- Deeember, 1942

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

V oLUME XLVH’I, Secrion A, No. 5

/ :
K. = /MAHLER

émﬁm%

ON IDEALS IN THE CAYLEY-DIXON
ALGEBRA

DUBLIN

HODGES, FIGGIS & CO.

LONDON: WILLIAMS & NORGATE
1042
Price One Shilling




[ 123 ]

V.

ON IDEALS IN THE CAYLEY-DICKSON ALGEBRA,

By‘K. MAHILER (Manchester).

[Read 22 June. Published 7 DucnmBER, 1942.)

REsULTS on the approximation of quaternions which I found in a recent
paper (see footnote 3) can be applied to a similar question in the non-
associative algebra discovered by Cayley and studied in more detail by
Dickson (for references, see his book on Algebras), I show in this way that
this algebra allows a Euclidean algorithm, if integral Cayley numbers are
defined according to Dickson. I deduce that all (left or right) ideals are
prineipal, and that the basis of an odd ideal is o rational integer.

I am indebted to Dr. Olga Taussky for advice during the preparation.

of this paper.

§ 1.—The Cayley-Dickson algebra.
Let K be the field of all quaternions
. z=a + 2ty + 2 + 20,

where z°, #*, %, #° are real numbers. We denote by
& o=a" — 2, ~ B, — 5%,
S(z) =z + & = 2, )
N (2) = a% = (2°)* + @) + (2%)" + (2°)",

" the conjugate to x, its trace, and its norm.

A Cayley number or C-number is a pair X = (2 { y) of quaternions

2z and y. Two C-numbers X; = (z, l y) and X, = (z, ! y,) are equal, if

and only if 2, = z, and y, = y,. Sum and produet of two C-numbers
X, and X, are defined as
Xi+ Xo= (@42 | 41 + %),
XX, = (m@s— G | a1+ Y1s).
The conjugate to X = (x | y) is given by X = (a’: | - %), its frace and its
norm by
S(X)=8@=z+4
N(X)=N(@)+ N(y) =22 +yj.
X ={(x]y)isreal, it X = X, i.6. if z is a real quaternion, and y = 0.
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The set .C of all C-numbers forms an Abelian group with respect to
addition, with 0 = (0 j 0) as the unit element. Addition and multiplication

 satisfy the two distributive laws. On the other hand, multiplication is

not in general commutative. Nor is it associative, for if X, = (a, ! Y,),
X, = (z, l Y3), and X; = (w, l Ys), then

X (.‘YQ.X;;) = (90;98295’3 - &falfe = Tl — Tl ’ Yooy YoZsy + UY1Zs Ty ~ !/1?72?/3)
and
(Xle)X:s = (212225 — Yol 1@ = Fsifay = Fsyrily | Ys0itts ~ Yoty + Y1 + ?/1"1-7255’3),

and these two C-numbers are in general different.
There are, however, some special cases in which the ordinary rules

k hold :

If X] or Xz 'L’S Teal, ih@n X)_Xz = Xsz (1)
If X, &, or Xy 4sreal, then (X, X,) X =X, (X.4X5) (2)

Both assertions are obvious, sinece multiplieation of X = (x } y) with the
real C-number (o j 0) means that both 2 and y are multiplied with the
real quaternion o. We therefore may identify the real C-number (a] 0)
with the real number @, so that

a=(a]0), oX = Xa = (ax | ay).
For the multiplication of conjugate numbers, the following rules hold :
XX =-XX= N(X). (3)
X (LX) = (X)) X,=N(X) Ly (X X)X, = j@ (XQXZ) =X N(X). (4)
| TT; - L.L, (5)
We further have Cayley’s identity
N (X,X,;) = N(X) N (X, (6)

which may be directly verified.
Similarly for the trace function:

X+X=X+X=8(X), (N
S(X1X2> = S(XZL): (8)
8 (&(x 1)), (9)

il

S ((Xl x) Xa) :

as may be verified directly.
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To every C-number 4 + 0, there is an inverse

"l N(A)"/I
such that
‘ A4 = A4 =1 =(1]0).

