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LATTICE POINTS IN TWO-DIMENSIONAL STAR DOMAINS (I)

By KURT MAHLER.
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Last year, after earlier special results by H. Davenportf, L. J. Mordell
extended Minkowski's classical work on lattice points in convex bodiesj
to certain two-dimensional non-convex domains. Then, very recently, he
has found very general results for finite or infinite non-convex domains§.

His method depends on an application of Minkowski's theorem on
linear forms. He thus obtains point sets abutting on the given domain
and containing at least one lattice point. By forming other lattice points
from these so obtained, he succeeds in finding the lattices of smallest
determinant that contain 710 inner points of the given domain, except the
origin of the coordinate system.

In the present paper 1 consider the same problem for a general class
of two-dimensional domains which I call simple, star domains. A simple
star domain is a bounded and closed set that contains the origin of the
coordinate system as an inner point and is symmetrical in the origin||.
Further, its boundary is a Jordan curve that is composed of a finite number
of analytical arcs, and which is intersected in just one point by every radius
vector from the origin. For these domains ] derive a finite algorithm to
find the smallest determinant for which lattices exist containing no inner
points of t he sot except the origin. This method is a generalizat ion of one due
to Minkowski^j. In the second part of this paper I shall apply the algorithm

t Proc. London Math. Soc. (2), 44 (1038), 412-431, und 45 (1939), 98-125.
J Geometric der Zahlen (Leipzig uud Berlin, 1910).
§ Proc. London Math. Soc. (2), 48 (1943), 198-228 and 339-390; Journal London

Math. Soc, 17 (1942), 107-11*,.
|| The restriction to symmetrical domains! can easily bo removed (§ lfi).
«,1 Oce. Abh., 11, 3-42 (Leipzig und Berlin, 1!H1).
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to some special domains. The method can probably be extended to more
than two dimensions; but the work required will be excessive. In special
cases the method can be applied to infinite domains.

I should like to express my gratitude to Prof. Mordell for his
criticisms and his help with the manuscript.

CHAPTER I. THE GENERAL THEORY.

1. Lattices in the (x, y)-plane.

Let an arbitrary rectangular coordinate system in the plane be given.
The' unit square with vertices at the points

(0,0), (1,0), (1,1), (0, 1)

is therefore of area unity.
We identify the point of coordinates (x, y) with the vector of com-

ponents {x, y), and apply the usual vector notation. If

R: (a, 0) and S: (y, 8)

are two vectors, u, v two real numbers, then P — uR-\-v8 denotes the
vector of components

x — ua-\-vy, y = u

Further (R, 8) = ah—py

stands for the determinant of the two vectors. Hence

A = \(R,S)\,

where A is the area of the parallelogram II with vertices at 0, R, R+8, 8;
here 0: (0, 0) denotes the origin of the coordinate system.

The points or vectors R and S are called

dependent, if (R, S) = 0,

independent, if (R, 8) ^ 0.

In the first case the parallelogram II degenerates into a line segment,
and R, 8 arc collinear with 0.

Assume now that (R, S) ^ 0, and let A be the lattice of all points

(u,v = 0, ± 1 , ±2 , ...).
SBH 2. VOL. 41). MO. 23~>7. K
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The positive number

d = d(A) = | (R,S)\

is called the determinant of the lattice, and R, S are called a basis of A. If

R* = ulR+v1S and 8* = uzR+v28

are any two points of A, then the non-negative integer

n = ind (R*, 8*) = |u ,v 2 -n 2 v x | =
(R,S)\

is called the index of R*, 8*. This index vanishes if, and only if, R*
and S* are dependent. If n --£ 0, then the area A* of the parallelogram
II* with vertices at 0, R*, R* + S*, S* is given by

A* = \(R*, S*)\ = nA.

In the special case n = 1, the two points R*, S* form, a new basis of A,
and the equality A* — A holds.

From the definition of n,

(1) | (R*, S*) | = d(A) ind {R*, S*).

We shall apply this simple relation repeatedly.
We require the following lemma!J :
The lattice A has at least one reduced basis. This is characterized by the

property that no diagonal of II* is smaller than the sides of this parallelo-
gram. Hence all angles of II* lie- between 60° and 120°, and the area
A* = d(A) of II* satisfies the inequalities

(2) \/l. OR* x OS* < d(A) < OR* x OS*.

A point P = uR+vS

of A is called primitive when the greatest common divisor Gcd{ut v) = 1.
The point P is primitive if, and only if, there is no lattice point on the
line segment connecting 0 with P except the endpoints 0 and P. It is
well knownf that corresponding to -every primitive lattice point R* = P
there exist lattice points S* such that R*, S* form a basis of A.

Bachinann, Quadratixche Fonnen, 2 (Leipzig und Berlin, 1923), Kap. 5.
FQ denotes the distance between the two points P and Q.
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2. Star domains.

