the firm With hind regards from

48 A 5

December, 1942

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

VOLUME XLVIII, SECTION A, No. 5

K. . MAHLER

ON IDEALS IN THE CAYLEY-DIXON ALGEBRA

DUBLIN:

HODGES, FIGGIS & CO.

LONDON: WILLIAMS & NORGATE

1942

Price One Shilling

 \mathbf{V} .

ON IDEALS IN THE CAYLEY-DICKSON ALGEBRA.

By K. MAHLER (Manchester).

[Read 22 June. Published 7 DECEMBER, 1942.]

RESULTS on the approximation of quaternions which I found in a recent paper (see footnote 3) can be applied to a similar question in the non-associative algebra discovered by Cayley and studied in more detail by Dickson (for references, see his book on Algebras). I show in this way that this algebra allows a Euclidean algorithm, if integral Cayley numbers are defined according to Dickson. I deduce that all (left or right) ideals are principal, and that the basis of an odd ideal is a rational integer.

I am indebted to Dr. Olga Taussky for advice during the preparation of this paper.

§ 1.—The Cayley-Dickson algebra.

Let K be the field of all quaternions

$$x = x^0 + x^1 i_1 + x^2 i_2 + x^3 i_3,$$

where x^0 , x^1 , x^2 , x^3 are real numbers. We denote by

$$ar{x} = x^0 - x^1 i_1 - x^2 i_2 - x^3 i_3,$$
 $S(x) = x + ar{x} = 2x^0,$ $N(x) = x \overline{x} = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2,$

the conjugate to x, its trace, and its norm.

A Cayley number or C-number is a pair $X = (x \mid y)$ of quaternions x and y. Two C-numbers $X_1 = (x_1 \mid y_1)$ and $X_2 = (x_2 \mid y_2)$ are equal, if and only if $x_1 = x_2$ and $y_1 = y_2$. Sum and product of two C-numbers X_1 and X_2 are defined as

$$X_1 + X_2 = (x_1 + x_2 \mid y_1 + y_2),$$

 $X_1 X_2 = (x_1 x_2 - \bar{y}_2 y_1 \mid y_2 x_1 + y_1 \bar{x}_2).$

The conjugate to $X = (x \mid y)$ is given by $\overline{X} = (\bar{x} \mid -y)$, its trace and its norm by

$$S(X) = S(x) = x + \bar{x},$$

$$N(X) = N(x) + N(y) = x\bar{x} + y\bar{y}.$$

 $X = (x \mid y)$ is real, if $X = \overline{X}$, i.e. if x is a real quaternion, and y = 0.

PROC. R.I.A., VOL. XLVIII, SECT. A, [12]

The set C of all C-numbers forms an Abelian group with respect to addition, with $0 = (0 \mid 0)$ as the unit element. Addition and multiplication satisfy the two distributive laws. On the other hand, multiplication is not in general commutative. Nor is it associative, for if $X_1 = (x_1 \mid y_1)$, $X_2 = (x_2 \mid y_2)$, and $X_3 = (x_3 \mid y_3)$, then

$$X_1(X_2X_3) = (x_1x_2x_3 - x_1\bar{y}_3y_2 - \bar{x}_2\bar{y}_3y_1 - x_3\bar{y}_2y_1 \mid y_3x_2x_1 + y_2\bar{x}_3x_1 + y_1\bar{x}_3\bar{x}_2 - y_1\bar{y}_2y_3)$$

and

$$(X_1X_2)X_3 = (x_1x_2x_3 - \bar{y}_2y_1x_3 - \bar{y}_3y_2x_1 - \bar{y}_3y_1\bar{x}_2 \mid y_3x_1x_2 - y_3\bar{y}_2y_1 + y_2x_1\bar{x}_3 + y_1\bar{x}_2\bar{x}_3),$$

and these two C-numbers are in general different.

