REMARKS ON TERNARY DIOPHANTINE EQUATIONS
KURT MAHLER, University of Manchester

Let F(x, y) be a binary form of order » =3 with integral coefficients, 20
an integer, Py, - - -, P; a finite set of different prime numbers. The following

results have been proved :*
THEOREM 1. If the equation
F(x,y) =k

has an infinity of integral solutions x, vy, then F(x, y) is a power of a linear form
or of an indefinite quadratic form.

THEOREM 2. If the equation
F(z,9) = F P - P!

has an infinity of integral solutions x, vy, 21, * + -, 2, where x and y are relatively
prime, and 2,20, - - -, 2,20, then F(x, y) is a power of a linear or quadratic form.

Now consider a ternary form F(x, v, ) of order # = 3 with integral coefficients,
and the representations of integers £5£0 by this form. If F(x, y, z) is decom-
posable into a product of linear forms with algebraic coefficients and if # is suffi-
ciently large, then results analogous to Theorem 1 and 2 are true.} On the other
hand, very little is known about the more general case when F(x, v, z) is ir-
reducible in the field of all constants. In this note, I construct examples of
ternary forms of every order with the property of representing at least one
integer 20, or even every integer, in an infinity of different ways. I further
show how to form positive definite ternary forms of every even order with the
property that for an infinity of different sets of relatively prime integers x, y, 2
the greatest prime factor of F(x, y, z) is bounded. Special cases of forms with
these properties are well known; e.g., the equation

¥+ y+B=1
has an infinity of integral solutions, since identically in ¢,
(9843 4 (3¢ — 914)3 + (1 — 91%)3 = 1;
and the equation
x4yt gt =274

has an infinity of integral solutions with relatively prime , v, 2, since identically
in x and v,

* A. Thue, Norske Vid. Selsk. Skr. 1908, Nr. 7. K. Mahler, Math. Ann. 107, 1933, pp. 691-730.
t C. L. Siegel, Math. Z. 10, 1921, pp. 173-213.

E. T. Parry, Journal of the London Mathematical Society, 1940, vol. 15, pp. 293-305.

1 The equation x2+xy+3y*="7" has an infinity of integral solutions with relatively prime x, y.
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at oyt 4 (2 + )t = 2(07 + 2y + y9)2

The stated results are obtained by the construction of simple identities. In
a similar way, it is possible to show the following theorem: “If F(x, y, z) is an
srreducible cubic form with integral coefficients, such that the equation F(x, y, z) =0
has at least one solution in integers not all zero, then F(x, vy, 2) either represents all
integers in a suitable linear progression at+b (1=0,F1, F2,---) or it repre-
sents a certain integer k=0 in an infinity of different ways.” Let g, h, k be three
integers not all zero such that

F(g, h, k) = 0,

and denote with F,, F;, F; the values of the three first partial derivatives
0F/dx, dF/dy, dF/0z for x=g, y=h, z=Fk. There are three integers not all zero
such that

GFg+ HFh+ KFk = 0.

Let'now ¢ be a parameter; then
F(gt+G, ht+ H, kt + K) = A3+ B2+ Ct+ D

is a cubic polynomial in ¢. This polynomial cannot vanish identically, since
F(x, y, 2), by hypothesis, is irreducible. It is however at most of the first degree.
For the assumptions about g, %, k; G, H, K are equivalent to 4 =B=0.
According as to whether C#0 or C=0, F represents all integers of the progres-
sion Ct+ D, or is equal to D for all values of £. In the second case D 0, since
F£0.

1. Ternary equations with an infinity of solutions. The general ternary form
F(x, v, 2) of order »n has

N = ("+1)2(n+2)

coefficients. If

p1(®),  p2(8), ps(® ( hz | pu(t) | > 0 for all t)

are three polynomials in a parameter ¢ with integral coefficients and of degree
less than or equal to », then

E(p1(8), p2(9), p3(8)) = 6(2)

is a polynomial in ¢ of degree not greater than nv; its coefficients are linear forms
in the’coefficients of F(x, y, 2) with integral numerical coefficients; say

o) = 3 LuE)e

If ¢(2) is to be a constant, then the coefficients of F(x, y, 2) must satisfy the np
linear equations
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L) = 0 (h=1,2,-- -, m).