A star domain K in the {x, y)-plane is a point set with the following
properties:

(a) K is a bounded and closed set.

(b) The origin 0 is an inner point of K.

(c) / / K contains a point P, K also contains the point — P, which is
symmetrical to P in the origin.

{d) If C denotes the boundary^ of K, then every radius vector from
the origin intersects C in just one point.

From this definition some simple properties of K follow at once: For
an arbitrary r > 0, let rp be the circle

By (a) and (6) there exist two numbers P and p with

such that FP contains K, and that K contains Fp. We call FP an outer
circle and F, an inner circle of K%.

Further, by (d), corresponding to every angle <f> there is exactly one
point

of coordinates

x = r(<f>) cos<f>, y = r(<f>)Bin<j>,

such that r(<f>) > 0,

and that P(<j>) lies on C. From (c) and (d), the point symmetrical to
P(<f>) also lies on C and is given by

f I.e. the set of all those points of K which are not inner points.
* Instead of using T\< and 1%, we may compare K with other circumscribed mid

inscribed convex domains. This would improve some of the later inequalities.

K2
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Obviously for all angles <f>,

(3) p^r(<f>)^P.

THEOREM 1. r(<f>) is a continuous function of <f>.

Proof. Suppose the assertion is false. Then there is an angle <f>0 and
an infinite sequence of angles

( 4 ) <f>v (f>2, <f>3, ...,
with limit <j>0, such that

l i m r{(f>v)
v—>ao

either does not exist, or exists and is different from r{<f>0). By (3), we
can find an infinite subsequence

^v <f>*t> <f>V3, •••
of (4) for which

11111 K = <£o> but lim r(K) = r* ^ r(^o)-

By property (a), the point P* of coordinates

a; = r* cos <f>Qi y = r* sin ^0

belongs to K. It also belongs to C, since it is the limit of the boundary
points

P ( f e = l , 2, 3, . . . ) .

Hence there are two different points P(<f>0) and P * of C on the same radius
vector from 0, in contradiction to {d).

By Theorem 1, C is a Jordan curve. It therefore divides the plane
into two separate parts : its interior which contains only points of A', and
its exterior which contains no points of K.

Hence with a point P also all points tP, where 0 < t ^ 1, belong to K.
Further, if Px and P2 are two points on C such that the whole line segment
from Pj to P2 belongs to K, then the triangle with vertices at O, Px, P2

consists only of points of K.

3. The lattice problem.

A lattice A is called admissible with respect to the star domain K. sav,
for shortness, JiT-admissible, if none of its points except 0 is an inner point
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of K. The lattice may, however, contain points on the boundary C of K.
There are admissible lattices. For the lattice generated by

(P, 0) and (0, P)

is Fp-admissible, and so is also iT-admissible.
Hence the lower bound

extended over all iJT-admissible lattices, exists and is a finite non-negative
number.

THEOREM 2. If the star domain Kx is contained in a second star domain
K2, then

Proof. Every inadmissible lattice is also i^-admissible.

THEOREM 3. For a circle Fr,

Proof. The assertion is equivalent to the classical result on the
minimum of a positive definite binary quadratic formf.

THEOREM 4. Let TP be an outer circle and Tp an inner circle of the star
domain K. Then

0 < VI -P2 <A(Z)< Vf-P2.

Proof. Evident from Theorems 2 and 3.
The problem now is to determine A (if) for a given star domain K.

I generalize a method of Minkowski for convex domains, and show how
the problem can be reduced to a finite number of elementary extremal
problems.

4. Critical lattices.

A Inadmissible lattice A is called a critical lattice if

d(A) =-- A(JST),

i.e. if the lower bound is actually attained by its determinant. I now
prove a theorem fundamental for what follows. It should be remarked
that it need not hold for infinite domains.

t Banhmann, Qua-lratische Form en. 2 (Leipzig und F.erlin, 1923), Kap. :*>.
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THEOREM 5. Corresponding to every star domain K, there is at least one
critical lattice.

Proof. B}'- the definition of A (if), there exists an infinite sequence of
admissible latticesf,

Ax, A2, A3, ...

such that

By Theorem 4, we may assume that, for all indices v,

(5)

Let Rv, Sv, for v= 1, 2, 3, ..., be a reduced basis of A, (§1). Then by
formula (2) of §1,

Further, since A,, is Fp-admissible,

Therefore, by (5),

o p2 2 P2

^-±ro~ and 0Sy^-^—.
^V3 V3

Hence reduced basis points /?„ and Sy of all lattices A, lie at a bounded
distance from the origin.