Hence, by (4), both equations
AX =B and Y4 =R
have solutions, namely,
X =A47B and Y = B4

By the distributive laws and by Cayley’s formula, these are the only

solutions, ity
These results show that ¢ is a non- commutatlve and non-associative

divigion algebra.

§ 2~The ring of all integral C-numbers.

Let Ay, A,, . .., A, be the eight C-numbers

T4 2+ 45

= (5] 0), Ai= (5] 0), A= (i ] O), A4=( :

o),

(10)
: 1+4, 1147, 142, | 147, 1+ng14 Ta
A5=(O]1>’ As‘:(*‘“z“ —’2“") ( “) _Aa"("i"g 2>.
- We say that the C-number @ is integral if it can be written as
8
G = 3 g4, (11)
=1

where the coefficients ¢y, g,, .. . , g5 are arbitrary rational integers. The
sum and the difference of integral C-numbers are again integral; Dickson
has shown that the same is true for the product. The integral C-numbers
therefore form a ring J. :

Since the numbers (10) are linearly independent over the real field,
any C-number may be written as

X = = (@], (12)

I Moo

r=l

*Journal de Mathématique, ser. 9, vol. 2 (1923), in pa?ticular 319 1.
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#

where 7y, 75, . . ., 73 are real numbers, and
. = Tot e ; P ’+ T 4 2 +27'4 + 7 i+ 27, +;*4 + 1y i 274 +29"4 + 7 .

: (13)
Y = 215_4-_7%;17_23 + ;7'&; + 72"—@2 + 72:’3'53.

It is easy to establish the following result.
If T o= a4 XMy 2, Y = Y+ Y+ P+ Y
then X = (z ] y) belongs to J if and only if oll eight numbers
22°, 22, 22, 2, 2y, 2y, 2y%, 29,

are rotional integers such that

2 4+ 2 = 2y + 2y* (mod 2),

3z + 22* = 2y° + 2y (mnod 2),

(14)

22° + 2% = 2¢° + 2¢° (mod 2),
22" + 22" + 22° + 20° = 29° + 29 + 2y° + 2¢° = 0 (mod 2).
Hence, in Hurwitz’s notation,® the two quaternions x and y are both

integral, or neither of them is integral.
It is easily verified that there are 240 integral C-numbers of norm 1,

and 2160 integral C-numbers of norm 2.
Theorem 1: To every C-number X there is an integral C-number @

such thot
NX -6 < 15 (15)

Proof: Write X and @ in the form (11) and (12) and put

.
Y=X-G= 3 54, =]y,

pe=1

8o that
8, =7, ~8 (v=1,2,...,8)
and :
% o SiFSi s+ 2sl+s4+ssi + 28, + 84+ 8 . 2848t 8.
©= 2 2 ' R %
285 + 85 +.8, + 8 s S .
* 5 T 8¢ 757 T g 7 s
= e b 0y ~—~z
y 3 gh g T g

L

It is obviously possible to determine the integers gs, e ¢, s such that

2854 8+ 8 + S s S S
os T e T T R 1 Tilgl bl 1 B«
2 =2 2 = 40 2 4> 2 = %

* Zahlentheorie der Quaternionen (Berlin, 1919), Vorlesung 4.



3

MasLER—On Ideals in the Cayley-l)iékson Algebra,. 127

It is further possible® to determine g,, ¢, g5 ¢, such that _
(?4 + 8 ; 8+ SS>2 . <2sl 48+ ss>2 . (232 + 8 +s7>2 . (253 + 8+ 33)2 <1

2 2 2

Then, since

/844 Ss ¥ 81+ 85\2 . 28, + g+ 842 . 285 + 8+ 87\2 N 28; + 84 +851\2
) ) 2 ) 2

285+ 8+ 81 + 85\? 8 \2 8 \2 /‘se>2
(2 ) (5)+(5) (3)

NE-G) < 3+@)y+@D+@+ @) =48,
as was to be proved. ‘
The constant (15/16) in (15) is mot the best possible one; the exaect
constant is 1/2, But this is not easy to prove; I therefore omit the proof,
since the less exact inequality suffices for our purpose.