For N>mnp, this system has always a non-trivial solution in integers; there is
therefore then a ternary form of order » with integral coefficients not all zero
such that

F(pu(8), pa(8), p3()) = Lo(F)

is independent of {. The so constructed form F(x, y, 2) may, however, be re-
ducible, and the constant Lo(F) on the right-hand side may vanish. In the special
case » =1 of linear polynomials p;(¢) both complications can always be avoided,
and it is possible to determine irreducible forms F(x, y, 2) of every order # such
that the constant ¢(¢) =L(F) #0.*

The form F(x, y, 2) constructed in this manner is not definite; it assumes the
values k=Ly(F) for every integral value ¢{=0,F1, F2, - --. I give here a few
examples of this kind:

a3+ y3+- 28 Axyz=N3+27 identically in ¢ for x=¢+4\, y= —1,2= 35
y23—12x3+4322=12 identically in ¢ for x=¢+41, y=3¢, 2=1¢+42;

2xt— yt— 244 2x%y? 24292 — 49?32 = — 6 identically in ¢ for x=¢, y=¢-+4+1,2=¢—1;
2(xt+yY — (x— v)2%2(3x— 3y+2z) =4 identically in ¢ for x =441, y=1¢—1,2=142.

2. Forms which represent every integer. Let «, 8, v be three integers and
assume that the form F(x, v, 2) of order n has the following property:
“On replacing 2 by ax+By+v, we get identically in x and v,

(1) F(x, y, ax + By +v) = p(x) + ay,

where a is a constant and p(x) a polynomial in x both depending on F.”
Assume the form has this property, and let

Ely 225 Ty Ss
be the different residues of p(x) mod a; since
p(x) = p(x’) mod ¢ for x = #',mod a,

each congruence
p(x) = £, mod o (e=1,2,--+,5)

has an infinity of integral solutions x. Hence if k is any integer in one of the
residue classes

k=t mod a (e=1,2,---,5),
p(x) +ay =k

then

* This corresponds to the fact that there are irreducible algebraic curves of every order # which
intersect a given straight line only in # coinciding points.



1942] REMARKS ON TERNARY DIOPHANTINE EQUATIONS 375

has an infinity of integral solutions «x, y, and therefore the equation F(x, y, 2) =k
has an infinity of integral solutions, x ¥, 2.

The following forms satisfy the identity (1):
(2) Fl(xr Y, 2.') = xn—l(z"—ﬁy)l (l= 0, 1’ y B — 1);
Fﬂ(x’ Y, g) = y(z - ax — By)n_]’

as is evident on putting z2=ax-+By-+vy. A further and less obvious solution is
obtained in the following way:
We assume that this solution can be written as

Frii(%, 9, 2) = 2" + 3fi(x, )27 + yfe(w, y)z~2 + - -
+ yfn~2(x, 3’)2 + yfn~1(xr y):

where fr(x, y), for k=1, 2, - - -, n—1, is a binary form in x, y of order k& with
integral coefficients. Evidently none of the forms (2) is of this type.
From (1) and (3), we get

Fopr(w, 3502 + B8y +79) = (ax + By + 1) + 3fu(x, y)(ax + By + 7)™ + - -
+ yfa-a(x, ¥)
= p(x) + ay.

Hence, on developing both sides into sums of binary forms in x, y and comparing
forms of equal order,

(ax+By)"+3fi(x, y)(ax+By)" 2+ -+« +3fus(®, ¥)(@x+By)+3fua(x, 3)  =cax™,
-2 1
(1) @t ("77) s ety -+ () e D=t

(3)

( Z ) (ax+By)» 2+ (n;Z) yfi(x, y) (ex+By)" 4+ - - - + ( i ) Wfu—a(®, ¥)=Cn 222,

.......................................