It is therefore possible to choose an infinite subsequence

A,,, AF2, AVi, ...

of the A's such that BVk tends to a limit point .ft*, and SVk to a limit point
S*. Denote by A* the lattice of basis R*, S*. This lattice is A'-
admissible. It is also critical, since

*) = lim d(Ayk),
k

and since, by hypothesis, this limit is equal to
It may be mentioned that there, are star domains with any finite or

infinite number of critical lattices.

f Thesu lattices ncoil^not bo_ull different.
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5. Regular and singular lattices. t

By property (c) and (d) of a star domain, two different points on its
boundary are collinear with 0 if, and only if, they are symmetrical in
this point. Hence three different points on the boundary C cannot all
be collinear with 0.

THEOREM 6. Every critical lattice contains at least two independent
points Px and P2 on C.

This theorem is an immediate consequence of the

THEOREM 7. Let A be a K-admissible lattice which has either no points
or only one pair of symmetrical points P, —P on C. Then there exists a
K-admissible lattice A* such that d(A*) < d{A).

Proof. First assume that no points of A lie on 0. Denote by R, S
an arbitrary basis of A and by & a sufficiently small positive number. The
lattice A* of basis R and (1 — &•) S is evidently A'-admissible ; hut its
determinant d{A'*) — (1— &)d{A) is smaller than rf(A).

Secondly, assume that A has only the two points P and —P on C.
Then P is a primitive lattice point (§1); hence there exists a second
lattice point S which with R= P forms a basis of A. Let again # be a
sufficiently small positive number. The lattice A* of basis R and (1 —#) S
still contains only the two points P and — P on G, and is therefore
admissible; again d{A*) < d{A).

It is useful to make the following distinction.
A critical lattice of K is called singular or regular, according as it has

four points or more than four points on the boundary 0 of K.

6. The index of two lattice points mi C.

Let A be a ^-admissible lattice which contains two independent points
Px and P2 on C. Upper bounds for the index of these two points (§ 1)
are given by the following theorems.

THEOREM 8. ind(P1. P.,) < ^ ( — ) \

Proof. Let R, S be a basis of A. By § 1,
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Since K lies entirely in FP, obviously

Further, since K contains Tp, A is rp-admissible. Hence, by Theorem 3,

d(A) = \(R. S)\^A(VP) = VI.P2-

The assertion follows at once from these two inequalities.

THEOREM 9. Let # with 0 < # < 1 be a number such thai all points of
the parallelogram FI0 with vertices at

belong to K. Then

Proof. Let R, S be a basis of A. Every lattice point P can be
written as P = uR-\-vS with integral u, v; in particular

When we eliminate R and S, P takes the form

P-^,^1—i—^2—2
w = Vt)U—u2v, (*)2 — vxu+uxv.

By § 1, the denominator has absolute value

n — \ulv2—u7tv1\ = i n d ^ j , P2).

Except for the sign, n is the determinant of the two linear forms a^ and
cu2 in u and v. By Minkovvski's theorem on linear forms, integral values
of u and v not both zero exist such that

| cu21

Hence there is a lattice point

wi th coefficients

A1 = °Jl X = ^2
1 •u1v2—u^Vi 2 itj^v.,—uivl

whicli satisfy tht* inequalities

j Ax j < w*-1 = »-», | A2!
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If w-i < &, then P would be an inner point of IT0, hence also an inner point
of K; this is impossible since A is Jf-admissible. Therefore

n~*~^d> i.e., n^.d'~2,

as was to be proved.

THEOREM 10. Let & with 0 < i J < l ie a number such that all points,
of the parallelogram with vertices at

belong to K. Then

ind (Pl5 P2) < 2#-2.

I omit the proof, which is similar to that of Theorem 9.

THEOREM 11. / / the two points Px and P2 of A on C have the property
that all points of the line segment joining Px to P2 are inner j)oints of K,
then

ind (PVP2)= I,

i.e., Px and P2 form a basis of A.

Proof. Assume that the assertion is false; then the lattice A*
generated by Px and P2 is only a sub-lattice of A. Hence there, is at least
one point Q of A which docs not belong to A*. We can find a point P
of A* such that P-\-tQ, where e = 1 or <? = — 1, belongs to the triangle T
with vertices at O, Pl9 P2. The point P-\-eQ so found is an element of
A, but not of A*, and is therefore different from the vertices of T. It
cannot be an inner point of K since A is admissible. This forms a
contradiction to the hypothesis, since, by §2. all points of T different
from Pi and P., are inner points of K.

7. Lattices with at least four points on C.

Let A be an arbitrary lattice which contains two primitive and
independent points P1 and P2 on the boundary ('•' of A'. Then there is a
lattice point S* which together with Px generates A. Further. /-\ and
S = gPi+eS* also form a basis of A, where g is an arbitrary in tetter
and- c = ± 1 . The second point P2 can be written as

P2 = M* Px + y* &* = (u* — egv*) Px + e?;:;: $
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with two integers u* and v*. Here

|v*| = i n d ( P 1 ) P 2 ) > 0 )

since Px and P2 are independent. Determine e and g such that

v2=€V*>0 and 0 <w2 = u*—egv* < \v*\ = v2.

