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ON A THEOREM OF MINKOWSKI ON LATTICE POINTS IN
NON-CONVEX POINT SETS

K. MAHLERT.

Let (x4, ..., #,) be reetangular coordinates in n-dimensional Euclidean
space R,, and let K be a star body in R, i.e. a closed bounded point set
which

(@) contains the origin O = (0, ..., 0) of the coordinate system as
an tnner point, and

(b) is bounded by a continuous surface which is met by every
radius vector from O in just one point.

A lattice

n
A: wh:k§1a’hkgk (h: 1: 27 e N5 G5 ey gnzoa ily :tzs "‘)
in B, of determinant

“a’hk|h,k=1,2,.,.,n #0,

is called K-admissible if O is its only point which is an énner point of K.
Denote by A(K) the lower bound of the determinants of all K-admissible
lattices, and by V(K) the volume of K.

In 1891, Minkowski found a theorem } which states, in effect, that

(1) AME) <e, V(K), where c,= (B zlv—n) ;

and ¥ is 2 or 1 according as K is, or is not, symmetrical in 0. From
this Minkowski obtained an asymptotic formula for Hermite’s constant
v» connected with the minimum of a positive definite quadratic form
in n variables§.

Minkowski gave a rather difficult proof of (1) in the special case of an
n-dimensional spherell. But he never published a proof of the general
theorem, nor was any other proof known until recently. Then, last year,
E. Hlawka published a paper] which contained a very ingenious
analytical proof of (1) and also other interesting results.

T Roceived 17 July, 1944; read 16 November, 1944.
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Before T knew of Hlawka’s paper, I had been trying to prove Min-
kowski’s theorem, and I had found a simple geometrical proof of the
slightly less exact result,

(2) A(K) <c,V(K), where c,=mn/E.

This inequality still implies Minkowski’s asymptotic formula for v, ; it
may therefore be useful to publish the proof, which is entirely different
from that of Hlawka.

T restrict myself, however, to the symmetrical case. The unsymmetrical
case may be treated quite similarly, and the method holds also for infinite
sets. For symmetrical convez bodies, it leads to the better value ¢, = 1,
but the true value is presumably at most of the order ¢, = O(1/n).

I assume, without stating so each time, that all integrals occurring in
this note exist.

1. Notation. Denote by D any number satisfying
0<D<A(K);
hence no lattice of determinant D is K-admissible;

by K, the intersection of K with the plane xz, = 0, so that K, is an (n—1)-
dimensional star body symrmetrical in O;

by A, any Kg-admissible (n—1)-dimensional lattice in the plane z, = 0;
by P,= (z,;l, veoy Bpp1, 0), B=1,2, ..., n—1, a basis of Ay;
by d= “xhk\h’kﬂ,z’_mn_ll the determinant of Ag;

by &= (¢, ..., £,.1) any point in (n—1)-dimensional Kuclidean space
R, 4
by W the cube 0 L& <1, ..., 0§, <1lin R, 5;
by P¥* and P the pointst
P¥—(0,...,0,Djd), PO=¢ P+ +é, 4P, +PF
in R,;
by A; the lattice in R, of basis
P, P,, ..., P, PY
and so of determinant dX (D/d)=D; hence this lattice is not
K-admissible ;

+ Sums of points, or products of points into scalars, have the meaning usual in
linear algebra or vector analysis.
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by K,, v=1,2,3, ..., the intersection of K with the plane z, =vD/d;
when v 18 sufficiently large, then K, is the null set, since K is bounded ;

by «, the (n—1)-dimensional volume

K”:j"'_g dzy ... dx, 4
.8

of K,; hence k,= 0 when v ts sufficiently large.

Further, if £ = (&, ..., £,_;) and €0 = (£, ..., €2 _,) are any two points

in R, ;, then we write
E=¢0 (modl)

as an abbreviation for the n—1 congruences

§1 = f? (mOd ]-); Xy fn——l = 52,—1 (mOd 1)

2. The fundamental lemma. Let P = (», ..., z,_,, vD/d) describe
the set K, and define the point £=({, ..., §,,) in R, ; by the
condition

P =vP=0(fy Pyt bus Py +P),

n—1

80 that =0 % &% k=12, ...,n—1).
h=1
Then ¢ describes a certain set in R, _,, L, say, and this set is of volume

(3) A,,:j...Lvdfl...dfn_1=c—l:—,f_i,

since the linear equations conmnecting the x’s with the £’s are of deter-
minant v"1d.

