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A PROBLEM OF DlOPHANTINE APPROXIMATION IN
QUATERNIONS

By KURT MAHLER.

[Received 19 June, 194!.—Read 26 June, 1911.]

In two previous papersf I studied the upper bound of products of
two or three linear polynomials in real or complex integral variables. In
the present paper I use the same method to prove the following result:

" / / a, /?, y, 8, p, a are constant quaternions such that

then there are two integral quaternions x, y satisfying

In so far as the proof is based on special properties of the quaternions,
I am indebted to a paper of Speiser % and of course to Hurwitz's classical
book Zahlentheorie der Quaternionen.

In the first chapter, upper bounds for the maximum of \x\ in certain
sets of quaternions are derived; I mention in particular Theorems 2, 8
and 10, which have some interest in themselves. The second chapter
deals chiefly with the reduction of Hermitian forms in quaternions; by
combining these results with those of the first chapter, the theorem stated
is obtained in the usual way.

I am very much indebted to Prof. Mordell for his help with the
manuscript.

t Journal London Math. Soc, 15 (19±0), 215-236 and 305-320.
X Journal fur Math., 167 (1932), 88-97.
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CHAPTER I. INEQUALITIES.

1. Notation.

Let K be the field of all quaternions

x = a?Q-j-:£j^-|-aj2*2 i *̂ 3*3>

where a;0, a ,̂ a;2, a;3 are arbitrary real numbers, and let

X = #Q ^ I ^ I ^2^2 *^3^3J

JV(ru) = icsc — | x |2 = o;0
2 - j - a; x

a - j - i c 2
2 + c c 3

2

be the conjugate to x, its absolute value, its trace and its norm. We repre-
sent a; by a point with rectangular coordinates {x0, xx, x2, xs) in the
four-dimensional Euclidian space K, and call this point also x. Then two
points x and y have the distance \x—y\.

By Hurwitz's definition!, x is an integral quaternion, if it can be
written in the form

where g0, gv g2, g3 are rational integers, and j is tho quaternion

Hence re is integral if all numbers 2x0> 2x±, 2x2, 2x3 are even or all are odd
rational integers. The set of all integral quaternions forms a lattice L
which is generated by the four points j , ix> i2, i3, and which, is the four-
dimensional analogue to the centred cube lattice in ordinary space.

Two points a; and y in K are called congruent, in symbols x = y, if their
difference x—y lies in L.

2. A lemma on linear inequalities.

The following simple lemma is used repeatedly in this paper:

THEOREM 1. Suppose that the linear inequalities with real coefficients

>0 (A = 1 , 2 , ..., m)

f "Zahlentheorie der Quaternionen", Math. Abhandlunyen, 2 (1933), 303-330, in
particular p. 309.
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define a bounded set S of points x= (a;l5 ..., xn) in n-dimensional Euclidian
space. Then the maximum of

the distance of x from the origin, is assumed only in points of 8 in which
at least n of the functions lh(x) vanish simultaneoitsly.

Proof. Since f{x) is continuous and bounded, there is at least
one point x°= (x^0, ..., xn°) of S in which f(x°) takes its largest value.
If less than n of the numbers lh(x) vanish, then we can find a positive
number e and n numbers a^1, ..., x^ not all zero, such that all points

x = (a^+tei1, ..., x^+tx,*) with — e <2 < + e

belong to 8. For these points,

with real coefficients a, j8, y, of which £0"(O) = a =f(xr)2 > 0. Hence this
function is not a maximum for t = 0, contrary to hypothesis.

COROLLARY. The theorem remains true when some of the inequalities
lh(x) ^ 0, defining S, are replaced by the equations lh(x) — 0.

This follows from the last proof.

3. The sets kand A(g).

Let A be the set of all quaternions x — xo-\-xxi1-\-x2i2-\-x3iB such that

(1) | a; | ^ | #—g \ foi every integral quaternion g.

This set has the following properties:

THEOREM 2. (a) A is determined by the linear inequalities

(2) |*0|<i K K i J W W
(6) For all points of A,

(3)

with equality if and only if x is one of the 24 points

U\ TITh T 1̂**2 Tl^a's TH^H TiiTi3
2 2 2 2 2

(c) To ever?/ quaternion there is a congruent one in A,
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Proof. (A) / / x satisfies (2), then (3) also holds. The formulae (2)
can be written as

Hence, by Theorem 1, the maximum of \x\ is attained in a point in which
at least four of these inequalities hold in the stronger form with the sign
of equality. This clearly is possible only in the points (4), and these are
all of absolute value

(B) The set (2) is identical with A. If g = goj-\-0i*i+02*2+03*3 *s a n

integral quaternion, then the inequality \x\ <|a;—g\ can be written as

where

„ -_0o_ , _ 00+201 _0o+2ff2 _9o±2fh v = M
y°-2\g\> y*~ 2\g\ ' y*~ 2\g\ ' y* ~ 2\g\ ' 2 3

and therefore 7o2+7i2+722+732== 1-

Hence the distance F of the h3^perplane

from the origin is \ if g is one of the 24 units

of /r, and it is greater than or equal to yj\, if g ^ 0 is any other integral
quaternion. Therefore those inequalities (1) which are not included in
(2) are a consequence of the latter.

(C) If # is an arbitrary quaternion, then there is an integral quaternion
h such that

I x—h I < I x—g—h j for all integral quaternions g.

Hence x' — r—h = x satisfies (1) and therefore lies in A. This completes
the proof.