Then P2 = u2Pl-\-v2S>

where

v2 = ind (Pv P2), 0 < w2 < % Gcd{u2, v2) = 1;

the third formula holds, since P2 is primitive. For given v2, u2 is one of
(f>(v2) different integers, where (̂w.) is Euler's function.

An arbitrary point P of A can be written as

P = uP1+vS

with integral coefficients u and v. On eliminating S,

rt <*>1 PT -\-IOQ P 9

^ _ _ i i £ ^ U)l = UV2 — U2V, W2 = V.

v2

The two coefficients OJ1 and co2 are integers satisfying the congruence

o>1+w2aj2 = 0 (mod v2),

but are otherwise arbitrary. Obviously

| to, I = ind (P, P2), | co21 = ind (P, P2).

Now, if A is an admissible lattice and P lies on C, then by Theorem 8,

Hence there arc only a finite number of possibilities for the coefficients
?;2, o>1? co2. Better appr<^ximations for these coefficients are obtained if
Theorems 9-11 can be applied.

The important question now arises: When is the lattice A of ail points

(7) p ^ ^ i / V t f ^ a P ^ Wl+tt2a>2 = 0 (mod?;.,),
V

admissible, where u2 and v2 are (wo arbitrary integers such that

0 ^ u2 < v2, Gcd (u2, t;8) = 1?
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An answer is given by

THEOREM 12. The lattice A is admissible if no point P # 0 of A, with

is an inner point of K.

Proof. It suffices to show that a point P for which at least one of
the inequalities (8) is false does not lie in IV f°r then the point cannot
belong to A'.

Suppose then that, say,

(9)

Since P2 lies on C and therefore in IV

P.

By § 1, | {Pv P2)\ is the area of the parallelogram with vertices at 0, Pv

Px-\-P2, P2. Hence the distance of Px from the line L through 0 and
P2 is

I

The distance of

from L is th(̂  same as that of the point Aj Px fi-oin this line, and so by the
last inequality and b}r (U) is not less than

Hence P lies at a distance greater than P from the origin and does not
belong to i\>.

It is useful to remark that the inequalities (8) in Theorem 12 can be
replaced by

, , ^ 2 / P V2 , , ^ 2 / P \ 2

provided that
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and if this last condition is not satisfied, then the lattice is not admissible.
by the proof of Theorem 8.

8. Simple star domains.

Henceforth we consider the special class of star domains defined below.
A bounded rectifiable curve A in the (x, y)-plane is called an analytical

arc, if it has the following properties:

(a) To every point P on A there exists an infinity of vectors

P i "pit -pin

not all zero such that every point P* of A sufficiently near to P
can be written as

' JL
n

2'.

where s is a real parameter, and where this power series con-
verges if \s\ is sufficiently small^.

(6) The coefficient P' is different from 0 except at most in the two
end points of A.

It follows that in every point of A there is a unique tangent and an
osculating circle.

THEOREM 13. The common points of two analytical arcs are either
finite in number, or they form a third analytical arc.

Proof. The statement follows from the classical properties of regular
analytical functions.

A star domain K is called simple if its boundary C consists of a finite
number Av A2, ..., AfOf analytical arcs. Let

be the set of end points of these arcs, where the notation is such that

Ak and Ax+1 meet in QK (A = 1, 2, ..., I; Al+1 =

f By the Heine-Borel theorem, a finite number of these series suffices to represent
the whole arc.
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A straight line T is called an inner or an outer lac-line of K at a point
P of C, according as all or no points of T sufficiently near to, but different
from, P belong to K. There is evidently no tac-line at a point of inflexion,
and there may not be one at the points of 2. Excluding these points,
there is just one tac-line at every other point of C, namely the tangent.
In a point of S, the tac -lines fill up a complete angle if the two arcs of C
meeting there have different tangents. When, however, these tangents
coincide, there are three possibilities. Either there is no tac-line, or just
one tac-line, or all lines through this point except the tangent are tac-lines.

Excluding the points of C which have no tac-line, the remaining points
will be called convex or concave, according as they have an outer or inner
tac-line.

Then C can be divided into a finite number of open arcs, consisting of
only convex, or concave, points. The corresponding arcs are also called
convex or concave.

It is clear that there are at most a finite number of tac-lines of K which
have a given direction.

9. Properties of the singular lattices.

Let A be a singular lattice of K, having the four points ±PX and ± P 2

on C. Then for the two integers u2 and v2 associated with these points,
all points of A are of the form

— ^i—1+^2—? ^ w n e r e OJX -J-u2 o>2 =
V

0 (mod v2).

Denote by Px* and P2* any two points of C sufficiently near to Px and
P2, respectively. Form the new lattice A* of all points

/,, P *4_/,» P *P * = —1 x + " ^ 2

This lattice evidently is also admissible. Since A is critical, A* must
satisfy the inequality

(10)

We may assume without loss of generality that

{Pv P2) >-0. and therefore also (Px*, P2*) > 0.
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By formula (1) in §1,

(Pv P2) = v2d(A), (Pf; P2*) = vtd(A*)t

and so (10) takes the simpler form

(ii) (JVS A*) >(Pi, P . ) .

