of f, and p the “finite’”’ point z = {. Then we define a
valuation | z |, by putting for z = 0

lx ID = e—/v)

where f, is that integer, for which neither the numerator nor the denominator
of the simplified fraction (z — ¢)™"®z are divisible by z — {; we denote by &,
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the perfect extension of i with respect to this valuation; it consists of all formal
Laurent series

z = a/(z - g‘)f +- a/+1(Z —_ g-)f+1 + a/+2(2 _ g.)f+2 + ...

with coefficients in ¥, and if a; 5 0, then |z |, = ¢’.

Let now F(X) be any special distance function of ; we use it as the measure
for the size of X. Further let F(X | p) be a general distance function of & .
~Since

F(z — $)YX |p) = e'F(X | p),

this distance function may assume arbitrarily small values, if X lies in the modul
A, of all lattice points. By (5), there is a constant I', > 0 such that

FX|p) =T, | X |s;
here for X = (x;, -+, z,)
| X |y = max (| 21|y, -+, | Za o).
Hence
F(X | p) £ T, for all lattice points X.

Let ¢ be an integer such that

1
e'<T,, ie t=log (‘),
Ty

and C(e”* | p) the convex set of all points X in P, for which
FX|p) €.

Then the set m(—¢ | p) of all lattice points in C(e”* | p) contains with X and Y
also aX 4+ bY, when a and b lie in ¥; it is therefore an T-modul. By the
general theory of polynomial ideals,'® this modul has a basis of n lattice points

P® = (", .-, p¥) k=12 -.-,n),
such that every point X in A, belongs to m(—t¢ | p), if and only it can be written as
X =uyP"+ ... + y. P withy,, - -,9.in T.

The determinant
D(—~t) = | pA” | pati2,ooim % O,

and therefore the number
A(=t) = | D(—1) |

is positive.

16 Compare the basis theorem in §80 of van der Waerden'’s ‘““Moderne Algebra’’, Vol. II,
1st ed.
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The function F(X) changes into a new distance function
F'(Y) = F(X) = F(QY), Q= (P ) hker2reom)
by the transformation (42). The convex body F/(Y) = 1 has the volume

V' = A(=0)7'V,
where V denotes the volume of F(X) < 1. By the results in §9, there are n
lattice points Y™ ..., Y with determinant 1, such that
F'(YY) ... F(Y™) = A_(_"‘)_
V
The transformed lattice points X, ... , X given by
X(k) =9y(k) = (x{k), "';xszk) (k= 1’2’ ...’n)

have the determinant
D(—t) = |x;(,'°) lh.k=1.2.-~~.n:
and satisfy the relations

F(X(l)) e F(X™) = A(I-/-t)’ F(X® Ip) < et k=12 -...,n).

It is not difficult to prove that for large ¢
A(=t) = 0@™), |D(=) |, = O(™).
In the following case, sharper results are obtained. Let

FX|p) = | _max (| amzs + -+ + GrnemZom + Toemts ),

where the a’s are elements in £, such that

PR Gzreom.
Then to every positive integer ¢ there are elements A, in T satisfying
lam — Awly < ¢ (Zzig;")
Hence, if y;, -+ -, y» belong to T, and x;, - --, z, are defined by
L= Y1, ) Toem = Ynm |
(42) Tnmih = @ = ) Ynomin — (A + -+« + Abnmln-m),
(h=1,2 ..., m),

then F(X | p) < ¢ . Let F'(Y) = F(X) be the special distance function in £
derived from F(X) by the transformation (42). Then F'(Y) = 1 has the
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volume |[(z — ¢) ™|V = ¢ ™V. Hence there are n R-independent lattice

points Y, ... | Y of determinant 1 such that
mi
NyWy ... Fry™y = ¢
F'(Y™) ... F'Y™) %
The » lattice points X, ... , X derived from these by (42) have the deter-
minant (z — )™ and satisfy the conditions
mi
FX®) ... FX™) =%,  FX®[p) ¢ (k=1,2-..,m).

V
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