For any quaternion g, let A(gr) be the set of all points x for which x—g
belongs to A; in particular A(0) = A. /\(g) can also be defined as the
set of all points whose distance from g is not larger- than that from any
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other point congruent to g. If g runs over all elements of L, then the
sets A(^) together just fill up the space K without overlapping.

4. The singular vertices and the transformations of A.

The 24 points (4) on the boundary of A are called singular vertices,
or, briefly, SV; the same name is given to all congruent points. If So

denotes the special SV

then all SV of A given by (4) can be written as

£ = e£0,

where e denotes the 24 units (5) of K. The 24 transformations of K

(6) x -> ex

(i.e. the association with the point x of a new point ex, or replacing x by ex),
transform the SV (4) of A into one another; they leave all distances and
the lattice L invariant, and therefore also the set A. More generally,
the group of transformations

(7) x-*ex+g,

where e is a unit and g an integral quaternion, transforms the lattice L
and the set of all SV into themselves, preserves all distances, and changes
A into A(gr).

To every SV, there is a sub-group of order 8 of this group (7) which
leaves this point unchanged. For the special SV So, this group consists
of the transformations

(8) x—I,0-+e(x—So), where e = =pi, =Fh, T ^ . T*3-

By this group, A is transformed into the 8 sets

(9) A(gr), where g=0, 1, iv l+ t l f L

these being the only A(g) which meet in the SV 20.
The 24 SV of A can be divided into 3 sets of 8 congruent points, namely

fFvf*3
2 ' 2
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and all points of the first set can be written as

(10) S = S o -0 ,

where g is again one of the 8 numbers (9)
Finally, every SV in K is congruent to one of the three SV

2 ' 2 ' 2 '

and therefore can be written as

2

where the a's are integers of which two are oven and two odd.

5. The sets A* and D.

Let A* be the sub-set of all those points a; of A which satisfy the 24
inequalities

(11) | a : - S 0 | < | a : - 2 | for all SV S in (4).

THEOREM 3. (a) The set A* is determined by the inequalities

f 0 < x 0 < | , 0 < x ± ^ -I;, max (\x2\, \x31) < min (a;0, xj,

( 1 2 ) I

(6) To every x in A there is a unit e of K such that e~xx lies in A*.

Proof. The inequalities (11) are linear in the coordinates of a:; it is
easily shown that those belonging to the 8 SV

y =

imply the other 16 inequalities. On writing doMii these 8 inequalities
and using the definition (2) of A, the formulae (12) follow at once. If
x lies in A. then let 2 = e20 be the SV nearest to it; then So is the SV
nearest to e"1^, and therefore e"1^ lies in A*.

We define a further set D, which is to consist of all points x in K such
that

(13) | a ; - S 0 | < | a : - Z | for all SV 2.

THEOREM 4. (a) T) is determined by the inequality

(14) m a x ( | a : 0 — $ 1 , l ^ - ^ D + m a x {\x2\, \x3\)^$.

(b) The set A* consists of all those points of D which lie in A.



1941.] DlOPHANTINE APPROXIMATION IN QUATERNIONS. 441

Proof. Put

X—So = £ =

Then either a is an integral quaternion, or one of the numbers of each
pair of coefficients (a0, a^) and (a2, a3) is an even and one an odd integer,
so that a is a SV.

The point f satisfies the inequalities

(15) | f | ^ | f—a| for all quaternions a;

or written explicitly,

(16) a.fo+a1

The inequalities corresponding to integral a imply that f lies in A; hence,
by Theorem 2,

But these formulae are a consequence of the inequalities

(17) lfi>l+lkl<*, IW+lfaKi, Ifil+l&Ki. î
which are the inequalities (15) or (16) if a is one of the 16 SV

Now (17) implies (15) for all quaternions a; in order to prove this, it
suffices to assume that a is a SV. Let aK and ak be the two even, and a^
and «„ the two odd coefficients of a; we may suppose without loss of
generality that

> 0.

Then | ^ | < i , | f x | < i ; hence

since aK and ax are even and therefore
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•Further | ft. | < i, | ft. | +1 £, I < i ; hence

.| < K-av)\ ftj+a,(|ft

since aM and a, are odd and therefore

If we now replace £ by z = £-|-20, then (17) changes into (14). The
second assertion of the theorem is evident from (2), (12) and (14).

6. The sets B{r), S(T |Z) , andh*(r).

Let T be a number in the interval

(18) 0<r<i

and 8 (T) the set of all points x for which

(19) |a.0

For T = 0, B(T) reduces to the single point So; for r > 0, So is the centre
of the set.

The transformations (8) do not change So and are easily seen to leave
B(T) invariant. Hence, if the transformation (7) changes So into the new
SV 2, then if x lies in h(r), the point ez+g lies in a new set S ( T | £ ) of
centre 2. This set depends only on r and S but not on the special trans-
formation (7) which changes So into 2. If, in

aK and aK are the two even, and aM and av the two odd coefficients, then
8 ( T | S ) is determined by the inequalities

+ X - ^ +

Since we do not use this result, I omit the simple proof.
For T > 0, the set 8(T) is bounded by 8 hyperplanes. There are 16 sets

of 4 of these hyperplanes which intersect in a point; these 16 points of
intersection are easily found to be

(20) & = 20—2TS, where s = T^Th
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They form the four-dimensional analogue to the vertices of a cube in
ordinary space.