THEOREM 14. Let ±Pt
 an^> zt-f^ oe ^e four jtoints of the singular

lattice A on C. Then the straight lines through ± P a parallel to the vector P2,
and the straight lines through z tP2 parallel to the vector Pv are inner tac-lines
of K.

Proof. If the assertion is false, we may assume, without loss of
generality, that a point Pf* arbitrarily near to P2 ^

ieii o n *n e n n e through
P2 parallel to the vector Px and does not belong to A'. The lattice A**
through Px and Pf* and defined by the integers u2 and v2 is still admissible,
but has on C only the lattice points 0, Px and —Pv It is therefore not
critical. It has the same determinant as A, and so, by Theorem 7, there
exists an admissible lattice of smaller determinant.

Theorem 14 enables us to find the singular lattices containing points
of 2 ; these lattices are finite in number.

We may assume from now on that neither Px nor P a belongs to 2.
Hence the points Px* and P2* above can be written as

2! ' •"

where \s\, \t\ are sufficiently small; also by (6) of § 8,

When we substitute these scries for P1
:=: and P2

:H, (11) takes the form

\',Pt')8t+(Pv P2")<2) + ..

This inequality is to hold if \s\ and \t\ arc suftieicntly small. Hence,
first.
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i.e. the tangents to C at. P,, P2 are parallel to the vectors P2, Px respec-
tively. This result is contained in Theorem 14.

Secondly,

(13) (Pi", P2)52+2(P1', P2')st + {PV P2")<2>0 for all real s, t.

If the quadratic form on the left-hand side is positive definite, then (11)
holds in the stronger form

{PS, P2*) > (Pv P2)

for all pairs of points Px*, P2* sufficiently near to Pv P2, except for the
pair Pt* = Pv P2* = P2.

From (12) and (13) we can find all pairs of points Pl 5 P2 not in 2
through which a singular lattice may he drawn. In general, the equations
(12) have only a finite number of solutions, since they reduce to a finite
number of pairs of equations whose left-hand sides are analytical functions.

An exceptional case may arise when the two equations (12) lead to an
infinity of points Pv P2. Then both equations are satisfied if Px lies
anywhere on an arc B1 of C, and P2 determined by Px lies on an arc Bz

of Cf. This is the case if B2 is the envelope of the straight lines

uy—vx = K,

where K =£ 0 is a constant and Px: {u, v) runs over all points of Bv

Geometrically, B2 is obtained by rotating through a right angle about
the origin the polar reciprocal of Bx with respect to the circle

Evidently for all points Px and P 2 of these arcs associated by (12),

Hence, even if there is an infinity of admissible lattices, their determinants
can only have one of the finite number of values

Hence Theorem 14 and the formulae (12), (13) enable us to determine
a finite or infinite set

{Av A2J A3, ...} •

f The two arcs may have common points or oven be identical.
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of lattices amongst which the singular lattices will be found. Even if the
set is infinite, their determinants

have only a finite number of different values. It is therefore possible to
decide which is the smallest determinant.

10. An example of a star domain with a singular lattice.

The results of the last paragraph do not assert that there exist domains
with singular lattices, and so I give an example of a simple star domain
with this property.

Let 9 be a number in the interval

Then K, the set of all points {x, y) which lie in at least one of the two
rectangles

1*1 <*. \V\<\ and |

is a simple star domain; it has the form of a cross.
Let A be a critical lattice of K. If A is singular, then by Theorem 14

it must be the lattice Ao which passes through

Px: (h - £ ) and P2: ft, *).

Hence, by Theorem 11, Pj and P 2 form a basis of Ao which then consists
of all points P = w1 PX-\-OJ2 P2 with integral cox and a>2. The determinant
of Ao is

We show now that no regular lattice, exists; therefore any critical
lattice must be singular and so identical with Ao.

A regular lattice would contain at least three pairs of symmetrical
points ±IJ

V ± P 2 , ± P 3 on the boundary C of K. Hence, from the
symmetry of the figure, we may assume without loss of generality that
there are at least two independent lattice points Px and P2 on that part
of C formed by the three line segments

x i; W- t<z<9, y=h;
J3y Theorem 11,
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and we may also assume that (Pl5 P2) > 0; therefore

d(A) = (P1? P2).

We now show that

(Pv P*) > \

by distinguishing the following four cases:

{a) Both Px and P2 lie on LL. Since P1—P2 is not an inner point of
K, Pl and P2 must lie at least a distance 9 apart. Then, for admissible
lattices, (Pl t P2) is a minimum for an obvious infinity of lattices; for
example,

Px: (6, -W), P 2 : (0, id), and then (Plt P2) = 6* > \.