(an) (ex+hy)* + (Z:i) Wil ;’) =cox?,

(nfl) (ax+By) =cx+ (nzz_l) ay.

Here the ¢’s are suitable constants; their values are found by putting y=0,
namely:

n ’ n n
Cn = &% Cp1 = 1 an—l, Cn—2 = 9 an~2’ T, 01 = "— 1 o,

dk(x! y)=dk=(ax)k—(ax+ﬁy)k (k=2’ 3)"')”)'
Then the last equations take the form,
31(%, ¥) (ax+By)" 2+ yfa(x, ) (@x+By)" 7+ -+ + +3faa(®, ) =dn,

("77) i Dtayrt (") st ety o () e, 9= () doon

Let
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(*72) s msamss () st et -+ (2 st 2 (7)o

...........................................

()t (1)

This system of linear equations for

yfi(x, ¥), yfa(x, ), - -+, Yfur(x, ¥)

is easily solved just in the required form; for the expressions on the right-hand
side are all divisible by y. We find for small values of #:

n=1: Fyx, vy, 3) = z;
n=2:Fx,v,2) = 22+ dy;
n=3: Fyx, v, 3) = 3%+ 3doz + (ds — 3(ax + By)ds);
n = 4:Fy(x, y, 3) = 2* + 6dez® + 4(ds — 3(ax + By)de)z + (ds — 4(ax + By)ds
+ 6(ax 4 By)ids);
n = 5: Fg(x, y, 3) = 25 + 10ds23 + 10(ds — 3(ax + By)ds)2® + 5(di— 4(ax + By)ds
+ 6(ax 4 By)%ds) + (ds — S(ax + By)ds + 10(ax + By)?ds
— 10(ax + By)*ds).
It is also clear that the following formulae hold:
Fy(x, y, ax + By + v) = a" Hax + v)* t=0,1,---,n—1)
(4) Fo(2, 3, ax + By + v) = v*'y;
Frii(x, 3, ax + By + v) = (ax + v)" + nfy™""y.
Assume in particular that
a#0, B#0, y=#0.

Then the n+2 forms (2) and (3) are linearly independent; for the polynomials
in x

xn_l(ax'!")’)z (l=0,1,,ﬂ_1)

are clearly linearly independent, since no two of them vanish to the same order
at x =0 or at x= —v/a. Therefore the form of order 7,

n+1
(5) F(x’ Y, 2’) = Z ClFl(x’ Y, Z),

=0
where Cy, Ci, - -+, Cny1 are arbitrary integers not all zero, does not vanish
identically; it is again a solution of (1).

Take
vy =1, Co+CrymB =1
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and choose F such that F(x, 0, ax-+7) is a polynomial in x exactly of degree #.
Then by the remark at the beginning of this paragraph, F(x, y, 2z) represents
every integer in an infinity of different ways. We furthermore have

F(x, y, ax + By +v) = F(x, 0, ax + v) + v,

and conclude that F(x, y, 2) is an irreducible form in x, v, 2, since the expression
on the right-hand side is irreducible in x and ¥ and of exact degree # in x. It is
again clear, as in the preceding paragraph, that the so constructed form,
F(x, v, 2) is indefinite.

3. Forms with bounded greatest prime factor. A positive definite ternary
form of order n, F(x, y, 2), represents every integer % in at most a finite number
of ways. Since F(x, y, 2) is positive definite, its order is even, say #=2m, The
values of F on the sphere x24y2+42%2=1 are always positive; since F is continu-
ous, they have a minimum value ¥ >0 on this sphere. Hence

F(x, v, 2)
(2% + 32 + 25"

for all points of this sphere, and therefore for all points of space, since f(x, v, 2)
is homogeneous of order zero. Hence, if 2>0 is given and F=k, then