Now let S*(T) be that part of S(T) which lies in A; this new set is
determined by the inequalities

(21) z o < i a?!<i

From these inequalities, we get

-(l-r) = T,

so that x indeed belongs both to A and to 8(T). But the stronger result
holds that x is also an element of A*; for from the last inequalities

max , xx).

Of the vertices (20) of S(T), only 8 belong to S*(T), namely

(22) Z = E 0 - 2 T 5 , where « = - ~ J , - ^ , JZ^, -H

They all lie on the hyperplane

(23) *„+*!= 1-T

and have the same distance

(24) p(r) = ( 2 r 2 -

from the origin.
The points (22) are the only points of intersection of (23) with sets

of 3 of the hyperplanes

xo = O or £, ^ = 0 or £, X

Hence, by Theorem 1, all points of the set

0 <ao<£> ( )<£ !<£ ,

satisfy the inequality
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Therefore this is also true for all points of A* for which

and conversely, if x lies in A* and satisfies the inequality

\x\^p(r),

then x belongs to the set 8*(T), hence also to S(T).

From this result, we deduce

THEOREM 5. Suppose that the point x has a distance not less than p(r)
from every lattice point. Then there is a SV 2, such that x belongs to S(T| 2).

Proof. Let 2 be the SV nearest to x. By a suitable transformation
(7), we can change 20 into 2, and a certain point x0 in A* into x. The
assertion has already been proved for the point x0; it therefore is true
also for .i'. since the transformation (7) preserves all distances, and only
interchanges the domains 8 ( T | 2 ) .

It is useful to remark that if the equation

P ( T ) 2 = 2 T 2 - T + £

is solved for r, then, since 0 ̂  T ̂  \,

(25) T(,,)=W(V-3) for V i < p < V i .

Outside this interval for p, the value of T has no meaning for our problem.

7. An upper bound for the points in 8 (T 12).

Let 2 be one of the 24 SV of A, and x a point in S(T| 2). If x lies in
A, then we know that \x\ ̂  -\/\. A more general result is given by

THEOREM 6. If I, is a singular vertex of A, then

(26) |z|<(2r2+T+i)*

for all points of 8(TJ2) .

Proof. The 24 sets 8 (T 12) are interchanged by the transformations (6),
and these preserve all distances. Hence, without loss of generality, we
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may suppose # to be a point in S(r). Then, by Theorem 1, the maximum of
|a: | is attained in one of the 16 points (20). The 8 points (22) belong to
A and therefore have distances not greater than \/\ from the origin.
The distances from the origin of the remaining 8 points

X = 20-2TS, where s =—^-2, — ^ U , — f A — ^ - 3 ,

are all equal to

which is not less than \/\, and is the minimum required.

THEOREM 7. / / x lies in S(T), then the 8 points

x* = x-g, where g = 0, 1, ix, 1 + ^

satisfy the inequality

Proof. This is a special case of the preceding theorem, since the points
x* belong to the sets S(T| S), where E = Ho—g are the 8 SV of A congruent
to So.

l^vidently

( 2 7 )

where p is connected with r by the formulae (24) and (25).

8. Thesetd{A).

Let A be a number in the interval

(28) 0 < A < l ,

and d(A) the set of all quaternions satisfying

(29) 0 < z3 < #2 <#!<£<)<£ , xo-{-x1

THEOREM 8. For all points of d(A),

(30) M 2 < Y
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Proof. We begin with the remark that if x-\-y = s and x > s/2, where
s is a constant, then

s2+(2x-s)2

is a steadily increasing function of x.
Let a; be a point of d(A), in which the maximum of Ja;| is attained.

Then the following three statements hold:

(31) 050+8!! = A.

(32) Either x1 = x2 = x3 or xo+x1-\-x2-\-x3=l.

(33) / / xo-{-x1-\-x2-\-x3 = 1, then either xo = %, or x1 = x2.

For, if xo-\-xl<A and also xo-\-x1+x2-\-x3< 1, then \x\ is increased
when x0, xlt x2, x3 are replaced by

xQ+e, xv x2, x3 for z o < i

and by x0, xx+ct x2, xz for a;0 = | ,

where e > 0 is a sufficiently small number; for in the second case
x1 < A—| <z 0 . If, however, xQ-\-x1 < A and xo-\-x1-\-x2-\-x3 = 1, so that
x2-\-xs> 1—A ̂  0 and therefore a:2 and a:3 are not both zero, then let v
be the larger index 2 or 3 for which xv =£ 0. Now | x \ again increases if
x6, xlt x2i x3 are replaced by new numbers x0', x{, x2, x3', where

Xo' = xo+€> xy' = xv—e for z o < £ ,

and x1' = x1+€, xv' = xv—z for xQ — h,

while the two other x's are left unchanged.
Also, if (32) is false and therefore xx > 0, then we may add e to x2 or

x3 and so increase \x\.
Finally, if (33) does not hold, then we can increase |g| by replacing

z0 by xo+e and xx by x1— e.