(b) Px lies on Llt P2 on L2, say

P x : (0,1,), P 2 : ( f , i ) .

Since P1—P2 is not an inner point of K, necessarily

This condition is easily proved to be also sufficient for the lattice to be
admissible. If A is critical, then Px—P% must he on C, and we have
77 = £—0. Hence

(Plf Pt) = l0-£(l-0),

and is a minimum for £ = £, when

(Px, P,) = * - * > * .

A similar proof holds when Px lies on Zr3 and P2 on Lv

(c) Px lies on L3, P2 on L2. It is easily seen that no admissible lattice
of this kind has more than two pairs of symmetrical points on C.

(d) Both Px and P2 lie on L2, or both lie on L3. I t is obvious that no
such lattice is admissible.

Hence AQ is critical and so is singular. There are no other critical
lattices. Hence*

* For another example of a star dwmain with a singular lattice, seo the last part of
this paper, p. 182.

8ER. 2. vol.. 49. NO. 2358. I<
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11. Determination of the regular lattices (1).

We obtained in § 9 a method of finding all existing singular lattices.
In this and the following paragraphs we give a similar method for the
determination of the regular lattices. We construct a finite or infinite
set of lattices

{Al5 A2) A35 ...}

which must contain every existing regular lattice. This set has the
important property that the set

{diAJ, d(A2), d(A3), ...}

of determinants contains only a finite number of different values.
Let A be an arbitrary regular lattice of K and let

±P1S ±Pt, ..., ±Pg (<?>3)

be the different pairs of symmetrical points of A which lie on C; then any
two of these points with different indices are linearly independent. Every
point P of A can be written as

P = -x l 2 2, where c o i + ^ ^ ^ O (mod v2)-
V

Here u2, v2 are the two integers associated with Pj and P2, and wi and tu2

are integers. In particular

?2> 0 ,1+^2^2 = 0 (modv2) ( *=3 , 4, ..., q).

Since | i\x \ = ind (P2, PK), | Q,21 = ind (Pv PK),

these integers are bounded, by Theorem 8.
Wo choose the notation so that (Pv P2) > 0, and hence by (1),

and remark that these formulae remain satisfied if Px and P2 are replaced
by P2 and -Pv

It is now convenient to distinguish several types of lattices.

FIRST TYPE. At least two of the points

(14) P1}P2,...,Pq

bt'lcmy to the set S (§8).
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Since 2 has only a finite number of points and u2, v2 are bounded,
there exist only a finite number of lattices of this kind..

SECOND TYPE. One, and only one, of the points (14) belongs to S.

Call this now the point P2. Denote by C* the curve in the (x, y)-plane
described by a point

where the point Px* runs over the whole boundary of K. Since both Px

and P3 lie on C, the point P 3 must be a point of intersection of C and C*.
The two curves C and C* consist of a finite number of analytical arcs,
and so, by Theorem 13, have in general only a finite number of points of
intersection. Then there exist at most a finite number of admissible
lattices which contain P2 and two independent points Px, P 3 on C.

It is possible, however, that the curves G and C* have an infinity of
points and so an arc B in common. Then, when P3* runs over B, P{*
describes an arc A on C, and vice versa. From the lattice A defined by

} w h e r e Wl4.Maft>2=o (modi;2),
V2

we derive the lattice A* given by

> w h e r e

Then if we vary A* by making Px* run over the arc A, each point P*
of A* describes a curve.

Consider a point P of A independent of P 2 ; i.e. u>x ^ 0. The corre-
sponding point P* is then a point of K if Px* is a point of the set S(u*v o»2)
of all points

i) p*_,,, p

where P* runs over all points of A'. Evidently, since S{wv a>2) is a
domain similar and similarly situated to K, its boundary consists of
a finite number of analytical arcs, and so has in common with A a finite
number of pointsf and a finite number of arcsf.

•f This, oi couiBe, includes tliu cutse when there are num.*.
L 2
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Suppose now that A* is an admissible lattice. If the domain 8{wv co2)
has points in common with K, then by Theorem 12 both leoj and |o>2

are less than a number depending only on K, i.e. at most a finite number
of sets S(ajl, u)2) have points in common with A. Hence the set of those
points of A which are not inner points of any Sico^ w2) consists of a finite
number of pointsf and a finite number of sub-arcs Av A2, ..., Ah of Af.
Let P j* run over the whole extent, say of Av The determinant d(A*) of
A* is a minimum for critical lattices; hence the area of the parallelogram
0, Px*, P1*-fP2, P 2 is a minimum and so Px* is as near as possible to
the line through 0 and P2. Then either there is only a finite number of
points Pi* of Av or Ax contains segments s of straight lines parallel to
the vector P2, and then d(A*) is constant however Pt* is chosen on s.

Hence, in the second type, there exists a finite or infinite number of
possible regular lattices, and in either case their determinants have only
a finite number of different values.