There are, however, some special cases in which the ordinary rules hold:

If
$$X_1$$
 or X_2 is real, then $X_1X_2 = X_2X_1$. (1)

If
$$X_1, X_2$$
, or X_3 is real, then $(X_1X_2)X_3 = X_1(X_2X_3)$ (2)

Both assertions are obvious, since multiplication of $X = (x \mid y)$ with the real C-number $(a \mid 0)$ means that both x and y are multiplied with the real quaternion a. We therefore may identify the real C-number $(a \mid 0)$ with the real number a, so that

$$a = (\alpha \mid 0), \quad \alpha X = X\alpha = (\alpha x \mid \alpha y).$$

For the multiplication of conjugate numbers, the following rules hold:

$$X\overline{X} = X\overline{X} = N(X). \tag{3}$$

$$X_{1}(\overline{X}_{1}X_{2}) = (X_{1}\overline{X}_{1}) X_{2} = N(X_{1}) X_{2}; (X_{1}X_{2}) \overline{X}_{2} = X_{1}(X_{2}\overline{X}_{2}) = X_{1}N(X_{2}).$$
(4)

$$\overline{(X_1X_2)} = \overline{X}_2\overline{X}_1. \tag{5}$$

We further have Cayley's identity

$$N(X_1X_2) = N(X_1)N(X_2),$$
 (6)

which may be directly verified.

Similarly for the trace function:

$$X + \overline{X} = \overline{X} + X = S(X), \tag{7}$$

$$S(X_1 X_2) = S(X_2 X_1),$$
 (8)

$$S\left(\left(X_{1}X_{2}\right)X_{3}\right) = S\left(X_{1}\left(X_{2}X_{3}\right)\right),\tag{9}$$

as may be verified directly.

To every C-number $A \neq 0$, there is an inverse

$$A^{-1} = N(A)^{-1} \overline{A}$$

such that

$$AA^{-1} = A^{-1}A = 1 = (1 \mid 0).$$

Hence, by (4), both equations

$$AX = B$$
 and $YA = B$

have solutions, namely,

$$X = A^{-1}B \quad \text{and} \quad Y = BA^{-1}.$$

By the distributive laws and by Cayley's formula, these are the only solutions.

These results show that C is a non-commutative and non-associative division algebra.

§ 2.—The ring of all integral C-numbers.

Let A_1, A_2, \ldots, A_8 be the eight C-numbers

$$A_1 = (i_1 \mid 0), \quad A_2 = (i_2 \mid 0), \quad A_3 = (i_3 \mid 0), \quad A_4 = \left(\frac{1+i_1+i_2+i_3}{2} \mid 0\right),$$

$$(10)$$

$$A_5 = (0 \mid 1), \quad A_6 = \left(\frac{1+i_1}{2} \mid \frac{1+i_2}{2}\right), \quad A_7 = \left(\frac{1+i_2}{2} \mid \frac{1+i_1}{2}\right), \quad A_8 = \left(\frac{1+i_3}{2} \mid \frac{1+i_3}{2}\right).$$

We say that the C-number G is integral if it can be written as

$$G = \sum_{\nu=1}^{8} g_{\nu} A_{\nu}, \tag{11}$$

where the coefficients g_1, g_2, \ldots, g_8 are arbitrary rational integers. The sum and the difference of integral C-numbers are again integral; Dickson has shown that the same is true for the product. The integral C-numbers therefore form a ring J.

Since the numbers (10) are linearly independent over the real field, any C-number may be written as

$$X = \sum_{\nu=1}^{8} r_{\nu} A_{\nu} = (x \mid y), \tag{12}$$

¹ Journal de Mathématique, ser. 9, vol. 2 (1923), in particular 319 f.

where r_1, r_2, \ldots, r_8 are real numbers, and

$$x = \frac{r_4 + r_6 + r_7 + r_8}{2} + \frac{2r_1 + r_4 + r_6}{2} i_1 + \frac{2r_2 + r_4 + r_7}{2} i_2 + \frac{2r_3 + r_4 + r_8}{2} i_3,$$

$$y = \frac{2r_5 + r_6 + r_7 + r_8}{2} + \frac{r_7}{2} i_1 + \frac{r_6}{2} i_2 + \frac{r_8}{2} i_3.$$
(13)

It is easy to establish the following result.