We now apply Theorem 1 to the set d(A). According to this theorem,
the maximum of | x \ can be assumed only on those points of the set in
which at least four of the boundary hyperplanes

= xo-% = 0, L6 = So+a^+aJa+Sa—1 = 0, L7 = Zo+a^-A = 0
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intersect. The results (31)-(33) exclude all possibilities except the
following ten cases:

= Li = Lz-=L1 = 0, x = A,

= L3 = Li = L7 = 0, x =

valid for 0 < A < £ ,

L2 = L3 = L5 = L7 = 03 x =

X1 = X 3 =X 6 = X7 = 0, * = (2A—

valid for < < £ ,

M 2 = 3A 2 -3A+1,

valid for | ^ A ^ §,

a), \x\2 = 6A2— 8A+3,

valid for § ^ A ^ £,

valid for

= £ 3 = LQ — L7 = 0, x =

2 = 3A2-3A+1, valid for

|*|2 = |A2—2A+1, valid for

A(l+h+»2) + (2-3A)t,

_ T __ r _ r _ o T

= 3A 2 -3A+l , valid for

l + (2A-l)(h+»8)+(3-4A)»,
= 2 '

|z |2 = 6A2-8A+3, valid for f

L4 == Ls = L6 = L7 = 0, x = So, I a; |2 = ^, valid for A = 1.

The interval conditions for A must be satisfied if the points are to lie in
the set d(A). A trivial discussion shows that all 10 points satisfy the
inequality (30), which is therefore true for all points of d(A).

9. An extremum problem.

Let jtbea number in the interval

(34)
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and x a point in A of absolute value jr. Put

(35) m(a) = min(|gra+L0—h\),
a. h

where the minimum is extended over the 6 units

and over all integral quaternions h. Obviously, m(x) is a bounded con-
tinuous function of x; it therefore assumes a maximum value

(36) M(f) = jna,xm(x).
l*l=t
a; in ^

THEOREM 9. The function M(f) satisfies the inequality

(37) if Of) < V(i-Jf ').

Proof. Since the #'s are units,

= m i i i (|af—
17, ft V

Now if g and h take all admissible values, then g~l{h~So), as is easity
verified, runs over all SV H. Hence

= min (|a;—

where the minimum sign extends over all SV. Let e be one of the 24 units
of A'. Then with 2 also e*1^ runs over all SV; therefore

m{ex) = min (|ea;--Li) = min (la—e^Ll) = min (|a—L|) — m{x).
2 2 2

Hence, by Theorem 3, Part (6), we may restrict x to the set A*, so that

lf(j:) = max j m i n ( | a — L | ) l .
1*1=1 I 2 J

a; in A*

But then, by Theorem 4, Part (6), Lo is the SV nearest to x, so that

* in A*

Finally, |a -ii0. remains unchanged if x0 and xv or x2 and xz are inter-
changed, ui n we change the signs of x2 or xz or both. Therefore
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the maximum being taken for the set T of all points x satisfying

\x\ = x, 0 ̂ :x3^x2^x1^:x0^:^, Bo+Bi+jBa+aJa < 1.

From this formula we get

MOf = max {f-xQ-xx+\) = f+±-min {xo+Xj).

The statement follows therefore at once, since, by Theorem 8,

44(J

for all points x such that

#|^Jf> 0 ^x

This completes the proof.

It is possible to determine M (y) explicitly, namely:

+ i -U for 0 < j <

+i , 1for I

I omit the proof, since it requires no new ideas and since we do not make
use of the result.

10. A property of special Hermitian forms.

We can now prove the following result:

THEOBEM 10. Let a be a number in the interval

(38)

let A be the number

(39) A =

and let $ be a quaternion in A of absolute value | f | = A, and H(x,y\ f) the
Hermitian form

(40) ± N(y).

SER. 2. vou 48. NO. 2347. 2 G
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Then to any two quaternions x0, y0 there are two other quaternions xl and yv

such that

(41) *i = a?o. 2/i = 2/o> H(xvy1)^l;

here the sign " ^ " may be replaced by " < ", except in the case

xo = Xv 2/o = 22) o = l , f = 0 , H(x,y) = N(x)+N(y),

where 2X and S2 are £wo SV.

Proof. For every unit e in K, the congruence u = v implies

eu = ev and ?«e = v.e.

It has been proved in Theorems 2 and 3 that to every quaternion x there
is a congruent one in A, and to every x in A there exists a unit e such that
ex lies in A*. It is further true that to this a; in A there is also a unit e'
such that X€ belongs to A*. For with x also the conjugate quaternion
x lies in A. Therefore there is a unit e* such that e*x belongs to A*;
it is easily verified that also

(e* x)i± = xe'*ii1 = xe', where e ' = e**^,

is an element of A*, and here e is a unit.

11 (x, y) satisfies the identities

From this and the preceding we may assume without loss of generality
that

y0 and zo = xo—yot; lie in A*.

Then by Theorem 2,

|2/O|2<£ and | * 0 | 2 < i

Hence (41) is true in the stronger form with the sign " < " instead of
" < " for xx = x0 and yx = y0, if

.,, 1 12 ^ 2a—a2 ,„ 2a—1

either \yo\
2 <—^— or \zo\

i<-^-.

We exclude these two trivial cases and suppose that

(42, i K l * * ^ , ^
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By §6, the first inequality implies that y0 belongs to S^) , where rx is
determined by

- 2a -a 2 , l
Pl

2 = —g— ; hence TX =

Therefore by Theorem 7, if ^ is one of the 6 quaternions

y — 1 > h>

then all 6 points

2/i* = Vo-9

satisfy the inequality

< 1 + 2 0 - a 2 - V(8a-4q2-3)

By the change of y0 into y{*, z0 is transformed into the 6 numbers

»i* = zo-l"^ = (2o-So)+ ( S o + ^ ) .