12. Determination of the regular lattices (2).

We suppose from now on that no point of A belongs to S. Hence, if
PK is an arbitrary point of the set (14), then every point P»* on C
sufficiently near to PK can be defined by a convergent power series

where sK is a real parameter and 1̂ 1 is small.
We further assume, without loss of generality, that

(16) (P/ , P 2 ) ^ 0 .

For, by hypothesis (§ S), P / ^ 0. Hence, if (P1',P2) = 0, then
(Pj', P3) =^0, since P3 is independent of P2. We then can interchange
P2 and P3.

The inequality (16) implies that corresponding to every point Px* on
C in the neighbourhood of Px there is just one point P2* on C in the
neighbourhood of P2 such that

U") (Pi*, P2*) = (Pi, P2)-

y This, of course, includes the case when there are none.
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For on substituting the series (15) for Px* and P2*, this equation takes
the form

P2")s2
2}+... = 0,

where the series converges for all sufficiently small j sx |, |s2|. By (16),
this equation can be solved with respect to sx as a power series

\ P2)(PV P2-)^-2(P1
/, P , ' ) ^ , P/KP/, PZ)+(PV P2

//)(P1
/, P2)

convergent for sufficiently small \s2\. We write s instead of s2, and
substitute the series (18) for s2 in the expression (15) for Px*. Then we
have the parametric representation

* _ p _LP(l)-l_l_p(2) £_

(19)
P2* = P 2 + P 2 ' A + P 2 " | _

for points Px* and P2* on C sufficiently near to Px and P2 and satisfying
(17). In the first series the coefficient P^ is given by

(20) pa)=-(^i' P*l »'P
(Pi', P2) x'

has the same direction as Px', unless (P1,.P2') = 0 when
becomes the null vector. Then the series for Px* may reduce to its first
term. This happens if, and only if, the part of C in the neighbourhood
of P2 is a line segment parallel to the vector Pv

Let u2, v2 be the integers associated with P1 and P2. For every pair
of points Pj*, P2* on C sufficiently near to Plt P2 and connected by (17),
we form the lattice A*,

P* = ——x 2——, where a>1-fw2a>2H;0 (mod v2).

In particular, let

Q i P i * + Q P , » (K = 3 4 ? g )
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be the points of this lattice in the neighbourhood of PK. By (19), these
points P** can be written as power series in s. From (17),

d(A*) = d(A).

THEOREM 15. / / |s | is sufficiently small, then for each s at least one of
the q-2 points P$*, Pf*, ..., P** belongs to K.

Proof. Suppose the assertion to be false; then, for some s, arbitrarily
small, none of the points Pf1*, Pf*, ..., P** belongs to K. Hence, for
these values of s, the lattice A* contains only the four points ±Pi*> ± P 2 *
on C and is admissible. From (16), it is not a singular lattice, and so it
is not a critical lattice. Hence there is a critical lattice of determinant
iess than d(A*) = d(A), which is impossible.

'We now apply this theorem to the types when no points of (14) belong
to 2. We distinguish two cases, according as q = 3 or q> 3.

13. Determination of the regular lattices (3).

THIRD TYPE (q = 3). The regular lattice A has exactly six points
±Pi, ±P2> ± P 3 on C.

By theorem 15, the point

p** = ^3i i
3

belongs to K for sufficiently small |s| . When we substitute the power
series (19) for Px* and P2*, (21) takes the form

<) i_ 4_
3 2!

where, by (20),

} _
3 "

Since Px and P2 are independent, (Pv P2) ^ 0. Hence

2(P2, P3) o

(PVP2) ' " 3 2 ~ (PVP2) '
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Q. P 4- Qo9 Pc,since P 3 = ———--———-.

Hence the coefficient P3
!) can be written as

_ (P2,
3 (Pi, P,)(Pi',

On noting the terras in P§\ we have

( >^}-~ (Pi, P,

i.e., with a more symmetrical numerator,

Wl) p ^ _ (Pi. P/)(P2, Pjsi(Ps,
l > y 2 /

This follows easily from the well-known identity

Suppose first that P3
1} 9̂  0. For sufficiently small values of |«|, Pf*

describes a curve passing through P 3 ; from the series for Pf*, its tangent
at P 3 is parallel to the vector P£K Since all points of this curve sufficieiitly
near to P 3 belong to K, its tangent at P 3 coincides with that of C which
is parallel to the vector P3'. Hence we have a vector equation

(23) P? = pP*,

with a scalar /i. Suppose, secondly, that P[/) = 0; then this formula
remains true with /x = 0.

From (23), (P3
l>, P3') = 0,

and so by (22),

(24) (Pv P2'){Pt, P3')(P8f P1') + (P1', P2)(P2', P3)(P3', Px) = 0

for all regular lattices of the third type.