If
$$x = x^0 + x^1 i_1 + x^2 i_2 + x^3 i_3$$
, $y = y^0 + y^1 i_1 + y^2 i_2 + y^3 i_3$

then $X = (x \mid y)$ belongs to J if and only if all eight numbers

$$2x^0$$
, $2x^1$, $2x^2$, $2x^3$, $2y^0$, $2y^1$, $2y^2$, $2y^3$,

are rational integers such that

$$2x^{0} + 2x^{1} = 2y^{0} + 2y^{2} \pmod{2},$$

$$2x^{0} + 2x^{2} = 2y^{0} + 2y^{1} \pmod{2},$$

$$2x^{0} + 2x^{3} = 2y^{0} + 2y^{3} \pmod{2},$$

$$2x^{0} + 2x^{1} + 2x^{2} + 2x^{3} = 2y^{0} + 2y^{1} + 2y^{2} + 2y^{3} = 0 \pmod{2}.$$
(14)

Hence, in Hurwitz's notation,² the two quaternions x and y are both integral, or neither of them is integral.

It is easily verified that there are 240 integral C-numbers of norm 1, and 2160 integral C-numbers of norm 2.

Theorem 1: To every C-number X there is an integral C-number G such that

$$N(X-G) \leqslant \frac{15}{16}.\tag{15}$$

Proof: Write X and G in the form (11) and (12) and put

$$Y = X - G = \sum_{\nu=1}^{8} s_{\nu} A_{\nu} = (x^* \mid y^*),$$

so that

$$s_{\nu} = r_{\nu} - g_{\nu}$$
 $(\nu = 1, 2, ..., 8)$

and

$$x^* = \frac{s_4 + s_6 + s_7 + s_8}{2} + \frac{2s_1 + s_4 + s_6}{2} i_1 + \frac{2s_2 + s_4 + s_7}{2} i_2 + \frac{2s_2 + s_4 + s_8}{2} i_3,$$

$$y^* = \frac{2s_5 + s_6 + s_7 + s_8}{2} + \frac{s_7}{2} i_1 + \frac{s_6}{2} i_2 + \frac{s_8}{2} i_3.$$

It is obviously possible to determine the integers g_5 , g_6 , g_7 , g_8 such that

$$\left|\frac{2s_5+s_6+s_7+s_8}{2}\right|\leqslant \frac{1}{2},\quad \left|\frac{s_7}{2}\right|\leqslant \frac{1}{4},\quad \left|\frac{s_6}{2}\right|\leqslant \frac{1}{4},\quad \left|\frac{s_8}{2}\right|\leqslant \frac{1}{4}.$$

² Zahlentheorie der Quaternionen (Berlin, 1919), Vorlesung 4.

It is further possible to determine g_1 , g_2 , g_3 , g_4 such that

$$\left(\frac{s_4 + s_6 + s_7 + s_8}{2}\right)^2 + \left(\frac{2s_1 + s_4 + s_6}{2}\right)^2 + \left(\frac{2s_2 + s_4 + s_7}{2}\right)^2 + \left(\frac{2s_3 + s_4 + s_8}{2}\right)^2 \leqslant \frac{1}{2}.$$

Then, since

$$N(y) = \left(\frac{s_4 + s_6 + s_7 + s_8}{2}\right)^2 + \left(\frac{2s_1 + s_4 + s_6}{2}\right)^2 + \left(\frac{2s_2 + s_4 + s_7}{2}\right)^2 + \left(\frac{2s_3 + s_4 + s_8}{2}\right)^2 + \left(\frac{2s_5 + s_6 + s_7 + s_8}{2}\right)^2 + \left(\frac{s_7}{2}\right)^2 + \left(\frac{s_6}{2}\right)^2 + \left(\frac{s_8}{2}\right)^2,$$

we find that

$$N(X-G) \leq \frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{4})^2 + (\frac{1}{4})^2 + (\frac{1}{4})^2 = \frac{15}{16}$$

as was to be proved.