N(y) = |

\

we find that

§ 3.~The ideals in J.

%

As uwsual, a set a of integral C-numbers is called a left (right) ideal,
if with any two elements &, and G, it also contains G, * G,, and with
G also HG (respectively GH), where H is an arbitrary integral C-number.

Suppose that the left ideal ¢ does not consist only of the zero C-number.
Then among its non-vanishing elements there is at least one, say the
element G, which has smallest possible norm. Let A4 be an arbitrary
C-number in a. By Theorem. 1, there is an integral C-number @ such that

N(4G - 6) < 12<l.

®In a paper which is to appear in the Proceedings of the London Mathematical
Society, I proved the following lemma: ¢‘If

i 2.\2 2.\2 2N [a\t
A (2, 25 25, 24) = (xl + 5‘) + (xz + = ‘) + (x3+ 4) + (5‘) =

= 2+ 2t 4 ot ol (0 B ) 2y,
then to any four real numbers: x,, Ty Ty T there are four integers gy, ¢, gs s such
that

A(#y— gy T~ o B3~ Gsy By~ gy) S FV

From this lemma, the inequality in the text follows on defining =, 2, =, &, by the -
formulae .
2y + 74 + 8,

Xy = Ty +\83+87+6'5, 2x1+1f4 =
. 2y + #g = 205 + ¥4+ 8y, 205 + 2y = 2054 7y + 8,
80 that
Sy + 8+ 81+ 8 = %y Gy 2+ 8+ 8 = 2(0 = 1) + (20— ),

28+ 84 + 87 = 2(%p = g2) + (24 ~ gu), 283 + 8+ 85 = 2 (w3~ gs) + (%~ gu).
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Therefore by (4), (6), and the definition of the i inverse,
N(A Ga,) ~N((AG&,")G GGI,\ N(46,? G’) N(GU)<N(GO)

Sinee the C-number 4-G@, is integral and lies in o, it must therefore
vanish. Henee every element A4 of a is of the form

4 =66, (16)

where G is an element of J. Conversely, any produet of this form belongs
to 4, we have therefore proved that every left ideal is a principal ideal,

The fact that multiplication in ¢ is not associative, allows us to derive
further consequences from. this result. Let G, and @G, be two arbitrary
integral C-numbers. Then by definition of a the number GG, and there-
fore also the number G,(@,@,) belong to . Hence there exists a third
integral C-number G,, such that \

G,(G,G,) = GG, (17

By specializing @, and G, in this equation, we derive properties of @,.

§ 4—The basis of an ideal.
In order to apply this method, put @, = (g [ h), and let
Gi=(1]0), Ga=(i10),
where (a, 8, y) is a cyclic permutatioze of (1, 2, 3), hence

T tg == g Uy =1y -
Then we find that
Gh(GG)=(1,9]- hiy) = GG,
and therefore

i

/z' 99 ~ hh! . Zhiyg)
N(crn,) "\l e ak)
As we have proved, @, is an integral C-number; hence
g9 - hh
99 + hi’

or twice this number is a rational integer. * The second case is excluded
by the congruences (14), since the first quaternion component of @, is a
multiple of the quaternion unit z Therefore éither

99 - hh = 0; _ (18)

Gy = { G (LG} G)" = |G, (G.6)))

or

g5 - hh =3 (95 + Rh). (19)
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If (18) holds, then the first quaternion component of the integral
C-number ~

- Wi
Ga = (0 ””"?’g>
99
_vanishes. Therefore the second component
hiyg . “1e1 e
““ﬁ ==-{g)(g g )=-Nig =¢&
is an integral quaternion, so that by 4} =-1,

h = &gt
This equation holds for y =1, 2, 8; by (18), the three quaternions e ., are
units. . Obviously ‘
‘ ‘gat.g’écf= sﬂ.(}q:ﬁ,v ‘

hence
Jlalg = Gly = =& ' €g 0,
and therefore :
h = &gl = - &8 69,
so.that
=1y, ,‘ (20)
where ; R A T N R T TR T