Next let M, be the set of all points (&2 == ¢}, ..., £1,), in the cube W,
for which there exist n—1 integers %y, ..., %,_; such that the point

P =y Pttty y Py y+oPE)
= (U +0EY) P+ ..ot (u, g o€l ) Py o P

lies in X ,, and let

Hvzj jM’dg A,

be the volume of this set. Evidently &' belongs to M, if, and only if,
the point £ defined by

7-751 = u1+vg:]l" ceey vfn—-l = un—1+v§11|,-1
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is a point of L,. Since ¢! lies in W, these equations imply that
0 <véy—uy <v, ., 0<0E, —u, <0,

and so, for any given point ¢ of L,, each of the integers u,, ..., %,_; has
just v possible values. Hence to every point ¢ of L, there correspond
at most »™ ! points £ of M,, obtained by as many translations from ¢£.
Therefore

fip SUVTA,,

whence, from (3),

4) o S kpfd.

Lemma. The volumes k, satisfy the inequality

(5) 2k, =24
=1
Proof. Let £ be any point in W. The lattice Ag is not K admissible
and so contains at least one point

P:u1P1+--.+un~1 .P,n___l“l'unP(nEl),

different from O, which is an inner point of K. This point cannot lie in
the plane x, = 0. For in this plane Ax reduces to the (n—1)-dimensional
lattice Ay and K to the (n—1)-dimensional star body K, and, by hypothesis,
Ay is Kj-admissible. '

Since K is symmetrical in O, both P and the symmetrical point —P
belong to K. Hence, without loss of generality, u,, or v say, may be
supposed positive. Then P lies ih K,, and so ¢! belongs to M,

We conclude therefore that the sets M;, M,, M, ... together cover the

whole cube W, and so are of total volume
o0
Zopy=1,

=1

since W has unit volume. 'The assertion now follows from (4).

3. Conclusion. Denote by T, the cone of vertex O and base K,

and hence of volume

Lgxn 2
Ko "

Further denote by 7', the part of 7’, between the two planes
x,=vDjd and x,=(v—1)D/d;
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then 7', is of volume not less than

iX <~1~XK Xv—lz):QK

v n d nd Y
Since K is a star body, and since K, consists only of points of K, the cone
T,, and so also the truncated cone 7', are subsets of K, and the same
is true for the cones —7', and — 7', symmetrical to 7', and 7', in O. But
it is obvious that no two of the truncated cones

1,75 1s, ..., =T, —T3 —1T;, ...
have inner points in common. Therefore, by (5),

& D 2D 2 2D 2
V(K)=2 X —Kv:mvglkv>mx HWD.
Since D may be any number smaller than A(K), the assertion (2) follows

immediately.

Addition (May 1945). In a paper, “A mean value theorem in
geometry of numbers”’, dated 8 December, 1944, which is to appear in
the Annals of Mathematics, C. L. Siegel gives a beautiful new proof of the
Minkowski-Hlawka theorem. He establishes the intimate connection of

. this theorem with the reduction of quadratic forms and the arithmetical
theory of the group of all linear transformations, just as Minkowski had
predicted.

Mathematics Department,
Manchester University.

ON THE EXISTENCE OF TANGENTS TO RECTIFIABLE CURVES
A. S. Brsicovrrou*.

In this article I give a very simple proof, which is even independent
of the theory of measure, of the existence of a tangent at almost all points
of a rectifiable curve.

Lemya 1. Given two positive numbers a and B, there is a positive number
v such that, if a segment of length 1 subtends a simple arc 8, of length less
than (14y)1, then the points of S whose joins to other poinis of S form an
angle greater than a with the segyment all lie on a finite or enwmerable set of
arcs of total length at most BI.

* Received 6 February, 1945; read 1 March, 1945,