The constant (15/16) in (15) is not the best possible one; the exact constant is 1/2. But this is not easy to prove; I therefore omit the proof, since the less exact inequality suffices for our purpose.

§ 3.—The ideals in J.

As usual, a set a of integral C-numbers is called a left (right) ideal, if with any two elements G_1 and G_2 it also contains $G_1 \pm G_2$, and with G also HG (respectively GH), where H is an arbitrary integral C-number.

Suppose that the left ideal $\mathfrak a$ does not consist only of the zero C-number. Then among its non-vanishing elements there is at least one, say the element G_0 , which has smallest possible norm. Let A be an arbitrary C-number in $\mathfrak a$. By Theorem 1, there is an integral C-number G such that

$$N(AG_0^{-1}-G) \leqslant \frac{1.5}{1.6} < 1.$$

•In a paper which is to appear in the Proceedings of the London Mathematical Society, I proved the following lemma: "If

$$A(x_1, x_2, x_3, x_4) = \left(x_1 + \frac{x_4}{2}\right)^2 + \left(x_2 + \frac{x_4}{2}\right)^2 + \left(x_3 + \frac{x_4}{2}\right)^2 + \left(\frac{x_4}{2}\right)^2 =$$

$$= x_1^2 + x_2^2 + x_3^2 + x_4^2 + (x_1 + x_2 + x_3) x_4,$$

then to any four real numbers x_1 , x_2 , x_3 , x_4 there are four integers g_1 , g_2 , g_3 , g_4 such that

$$A(x_1-g_1, x_2-g_2, x_3-g_3, x_4-g_4) \leqslant \frac{1}{2}$$

From this lemma, the inequality in the text follows on defining x_1 , x_2 , x_3 , x_4 by the formulae

$$x_4 = r_4 + s_6 + s_7 + s_8,$$
 $2x_1 + x_4 = 2r_1 + r_4 + s_6,$ $2x_2 + x_4 = 2r_2 + r_4 + s_7,$ $2x_3 + x_4 = 2r_3 + r_4 + s_8,$

so that

$$s_4 + s_6 + s_7 + s_8 = x_4 - g_4, 2s_1 + s_4 + s_6 = 2(x_1 - g_1) + (x_4 - g_4), 2s_2 + s_4 + s_7 = 2(x_2 - g_2) + (x_4 - g_4), 2s_3 + s_4 + s_8 = 2(x_3 - g_3) + (x_4 - g_4).$$

Therefore by (4), (6), and the definition of the inverse,

$$N(A - GG_0) = N(AG_0^{-1})G_0 - GG_0 = N(AG_0^{-1} - G)N(G_0) < N(G_0).$$

Since the C-number $A-GG_0$ is integral and lies in \mathfrak{a} , it must therefore vanish. Hence every element A of \mathfrak{a} is of the form

$$A = GG_0, (16)$$

where G is an element of J. Conversely, any product of this form belongs to \mathfrak{a} ; we have therefore proved that every left ideal is a principal ideal.

The fact that multiplication in C is not associative, allows us to derive further consequences from this result. Let G_1 and G_2 be two arbitrary integral C-numbers. Then by definition of $\mathfrak a$ the number G_2G_0 and therefore also the number $G_1(G_2G_0)$ belong to $\mathfrak a$. Hence there exists a third integral C-number G_3 , such that

$$G_1(G_2G_0) = G_3G_0. (17)$$

By specializing G_1 and G_2 in this equation, we derive properties of G_0 .