Let ^ and an integral quaternion h be chosen such that

l0tf+So-A|
is a minimum and therefore equal to m(£) as defined in (35); then put

zi = xo—h, y1 = y0~g, Zi = x1

Hence, by the inequality for y^,

(43) — N(yJ = —• ^ ^ = il, say.

As was proved in Theorem 9,

By the second inequality (42), z0 belongs to the set 8(T2), where T2 is
defined by

2 2 a - 1 ,
2 = ^ 2 - ' h e n c e T2==

4a

Now the 16 points (20) in which sets of 4 of the boundary hyperplanes
of 8(T) intersect, all have the same distance T-y/2 from the centre 20 of
this set. Hence, by Theorem 1, this is the maximum distance of a point
of 8 (T) from So. Therefore, in particular,

o_«—V(8a-4-3a2)
^ -^ V2"

2 G 2



452 K. MAHLUR [Juno 26,

Hence
*\ i a—-\/(8a—4—3a2)

l^+So-AH-|2o-So|<^/^—2-J + ^ " ^
so that

(44) aNK

= B, say.

With the values (43) and (44) for A and B, we have proved that

(45) H(xvy

If a = 1 and therefore £ = 0, then .4 = J3 = £, so that (41) is satisfied.
By Theorem 2, the sign of equality holds only if N(xx) = iV(2/i) = | , i.e.
if both x0 and ?/0 are SV.

Now let 1 < a < -\/2. Then wo show that A and B are both less than \.
In the case of A, we have

— -H 2a

. . (a-l)(a3-«2+2a-4)
a-4a2—3)}'

Here

is an increasing function of a; therefore its maximum is assumed for
a = -v/2, and is equal to

This proves that A<-$.
The inequality .6 < £ is equivalent to

Now

Hence -=^ ̂ {2-a?) < 1--

Also

- l ) 24(a-l)
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Therefore finally

which concludes the proof.

COROLLARY TO THEOREM 10. The assertion (41) remains true, if
H(x, y) is replaced by the Hermitian form

For evidently B(x,y\$) = H(x, y | f).

CHAPTER II. HERMITIAN FORMS.

11. Linear transformations.

The quaternion field A' is associative; therefore the composition of
linear transformations

in matrix form ) = Q , , where Q = I u 1 - )
\yl \y I \a.21a22/y = a21x'+a22y', ' \yl \y'I \a.2la22

satisfies the ordinary rules. The determinant of commutative algebra,
however, loses its meaning, and has to be replaced by the expression!

(46) d{Q) = a11a11a22a22^a12a12a21a21—a11a21a22a12—a12a22a2lalv

which we call the determinant of Q. As we shall see, d(Q,) is either positive
or zero; in the first case Q. is called regular. For example, if

(«,

where A and T ̂  0 are quaternions, then

4S(A))=13 d(T)=l, d(U(r)) = rr,

so that all three matrices are regular. These matrices have inverses,
namely

(48) S(A)-1 = S(-X), T-1 = T, U^)-1 = U^-1).

f For the general theory of generalized determinants in the quaternion field see the
beautiful paper of E. Study, Ada Mathematica, 42 (1920), 1-01,
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Every regular matrix can be written as a finite product of matrices
S, T, and U. For, since d{£l) ̂  0, we have either a12 ^ 0, or al2 = 0 and
an ^0, a22 # 0. In the first case

Q = S(XX)TU(TX)TU(T2)TS(X2),

where

T l = fi21> T2

and in the second case

T2 = = a i 2 —

= U(an) 8{a£aua£) TU(a22) T.

From this factorization of Q and from (48), we see that every regular
matrix has an inverse, obtained by taking the inverses of the factors in
the reversed order.

THEOREM 11. ff ill and Q2 are, regular matrices, and Q3 = Qx Q2, then

Proof. It suffices to consider the cases in which

is an arbitrary regular matrix, and D,2 *
s o n e °f ^ne three matrices

T or U(T). The assertion is obvious in the two last cases. In the first
case.

hence ^(^3) = a-\-b-\-c-\-d,

where d = d{Q.1) and

a, •= an a n a21 XX d2i 4 " ^ n XX axx a21 a21—alx a21 a21 XX a n — a l x XX a21 a21 axl,

b = an axx a2X X ci22 -\-ctxx X aX2 a2X a2X—alx a2X a2X X ax2—alx X a22 a2X alx,

c = alx axx a22 X a21-\-aX2 X axx a2X a21—axl a21 a22 X an—a12 X a21 a2l an.

Since real factors are commutative, obviously a = 0. Further,

6+c = N(axx) S{a2xXa22)-\-N{a2x) S(axxXax2)

—N(a2x)S(axxXa12)—S(alxXa22a21an).
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This expression vanishes, since S(ab) = S{ba), and therefore the last
termf

S{an X a22. a2l an) = S{a21 an. an X a22) = N(an) S(a2l Xa22).

From Theorem 11, the inequality d(Q) > 0 follows at once, since it
holds for the matrices S, T, U. We also see that the product of regular
matrices is again regular; they therefore form a group.

12. The modular group.

Let F be the set of all matrices Q of determinant 1 and with elements
which are integral quaternions. By the last theorem, the product of two
elements of F belongs again to this set. The set contains the unit element
S(0) = E. As we now prove, it contains with every matrix Q also the
inverse matrix Or1, and therefore it is a group, the modular group in K.