E=F(x, 9,2 2 V&' + 2+ D™ de ||, |y] |2] = @&/V)0m,

so that there are at, most a finite number of integral solutions x, vy, z.
Suppose in particular, that this form can be written as

(6) F(x y:2) = aQ(x, )™+ (5 — . — 9)G(x, ¥, 2),

where ¢ 0 is an integer and

Q(x, v) = ax® + Bxy + v»*

is a quadratic form in x and v, and G(x, y, 2) a form of order n—1 in x, y, 2,
both with integral coefficients. Since

(7) F(x) Y, * + y) = aQ(x7 y) ™

the form Q(x, y) must be positive or negative definite; otherwise there would be
real x, y, 2 not all zero such that F(x, v, 2) =0.

By the theory of quadratic forms, it is possible to find for every integer
t=1 a system of ¢ different prime numbers

Py, Py, - - -, Py,

v

\%

flx, ,2) =

such that the equation

O(x,y) = F Py’ --- P}

has an infinity of integral solutions %, y, 21, * -+ - , 2, where x and y are relatively
prime and 2,20, - - -, 2,20. Hence, by (7), there exist an infinity of different
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sets of three relatively prime integers x, ¥, 2, for which the greatest prime divisor
of F(x, ¥, 2) is bounded.

It is possible to find positive definite forms F(x, y, 2z) of every even order
n=2m, which can be written as a sum (6). For instance, it suffices to take

G(x, v,3) = (3 — . — y)H(x, v, 2),

where H(x, y, ) is a positive definite form of order #—2=2(m—1). Or we may
take G(x, v, 2) arbitrary, but such that G(0, 0, 1)>0, and then can make
F(x, v, 2) positive definite by just choosing for @ a sufficiently large positive
integer.

In the excluded case that Q(x, ) is indefinite, F(x, y, 2) evidently represents
an infinity of different integers k in an infinity of different ways.

As there are many forms of the type (6), we may impose on them further
conditions, e.g., consider only forms which are quadratic or cubic forms in
xh, y*, 2t In the following examples, the sign “—” means that the right-hand
side is derived from the left-hand side by the substitution z=x-+7y.

(a) Quadratic forms in x2, y2, 22, A few examples are given by the identities,
in which « is arbitrary:

(1 — a)x* + ax?y® + ax’?® + o?y%?— (2 + axy + ay?)?%;
axt + alda — Dyt + azt + (1 — 2a)x%2 — (22 + xy + 2ay?)%
(b) Quadratic forms in 3, 33, 2% The following identities hold for arbitrary a:
(a2 — da + 4)(2% + 95) + (a? — a + 1)38 + (3a® — 16a% + 28a — 16)x%y?
— (202 — Sa + 2)(x® 4 y%)z® — 3(2? + axy + y2)3;
(@ — 3a 4 3)a® + a2(y8 + 2% + (2a% — 3a)23(y® — ) + (30 — 202)y%
— 3(#? + axy + ay?)?;
a(x8 + 2% 4 (3a® — 302 + o)yt + (2a — 3a?)y¥(x® — 2°) + (3 — 2a)x%3°
— 3(a? + xy + ay?)®.
(c) A quadratic form in x%, y*, z*:
a8 + 8 + 1728 4 14(x* + y9)2* — 2(24? 4 3xy + 2yP)"

(d) There is no irreducible cubic form in x4, ¢, z* with rational coefficients,
but there are four with coefficients in K(+/3) which are conjugate in pairs with
respect to this field.

Final remark. Analogous to (6), there are positive definite quaternary forms
F(x, v, 2, w) of every even order # = 2m which can be written as

F(x, v, 3, w) = aQ(x, y,2)™ + (w — x — y — 2)G(=, ¥, 3,-w),

where a0 is an integer, Q(x, y, z) a positive definite quadratic form and
G(x, v, 2, w) a form of order n—1. For forms F of this kind, the equation F(x,
v, 2, w) =k has evidently at least const. ]kl Un solutions for an infinity of &’s.