§ 4.—The basis of an ideal.

In order to apply this method, put $G_0 = (g \mid h)$, and let

$$G_1 = (i_{\alpha} \mid 0), \quad G_2 = (i_{\beta} \mid 0),$$

where (a, β, γ) is a cyclic permutation of (1, 2, 3), hence

$$i_{\alpha} i_{\beta} = -i_{\beta} i_{\alpha} = i_{\gamma}$$
 .

Then we find that

$$G_1(G_2G_0) = (i_{\gamma}g \mid -hi_{\gamma}) = G_3G_0,$$

and therefore

$$G_3 = \{G_1(G_2G_0)\}G_0^{-1} = \{G_1(G_2G_0)\}\frac{\overline{G_0}}{N(G_0)} = \left(i_{\gamma}\frac{g\overline{g} - h\overline{h}}{g\overline{g} + h\overline{h}}\right| - \frac{2hi_{\gamma}g}{g\overline{g} + h\overline{h}}\right).$$

As we have proved, G_3 is an integral C-number; hence

$$\frac{g\overline{g}-h\overline{h}}{g\overline{g}+h\overline{h}},$$

or twice this number is a rational integer. The second case is excluded by the congruences (14), since the first quaternion component of G_3 is a multiple of the quaternion unit i_{∞} . Therefore either

$$g\bar{g} - h\bar{h} = 0; (18)$$

 \mathbf{or}

$$g\bar{g} - h\bar{h} = \mp (g\bar{g} + h\bar{h}). \tag{19}$$

If (18) holds, then the first quaternion component of the integral C-number

$$G_3 = \left(0 \left| \frac{-hi_{\gamma}g}{g\bar{g}} \right) \right.$$

vanishes. Therefore the second component

$$-\frac{hi_{\gamma}g}{g\bar{g}} = -(hi_{\gamma}g)(g^{-1}\bar{g}^{-1}) = -hi_{\gamma}\bar{g}^{-1} = \varepsilon_{\gamma}$$

is an integral quaternion, so that by $i_{\gamma}^2 = -1$,

$$h = \varepsilon_{\nu} \overline{g} i_{\nu}$$

This equation holds for $\gamma=1,\,2,\,3$; by (18), the three quaternions ϵ_{γ} are units. Obviously

$$\epsilon_{\alpha} \bar{g} i_{\alpha} = \epsilon_{\beta} \bar{g} i_{\beta}$$

hence

$$\bar{g} i_{\alpha} i_{\beta} = \bar{g} i_{\gamma} = - \varepsilon_{\alpha}^{-1} \varepsilon_{\beta} \bar{g},$$

and therefore

$$h = \varepsilon_{\gamma} \bar{g} i_{\gamma} = - \varepsilon_{\gamma} \varepsilon_{\alpha}^{-1} \varepsilon_{\beta} \bar{g},$$

so that

$$h = \tau \, \overline{g}, \tag{20}$$

where

$$\tau = -\varepsilon_1 \varepsilon_2^{-1} \varepsilon_3 = -\varepsilon_2 \varepsilon_3^{-1} \varepsilon_1 = -\varepsilon_3 \varepsilon_1^{-1} \varepsilon_2.$$

The number τ is a unit, since it is a product of units. We further have

$$\bar{g} i_{\gamma} \bar{g}^{-1} = j_{\gamma}$$
, where $j_{\gamma} = -\epsilon_{\alpha}^{-1} \epsilon_{\beta}$. (21)

These three numbers j_{γ} are units; from their definition

$$j_1^2 = j_2^2 = j_3^2 = -1, \qquad j_\alpha j_\beta = -j_\beta j_\alpha = j_\gamma.$$