The number 7 is a unit, since it is a product of units,
We further have

m‘,g" =7y,  where  j, = - ¢, (21)
These three numbers jy are units; from their deﬁnit.ion
R R S N A e A
Hence, by a result of Hurwitz?,
Ja = 0aly (« =1,2,3),

where v,, v,, v; is a permutation of 1, 2, 3, and where the o, are signs
¥ 1 such that V

610205 = 1,
Since 7' = g/N(g), (21) takes the form
9ing = oty N(g).
Now, if
g =0+ R +ga’l;aa

*l.c. % Vorlesung 5.
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then

G2+ 98 -9 - 95+ 2(91 92 = 9:95) 02 + 2(91 95 + §0.9) %,

gug
20010+ Jog) U+ (97 —90° + 9% = 9P B + 2(029s ~ o) T,

gy
959 = 2(019:~ 5,96 + 2(9:05 + Jog1) % + (957 - 97 = 92" + 9°) -
Here, on the right-hand side, only one coefficient in each line, namely,

that of 4, is different from zero. A simple discussion of the 6 possible
cages shows that therefore either

= ¢ or g = (1 + 1), (22)

where § is a rational number and ¢ one of the 24 quaternion units. There-
fore G, is of one of the two forms .

Gy =38(e|re)  or G=8(E1+14)|r(1-2)%).
This equation for G, can also be written as
= O(e | &) or G =3((l+7)| &(L+4)), (23)

where ¢ and ¢* are two quaternion units.

The first number (e|<*) has the norm 2; hence G, = 8(c|¢¥) is an
integral C-number only if § is a rational mteger :

The second number (e(1 + %) l *(1 + ¢,)) has the norm 4 and can be
written as

(F 1 F g | F o0 T ip), (24)

where a * 3, «’ + ’; here o, B, o/, f’ are four indices 0, 1, 2, 3, and
we have put 4, = 1. The congruences (14) determine in which cases the
C-number (24) is divisible by 2, and when this is not possible.

We have thus the final result:

“If the integral C-number G, 1s of the form (18), then

G, = 3G,
where 8 1s a rational integer, and where G* is either a umt C-number
Tt FiglFlw Fig
G*=<H2+ B;lJr 2+ ﬁ)’ 29

or a C-number of norm 2 of the form
G = (ele*) (e, & quaternion wwits), (26)
or o C-number of norm 4 of the form

G = (FaF | F 9w F ip)” 27
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§ 5.—The basis of an ideal (concluded).
We now assume that G, satisfies (19) and so is of one of the two forms
G=(g]0) or G=(0]h),

where g, respectively %, is evidently an integral quaternion.
Let again (e, 8, ) be a eyclic permutation of (1, 2, 3). Then

(0] 2){(0 | 4g) (g | O)} = (- g1, | 0),
(0] 4){(0 ] 2)(0 | 2)} = (0 [ %),
and therefore @, has the values

(C1w101wE 1016107 =C 0 055 10)= (-5 10),

\

(@10 1m© 1) e1m = ©01am(01- m)= (v 10)

Sinee @, is integral, we have so obtained the conditions that the quaternions

9%9 (y=1,238)

oyl 'Y 3 )

N(g) DT
respectively the quaternions

hiyh

1—\7—(7;) (v=1,2 3)

are integral. That allows to find the form of these quaternions; it will
be sufficient to carry this out in the case of g. Let

g =go+ g1t + Fala + Gila.
Then ‘
g0g = (95" + 9* = gt = g&)is + 2(9:5 + Gog) + 2 (9195 — 9ugnis
9 = 2(0195 = gogs)n + 2(95° ~ 91" + 95* = 95*)%2 + 2 (ags + 901 )ss
9t = 2(9:95 + 9ozt + 2 (9295 = gog )% + (96 = 91* — 92* + 95*) %,
The real parts of these quaternions vanish; they are therefore divisible
by N(gh== g2 + ¢,2 + ¢,2 + g,° if and onlyl if the coefficients of 1,, 4,, %,
are divisible by N(¢). That gives the conditions that the rational numbers

2 (9.2 + 97, 4oug, ) (wv=0,1,2,3; utv)

are all integral multiples of N(g) and therefore themselves integers.