In order to establish the existence of Q"1, it suffices to show that Q can
be written as a product of a finite number of factors S(X), T, and U(T),
where A is an integral quaternion, and T a unit. This can be done just
as for the modular group in the rational field; all we need know is that the
Euclidian algorithm holds in K%.

If the element a21 in Q. vanishes, then, since rf(Q)= 1, both an and a2a
are units; hence

Q = U(an) Sia^a^a^1) TU(a22) T

is a factorization of the required kind.
If, however, a21 =£ 0, then by Theorem 2 there is an integral quaternion

A such that a2la22—A lies in A; therefore

\a2^a22—A| < V

We now have

Q 1 = ( a i i a J 2 ) 5 where N(af
21)\aa/

since obviously a21 = a22—a21\.

If still a21 ^ 0, then there is an integral quaternion A' such that

a])a)*), where N(a'2[)
a21a22)

t We note that £(a)9) = S{$a) = aS{3), if a is real.
J Loc. cit., footnote | . P« 435.
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Repeating this process, if necessary, we finally come to a matrix in which
the coefficient with indices (21) vanishes, thus to the case already dealt
with.

The factorization of £1 allows us to write down the inverse merely by
taking the inverses of the factors in the reversed order.

13. The discriminant of a Hermitian form.

An expression

(50) H(x, y) = xAx+xBy+yBx+yCy,

where A and C are real numbers and B and B are conjugate quaternions,

is called a Hermitian form in K; we call

(51) D = AC-BB

its discriminant. Evidently, H(x, y) can be written as

7) Ti
(52) H(x, y) -~AN(x—Hy)-\-—r N(y), where g=—T.

A A
We consider only positive definite forms H(x, y), i.e. we assume that

II{.c. y) j.- U for N{x)-\-N{y) > U. The last formula shows that this is the
case if. and only if,

A > 0 and D>0.

A linear transformation

(53) (X)->&(
\yi \y,

changes H(x. y) into a new positive definite Hermitian form

H'(x, y) = xA'x+xB'y+yB'x+yC'y

of discriminant D' = A'C'-B'B'.

Here

(54) D' = Dd{Q).

For by the matrix factorization in §11, it suffices to prove this equation
for the three matrices S(X), T, U(T), and it is easily verified in these three
cases.

If the matrix Q in (53) is an element of F, then H'(x, y) is called
equivalent to H{x. y)} in. signs / / ' ~.H. Since F is a group, this relation
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has the properties
H~ H;

if H'~H, then H~H';

if H'~H and H"~H', then H"~H.

By (54), equivalent forms have equal discriminants.

Equivalent forms evidently represent the same numbers when the
arguments run over all integral quaternions. It is further clear from the
definition of equivalence that, if H' ~H, then both coefficients A' and C
are of the form H{x,y) with integral x and y. Hence the two sets con-
sisting respectively of the first coefficients A', and of the last coefficients
C", of all forms H' ~ H, contain only a finite number of elements Jess than
a given constant.

14. The reduction of Hermitian forms.

The form H (x, y) is called reduced if

{ A for integral x and y with N(x)-\-N(y) > 0,

C for integral x and y with N(y)> 0.

THEOREM 12. The form H(x, y) is reduced if, and only if,

(56) A < C, and £=•• ——r is an element of A.

Proof. If (55) holds, then C = H{0, l)^A; further, by (52), for all
integral x,

so that £ lies in A.
If (56) is true, then

for integral x ^ 0. Further, for every unit e,

H(x, €)-C = H(xe-1, l)-C = A(N(xe-1-{)-N(£)) > 0,

since | lies in A; and, for N(y) > 2,

since A < C and
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THEOREM 13. If H(x, y) is not reduced, then there is an equivalent
form H*(x, y) such thai

either A*<A, or A* = A, A*^C*<C.

Proof. If A > C, then we may put H*(x, y) = H(y, x), so that

A * = C < A. Suppose therefore that A ^ C, but that £ = — j - does not

lie in A. Then let A be an integral quaternion such that £—A lies in A.
The transformation

changes H(x, y) into a form H'{x, y) in which

A' = A, B' = AX+B, C = H(\, 1).

If now C < A, then we may put H*(x, y) — H'(y, x), so that

A*=C'<A' = A.

If, however, C ^ A, then put H*(x, y) = H'(x, y), so that

C*-(? = C-C = 4(tf({-A)-tf(fl) < 0,

since ^—A but not £ lies in A.

THEOREM 13. To every form H(x, y) there- exists an equivalent form
H*(x, y) which is reduced.

Proof. If H(x, y) is not itself reduced, then by the last theorem we
can find a sequence of equivalent forms

Hx{x,y), H2(x,y), ...

where

either AX<A, or Ax = A, A1^C1<C,

either A% < Av or A2 = A1} A2^G2< Cv

etc. Since by the last paragraph there are only a finite number of possible
values of the first and the last coefficient of a form equivalent to H(x, y)
not exceeding a given value, this sequence of forms necessarily terminates
after a finite number of terms; its last element is the wanted reduced
form H*(x, y).
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15. The minima of a Hermitian form.

Let X=(XlXA
^ 1

be a matrix of determinant different from zero, and with elements which are
integral quaternions; further let H(x, y) be a positive definite Hermitian
form, and H*(x, y) a reduced form equivalent to H(x, y). The two
expressions

M1 = mm jmin (H{xv yj, H(x2, yj) },

(57)

M2 — min jmax (H(xv y-J, H(x2, y2y\ | ,

where X takes all admissible values, are called the first and second minimum

of H(x, y). It is clear that M^ is also the minimum of H(x, y) when
x and y run over all pairs of integral quaternions except the pair x = y — 0.