Hence, by a result of Hurwitz4,

$$j_{\alpha} = \sigma_{\alpha} i_{\nu_{\alpha}} \qquad (\alpha = 1, 2, 3),$$

where v_1 , v_2 , v_3 is a permutation of 1, 2, 3, and where the σ_{α} are signs ∓ 1 such that

$$\sigma_1\,\sigma_2\,\sigma_3\,=\,1.$$

Since $\bar{g}^{-1} = g/N(g)$, (21) takes the form

$$\bar{g} i_{\alpha} g = \sigma_{\alpha} i_{\nu_{\alpha}} N(g).$$

Now, if

$$g = g_0 + g_1 i_1 + g_2 i_2 + g_3 i_3,$$

then

$$\bar{g} \, i_1 g = (g_0^2 + g_1^2 - g_2^2 - g_3^2) \, i_1 + 2 (g_1 g_2 - g_0 g_3) \, i_2 + 2 (g_1 g_3 + g_0 g_2) \, i_3,
\bar{g} \, i_2 g = 2 (g_1 g_2 + g_0 g_3) \, i_1 + (g_0^2 - g_1^2 + g_2^2 - g_3^2) \, i_2 + 2 (g_2 g_3 - g_0 g_1) \, i_3,
\bar{g} \, i_3 g = 2 (g_1 g_3 - g_0 g_2) \, i_1 + 2 (g_2 g_3 + g_0 g_1) \, i_2 + (g_0^2 - g_1^2 - g_2^2 + g_3^2) \, i_3.$$

Here, on the right-hand side, only one coefficient in each line, namely, that of i_{ν_a} is different from zero. A simple discussion of the 6 possible cases shows that therefore either

$$g = \delta \epsilon$$
 or $g = \delta \epsilon (1 + i_1),$ (22)

where δ is a rational number and ϵ one of the 24 quaternion units. Therefore G_0 is of one of the two forms

$$G_0 = \delta(\varepsilon \mid \tau \overline{\varepsilon})$$
 or $G_0 = \delta(\varepsilon (1 + i_1) \mid \tau (1 - i_1) \overline{\varepsilon}).$

This equation for G_0 can also be written as

$$G_0 = \delta(\epsilon \mid \epsilon^*)$$
 or $G_0 = \delta(\epsilon(1+i_1) \mid \epsilon^*(1+i_1)),$ (23)

where ϵ and ϵ^* are two quaternion units.

The first number $(\epsilon \mid \epsilon^*)$ has the norm 2; hence $G_0 = \delta(\epsilon \mid \epsilon^*)$ is an integral C-number only if δ is a rational integer.

The second number $(\epsilon(1+i_1) \mid \epsilon^*(1+i_1))$ has the norm 4 and can be written as

$$(\mp i_{\alpha} \mp i_{\beta} \mid \mp i_{\alpha'} \mp i_{\beta'}), \tag{24}$$

where $a \neq \beta$, $a' \neq \beta'$; here a, β , a', β' are four indices 0, 1, 2, 3, and we have put $i_0 = 1$. The congruences (14) determine in which cases the C-number (24) is divisible by 2, and when this is not possible.

We have thus the final result:

"If the integral C-number G_0 is of the form (18), then

$$G_0 = \delta G^*$$
,

where δ is a rational integer, and where G^* is either a unit C-number

$$G^* = \left(\frac{\mp i_a \mp i_\beta}{2} \middle| \frac{\mp i_{a'} \mp i_{\beta'}}{2}\right),\tag{25}$$

or a C-number of norm 2 of the form

$$G^{1} = (\varepsilon | \varepsilon^{*}) \quad (\varepsilon, \varepsilon^{*} \text{ quaternion units}),$$
 (26)

or a C-number of norm 4 of the form

$$G^* = (\mp i_\alpha \mp i_\beta \mid \mp i_{\alpha'} \mp i_{\beta'}).$$
 (27)

§ 5.—The basis of an ideal (concluded).

We now assume that G_0 satisfies (19) and so is of one of the two forms

$$G_0 = (g \mid 0)$$
 or $G_0 = (0 \mid h)$,

where g, respectively h, is evidently an integral quaternion.