There are now two cases.. If 2g,, 2¢,, 20, 2¢, are all odd integers,.
then N(g) is a divisor of the odd integer 4¢,g, and therefore also odd.
Let p be a prime factor of N(g). Then at least one of the integers 2g, 18
divisible by p, say the number 2g,. Since the three numbers

(295'«7)2 + (29")2 (V = 0: 1) 2)3 ;v +"l’0)

PROC. R.LA., VOL. XLVII, SECT. A, ' [13]

&



132 - Proceedings of the Royal Irish Academy.

are integral multiples of ‘N(g), all integers 2g - are divisible by p. Hence
the highest power of p dividing N(g) is even; N(g) is therefore the square

N(g) =2
of an odd integer, and g has the‘form

9= 2,
where ¢ 18 a quaternion unit of the form

FI1FEGF4Foh
R e ——
2

Next let all coefficients g, be integers. The same proof as in the last
case shows that every odd prime factor of N{(g) divides g,, gi, 7 95 and
therefore is a square factor of N(g). Further let 2° be the highest power
of 2 which divides all coefficients g, say

gu=2°0% (u=0,1,2,3)

Then at least one coefficient g.*, 9,%, ¢,*, g,* is relatively prime to 2;
on the other hand, the expressions

2(9:2 +g;kz), 49:935 (/"9 1’=O’l’2:3; P‘+”) (28)

are all divisible by at least the same power of 2 as 2-2¢ N(g). If all

integers g¥ are odd, then the expressions (28) are divisible by 4 but not

by 8, and 2*¢N(g) is exactly divisible by 4. In this case 2-¢-1g is still

an integral quaternion, so that we come back to the preceding case: Again
g= 85” * 5

where 8§ is a rational integer (which is now even), and e is a unit

F1l1F e 7454
A

Finally assume that at least one number g is even and at least one
ig odd. Then the expressions (28) are divisible by no higher power of 2
than the first power, and the same holds for 2°% N(g). Hence now
g= 85,
where & is an odd or even rational integer, and where ¢ either is one of
the units

~‘ 5=-‘F’1,;7:;,~T-7;2,$’i3

" -or one of the integral quaternions of norm 2,

;1?4’51, $1.‘!—'7:2, ¥1$7‘s; -T-’é?'iay :F?’-I:F'i& ‘T'ix‘?iz-
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This exhausts the possibilities for g. Since % satisfies the same
conditions as g, there are identical results for A. We have therefore

proved :
“If the integral C-number G, is of the form (19), then

G, = 8G*,
where § 15 o rational integer, and where G¥ is either a wnit C-number
@ =(c]0) or 6% =(0]0) | (29)
with a quaternion unit ¢, or where G* is o C-number of norm 2,
G*=(FT4,%4,]0) or @*=(0] F2,714)” (80)

Combining the results of §§ 3-5, we have thus found:
Theorem. 2: Every left ideal in the ring of all integral C-numbers is
o principel ideol, and is generated by an integral C-number
. G, = 0G%,
where § 4s o rational integer, and G* an mtegral C-number with norm 1

or 2 or 4.
This theorem does not .assert that every integral C-number of the

forms '(25), (26), (27), (29), (30) which has norm 1 or 2 or 4 generates
an ideal. In fact this is not so, for it can be shown that the C-number

(9| 9), where
g=% 1 +4 +%+4),
does not generate an ideal, since
(GlOLO0a)@lall@l-9=GEa-9) | 3(-1+4)),
which is not an integral C-number because the conéruences (14) are not
~satisfied,