THEOEEM 14. If A* and C* are the first and the last coefficient of
H*{x, y), then the two minima of H(x, y) are given by

(58) ^ = ^4*, M2=C*.

fx\ ^(x*
Proof. Let

\y
be the transformation in Y for which

and let

be its inverse. Put
y*

X* = n~!X = (Xl*X\), so that X = QX*.

The elements of X* are also integral quaternions, and the determinant
d(X*) = d(X) ^ 0. Hence the elements in one row or column of X* are
not both zero. Evidently,

H(xx, Vl) = H*(xj*, y,% H(x2, y2) = H*{x2*, y2*).

Hence, by the definition of reduction,

min (H(xlt yx), H(xt, y2)) >A*, max (H(xlt y,), H(x2, y2)) > G*.
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If, in particular,

then

H(xv yx) = H*(l, 0) = A*, H(x2, y2) = #*(0, 1) = C*,

so that the last formulae hold with the sign of equality.

THEOREM 15. The minima Mx and M2 of H(x, y) satisfy the inequalities

(59) M1

Jn particular, M1=-\/(2D), and also M^^ = 2D, if, and only if, A* — 0*
and £ 'is one of the 24 SV of A. Further, Mx M2 = D if, and only if, .B* — 0.

Proof. We have

D = .4* C*-B* B* < A* 0*,

with equality if, and only if, B* = 0. Further by Theorem 12, A * < C*
B*

and ^ = —'-T# lies in A, so that iV(f) < ^ and therefore

D=--A* C*-B* B*^A* C*-$A* C* = .U* O:!i.

If the sign of equality is to hold in the last.formula, then A* = C* and
N(g) = £. The assertion follows therefore at once from Theorem 2 and
Theorem 14.

Since A is invariant for the 24 transformations (6), all forms H{x. y)

satisfying Mx= -\/(2D) are equivalent to

H0(x, y) = A/(2D) (xx—xT,oy-y lQ

This form assumes its minimum value Mx = M2 = -\/{2D) for 9 X 24 = 216
different pairs of integral x, y. For let e be one of the 24 units of K;
then the minimum is assumed for (a;, y) — (e, 0), and also for (x, y) = (x, e)
where now x is one of the 8 integral quaternions for which

The part of the last theorem referring to Mx is due to A. Speiserf, who
used an entirely different method in his proof.

f Journal fiir Math., 167 (1932), 88-97, in particular p. 97.
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16. The geometrical representation of Hermitian forms.

Let H{x, y) be a Hermitian form of discriminant D — 1; put

£4
so that

(61)
V .

We interpret the four real components of £ together with the positive
real number rj as the rectangular coordinates of a point (£, 77) in the part

E: 17 > 0

of five-dimensional Euclidian space, and then there is a one-to-one corre-
spondence between the forms H(x,y) and the points (£, -q) of R.

If H(x, y) of point (£, ->]) is equivalent to //'(a;', y') of point (£', -q'),
then these points are also called equivalent. Let

2// \y I \a2la22

be the transformation in F which changes the first form into the second.
Then a simple calculation shows that

(62)

—52i F) K2—^2

17 =
(on—a2

with analogous formulae involving the elements of Qr1 for the change-
over from {£', 7)') to (£, 77). The second equation shows that R is trans-
formed into itself by all elements of T. We write (62) for shortness as
(£, 77) = Q(£', TI') or (£', r)') = Qr1^, 77). In particular, for the generators
of I\

if Cl=S(\), then f = f-A, 17' = 77,

if Q B = T , then ^

if ^ = ( o ^ ) 5 then ^ = 6 ^ ^ , V = ^J

in the last formula, ex and ea are assumed to be units in K.
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Now let F be the set of all points (£, 77) which belong to reduced
forms; by Theorems 2 and 12, F is determined by

(63) I £| ^ I f—9\ for all integral quaternions g; ££-\-r}2 > 1.

The point (£, 77) is an mwer point of JP if

111 < I f—91 for all integral quaternions g =£ 0; ^ + r j a > 1;

denote by Fo the set of all inner points of F. The proof of Theorem 12
shows that the form H{x, y) belongs to a point of Fo if, and only if, for
all integral pairs (x, y),

A when (x,y)^(0, 0), # (e, 0),
(64) H{x,y)>\

C when y ^ 0 and (a;,«/) ^ (0, e),

where e denotes the 24 units of K; in particular .4 < C.
Suppose now that H(x, y) belongs to an inner point of F and that

H'(x', y') is a reduced form equivalent to H(%, y). Let

be the transformation in F which changes one form into the other. Then
by Theorem 14,

A = A', C=*C'\
hence

A = H(an, a21), 0 = H{an, «22).

By (64), the first formula requires that a n = el3 a21 *= 0, the second one
that a12 = 0, a22 = e2, where ex and e2 are any two units; therefore the
transformation is of the type

It follows that these are the only transformations which change at least
one inner point of F into a point of F. Since the inverse of O has the
same form, all 24x24 transformations (65) leave the set Fo invariant.

Denote by QrxF (and O-^FQ) the sets of all points (£', •>?') for which
(£, 7)) = Q(£', 7}') lies in JF (in Fo). The last results show that Fo and
the transformed set Or1 Fo either are identical, or have no common
points. Hence, by the group property of T, any two sets Q^FQ and
Oj1 JP0 either coincide or are without common points. Therefore, finally,
two set& Q.J1 F and Q.%1 F either have no common inner points, or they
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are identical. This shows that the sets Cl^F together fill up the space R
without overlapping, and also without gaps since to every point there is
an equivalent one in F.