Let again (a, β, γ) be a cyclic permutation of (1, 2, 3). Then

$$(0 \mid i_{\alpha})\{(0 \mid i_{\beta})(g \mid 0)\} = (-gi_{\gamma} \mid 0),$$

$$(0 \mid i_{\alpha})\{(0 \mid i_{\beta})(0 \mid h)\} = (0 \mid i_{\gamma}h),$$

and therefore G_8 has the values

$$\left((0 \mid i_{\alpha}) \left\{ (0 \mid i_{\beta}) \left(g \mid 0 \right) \right\} \right) (g \mid 0)^{-1} = (-gi_{\gamma} \mid 0) \left(\frac{\bar{g}}{N(g)} \mid 0 \right) = \left(-\frac{gi_{\gamma}\bar{g}}{N(g)} \mid 0 \right),$$

$$\left(\left(0\mid i_{\alpha}\right)\left\{\left(0\mid i_{\beta}\right)\left(0\mid h\right)\right\}\right)\left(0\mid h\right)^{-1}=\left(0\mid i_{\gamma}h\right)\left(0\mid -\frac{h}{N(h)}\right)=\left(\frac{\overline{h}i_{\gamma}h}{N(h)}\mid 0\right).$$

Since G_3 is integral, we have so obtained the conditions that the quaternions

$$\frac{gi_{\gamma}\overline{g}}{N(g)} \qquad (\gamma = 1, 2, 3),$$

respectively the quaternions

$$\frac{\overline{h}i_{\gamma}h}{N(h)} \qquad (\gamma = 1, 2, 3)$$

are integral. That allows to find the form of these quaternions; it will be sufficient to carry this out in the case of g. Let

$$g = g_0 + g_1 i_1 + g_2 i_2 + g_3 i_3.$$

Then

ly, ble

!)

:e-

ın

be

nd

1e

$$\begin{split} gi_1\overline{g} &= (g_0^2 + g_1^2 - g_2^2 - g_3^2)i_1 + 2(g_1g_2 + g_0g_3)i_2 + 2(g_1g_3 - g_0g_2)i_3, \\ gi_2\overline{g} &= 2(g_1g_2 - g_0g_3)i_1 + 2(g_0^2 - g_1^2 + g_2^2 - g_3^2)i_2 + 2(g_2g_3 + g_0g_1)i_3, \\ gi_3\overline{g} &= 2(g_1g_3 + g_0g_2)i_1 + 2(g_2g_3 - g_0g_1)i_2 + (g_0^2 - g_1^2 - g_2^2 + g_3^2)i_3. \end{split}$$

The real parts of these quaternions vanish; they are therefore divisible by $N(g) = g_0^2 + g_1^2 + g_2^2 + g_3^2$ if and only if the coefficients of i_1 , i_2 , i_3 are divisible by N(g). That gives the conditions that the rational numbers

$$2(g_{\mu}^{2}+g_{\nu}^{2}), \quad 4g_{\mu}g_{\nu}$$
 $(\mu, \nu=0, 1, 2, 3; \mu\neq\nu)$

are all integral multiples of N(g) and therefore themselves integers.

There are now two cases. If $2g_0$, $2g_1$, $2g_2$, $2g_3$ are all odd integers, then N(g) is a divisor of the odd integer $4g_0g_1$ and therefore also odd. Let p be a prime factor of N(g). Then at least one of the integers $2g_{\mu}$ is divisible by p, say the number $2g_{\mu}$. Since the three numbers

$$(2g_{\mu_0})^2 + (2g_{\nu})^2$$
 $(\nu = 0, 1, 2, 3; \nu \neq \mu_0)$

PROC. R.I.A., VOL. XLVIII, SECT. A.

are integral multiples of N(g), all integers $2g_{\nu}$ are divisible by p. Hence the highest power of p dividing N(g) is even; N(g) is therefore the square

$$N(g) = \delta^2$$

of an odd integer, and g has the form

$$q = \delta \epsilon$$
.

where ϵ is a quaternion unit of the form

$$arepsilon = rac{\mp \ 1 \mp i_1 \mp i_2 \mp i_3}{2}.$$

Next let all coefficients g_{μ} be integers. The same proof as in the last case shows that every odd prime factor of N(g) divides g_0 , g_1 , g_2 , g_3 and therefore is a square factor of N(g). Further let 2^5 be the highest power of 2 which divides all coefficients g_{μ} , say

Then at least one coefficient g_0^* , g_1^* , g_2^* , g_3^* is relatively prime to 2; on the other hand, the expressions

$$2 (g_{\mu}^{*2} + g_{\nu}^{*2}), 4g_{\mu}^{*}g_{\nu}^{*} \qquad (\mu, \nu = 0, 1, 2, 3; \mu \neq \nu)$$
 (28)

are all divisible by at least the same power of 2 as $2^{-2\zeta}N(g)$. If all integers g_{μ}^* are odd, then the expressions (28) are divisible by 4 but not by 8, and $2^{-2\zeta}N(g)$ is exactly divisible by 4. In this case $2^{-\zeta-1}g$ is still an integral quaternion, so that we come back to the preceding case: Again

$$g = \delta \epsilon_{,}$$

where δ is a rational integer (which is now even), and ϵ is a unit

$$\epsilon = \frac{\mp 1 \mp i_1 \mp i_2 \mp i_3}{2},$$

Finally assume that at least one number g_{μ}^{*} is even and at least one is odd. Then the expressions (28) are divisible by no higher power of 2 than the first power, and the same holds for $2^{-2\zeta}$ N(g). Hence now

$$g = \delta \varepsilon$$
,

where δ is an odd or even rational integer, and where ϵ either is one of the units

$$\varepsilon = \mp 1, \mp i_1, \mp i_2, \mp i_3$$

or one of the integral quaternions of norm 2,

$$\mp 1 \mp i_1, \quad \mp 1 \mp i_2, \quad \mp 1 \mp i_3, \quad \mp i_2 \mp i_3, \quad \mp i_1 \mp i_3, \quad \mp i_1 \mp i_2.$$

This exhausts the possibilities for g. Since \overline{h} satisfies the same conditions as g, there are identical results for h. We have therefore proved:

"If the integral C-number G_0 is of the form (19), then

$$G_0 = \delta G^*$$

where δ is a rational integer, and where G^* is either a unit C-number

$$G^* = (\varepsilon \mid 0) \quad \text{or} \quad G^* = (0 \mid \varepsilon),$$
 (29)

with a quaternion unit ε, or where G* is a C-number of norm 2,

$$G^* = (\mp i_{\mu} \mp i_{\nu} \mid 0)$$
 or $G^* = (0 \mid \mp i_{\mu} \mp i)$." (30)

Combining the results of §§ 3-5, we have thus found:

Theorem 2: Every left ideal in the ring of all integral C-numbers is a principal ideal, and is generated by an integral C-number

$$G_0 = \delta G^*$$

where δ is a rational integer, and G^* an integral C-number with norm 1 or 2 or 4.

This theorem does not assert that every integral C-number of the forms (25), (26), (27), (29), (30) which has norm 1 or 2 or 4 generates an ideal. In fact this is not so, for it can be shown that the C-number $(g \mid g)$, where

$$g = \frac{1}{2} (1 + i_1 + i_2 + i_3),$$

does not generate an ideal, since

$$\{(i_1 \mid 0) [(0 \mid i_2) (g \mid g)]\} \frac{1}{2} (\bar{g} \mid -g) = (\frac{1}{2} (-i_2 - i_3) \mid \frac{1}{2} (-1 + i_1)),$$

which is not an integral C-number because the congruences (14) are not satisfied.