If e1 and e2 are two units, and A is an integral quaternion, then the set

Q~1F, where Q=(

contains points with arbitrarily large rj, since this is true for F, and the

transformation leaves rj invariant. When, however, Cl= ( n 12 j is an
\ #21^22

element of F with a21 # 0, then 77 is bounded for all points in Qr1 F.
There are, however, points with arbitrarily small positive 77 in the set
Qr1F, as seen from (62), and these satisfy

(66) lim £ = cq{ a22.

It follows that if a continuous curve in R tends to a point (a, 0) in
•q = 0, where a is an irrational quaternion (i.e. not of the form ar1 b with
integral quaternions a ^ 0 and 6), then this curve passes through an
infinity of different sets Q.^F. For if it passed only through a finite
number, then it would ultimately lie in one set and so by (66) tend to a
point (ajla22, 0).

17. On special Hermitian forms.

I (K\
THEOREM 16. Let A = ( a ^ j be a matrix of determinant d(A)= 1

\y o/
with elements in K, t a positive parameter, Ft(x, y) the Hermitian form of
discriminant 1

(67) Ft(z, y) = tN(aX+Py) + ± N(yx+8y)t

and

(68) Ft*(x, y) = xAtx+xBty+yEtx+yCty

the reduced form equivalent to F{(x, y). Then, for at least one value of t,

Further, if ar1/? is not a rational quaternion, then there are arbitrarily large t
with this property.
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Proof. Since

the point (£, 77) corresponding to Ft(x, y) is given by

t - a^2+yS _ t
~~'2 ' "-•' ' aa£2+yy'

If £ assumes all positive values, then (£, rj) describes the semicircle C
which is perpendicular to the hyperplane rj = 0 at the two points
(—a"1/?, 0) and (—y^B, 0). For t->co, (£, rj) tends to the first point
(----cr1/?, 0); hence, by the preceding paragraph, if or1/? is irrational, then
C passes through an infinity of different sets Q,-1 F. (It is possible that
just one of the two numbers a and y vanishes; then C degenerates into a
.straight lino perpendicular to 77 = 0.)

Suppose that a point P: t — T of C; lies in the set il^F. The trans -

formation I ' I -» £11 ' ) changes Q~x F into F, C into a new semicircle or
\yl \yJ

straight line C* perpendicular to 17 = 0, and the point P on C into a point
/>*(£*, ->?*) on C*. Then P* lies in F, so that

P belongs to A; f * J*+>?2 > 1.

Evidently P* corresponds to the reduced form FT*(x, y). The point
divides C* into two parts; let c* be that part of C* for whose points

Let rj = g(g) be any integral quaternion such that £—g lies in A. If
there is more than one quaternion g with this property, then, by the
definition of A, N(£—g) has the same value for all of them.

Denote now by S the hypersurface in R defined by

(69) (Z-9)(t-9)+V2=l-

Then 77 is a continuous single-valued function of £, and so S is a continuous
and connected hypersurface; it is clearly transformed into itself by all
translations of B,

(70)

where A runs over all integral quaternions.
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The point P* belongs to F and therefore either lies on 8 or has a
larger coordinate rj* than the point of S with the same value | : h of £. In
the second case the arc c* of C* intersects S in at least one point, since
it joins P* to a point in 77 = 0. By a suitable translation (70), this point
of c* changes into one on S and inside F. It follows that there is a
transformation in Y which changes C into a semicircle or straight line
intersecting S in a point of F. If t = t0 is the parameter value belonging
to this point of intersection, then, for the reduced form (68), A(Q — Clo,
as follows from (61) since f—g in (69) has now been replaced by £.

If a"1 /? is irrational, then there are an infinity of ways of changing C
into a semicircle or straight line which intersects S in a point of F. For
now C passes through an infinity of different sets Qr1 F in the neighbour-
hood of (or1/?, 0). A transformation which changes one of these sets into
F transforms at most a finite number of the others into sets
This proves the assertion.

18. The product of two linear polynomials.

THEOREM 17. Let A -— ( *l) be a matrix of determinant d{A) — I with
\y 5/

elements in K. Corresponding to any quaternions x0 and y0 there arc koo
other quaternions, xx and yv such that

(A) x1~x0, y1 = y0, | ( a K

/ / a~1jS is irrational, then (A) has a solution with arbitrarily small value of

Proof. Consider the forms (67) and (68). By Theorem 16, there is
a value t = £0 for which Alo = C(o. If a-1jS is irrational, then /0 may be
taken arbitrarily large. Let

be the transformation in T which changes Fto(x, y) into Fj*(x', y'), and let

x' =

By the corollary to Theorem 10 and by (52), there are two quaternions
Xi and y{ such that

SBB. 2. VOL. 48. NO. 2348.
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Then, if xx and yx are the quaternions defined by

obviously

and so (A) follows by the theorem of the arithmetic and geometric means.
For the solution so obtained,

where — can be made arbitrarily small for irrational or1/?.
'0

'I'lie equality sign holds in (A), if a = 8 = 1, /3 — y= 0, and both x0

a?id y0 are singular vertices. Theorem 17 is therefore the best possible
result.

Mathematical Department,
University of Manchester.