The argument leading to (23) shows further that the three points
Pj, P2, P3 satisfy an inequality condition arising from terms of the second
order and corresponding to the sign of the second derivative in minima
problems. I omit this condition since I have not succeedefl in expressing
it in a simple form similar to (24).
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We can now determine all regular lattices of the third type. For
given integers v2, Q31, Q32, we have to find all sets of three points Pv P2, P 3

on C which satisfy the equations (24) and

(25) nnP1+£l32P2-v2P3 = 0.

Since the boundary C consists of a finite number of analytical arcs, (24)
and (25) are in general independent and so have only a finite number of
solutions; to these correspond only a finite number of possible regular
lattices.

It may happen that only two of the three equations given by (24) and
(25) are independent. Then one of the three points, say Plt may be
taken arbitrarily on an arc A of C, and then P2 and P3, being determined by
Plt lie on other arcs of the boundary C. It is clear from the construction
of P 3 that all the lattices A so obtained have the same determinant. By
using Theorem 12, we can decide which of these lattices are admissible,
and then which are critical.

Finally, we note that the three equations given by (24) and (25) never
reduce to one independent equation. For then Px, P2 would have arbitrary
positions on C, and so the area of the parallelogram 0, Pv Px-\-P2, P2

would not be constant.

14. Determination of the regular lattices (4).

FOURTH TYPE. The regular lattice A has 2q^8 points

±PV ±P2> ..., ±Pq

on C.

In the equations

(26) aiPi+a2P2-t>2^c = <> (*=3, 4, ...,

the coefficients v2, Q^, QK2 are bounded integers, by Theorem 8. There
are, jn general, only a finite number of sets of points Pv P2, ..., Pq on C
satisfying (26), since the number 2q—4 of conditions in (26) is at least
equal to the number q of parameters of the p points. For these points,
Theorem 15 gives a necessary inequality condition.

In exceptional cases there may exist an infinity of lattices with at
least eight points on C. Since the boundary C consists of a finite number
of analytical arcs, this can occur only if P1 runs over an arc Bx of C,
while P2, P3, ..., Pq, as functions of Pv describe other arcs of C. The
determinants of the lattices through these points depend on the positions
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of P x ; for a critical lattice, the determinant is a minimum. This leads
to the following considerations which might have been applied exactly
the same way to find the condition (24) for the third type.

Let A be one of these critical lattices, let A* be a neighbouring lattice,
and denote by ±PV ± P 2 , ..., ±PQ and ±Pl*t ± P a * , ..., ±Pq* the
points on C of these two lattices. Then

Q P 4- O P O P * 4- O P *
(27) ^ 3 = 31 \ 32 2» P 3 ^ = 31 1 -V 3 2 _ ^ ,

By the last paragraph,

^ 3 1 = Tp p~v~ > ^ 3 2 = ~rp" p~r •
\-*i> r2) \*v r2)

The equations (27) can then be written as

(28) (P2, P3) Px+ (Pa, Pi) P 2 + (Pi, P2) P 3 = 0,

(29) (PIt Pa)P^+(P3, P1)P^+(P1, P2)P3* = 0.

On substituting the power series

^ + . . . (K= 1,2,3) .

in (29), we get by (28) the vector equation

Q=(P2, Pa)P1
f«iH-(Ps, P1)P2's2+(P1, P2)P3 '53+. . . = 0,

where the dots denote terms in sx, s2, s3 of the second and higher degrees.
Since # = 0, (Q, P3') = 0, i.e.

(30) (P2, P,)^', P3')51+(P3, PJiP*, Pa')8t+... = 0.

Suppose first that (P^, P3') and (P2', P3') are not both zero. Let, e.g.,
(P2', P 3 ' ) ^ 0 ; then the equation (30) can be solved for s2 as a power
series in sv

(P8, PsHP/, P,') ,
52 - ( P 3 ) P 1 ) ( P 2 ' , P 3 ' ) S l + - -

The lattice A* contains therefore points Px*, P2
:!: given by

2 sl-f-....
•* 3 /

By hypothesis, A is critical; hence

(Px*, P2*) > (Px> P8),
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that is c'51+c"^|- + ... > 0 ,

r' — ^ 2' " s H * 3 > •* l /

c — - r - —r p p . „ , ^

This inequality must hold for sufficiently small \sx\. Hence c' = 0 or

(P8> P3)(PV P.'HP,', Pa')+(PV

a condition which clearly also holds if (P / , P3') = (P2', P3') = 0.
Hence the points Pv P2, P3 satisfy equation (24) of the last paragraph.

Similar equations hold with P3 replaced by P4, ..., Pq.
Therefore, as in § 13, the infinity of lattices A* have all the same

determinant.
Such cases actually occur. For, if 72 > 0 is sufficiently large, then the

simple star domain

has an infinity of regular lattices, and these, by suitable choice of R, will
contain an arbitrary large number of lattice points on C.

15. Conclusion.

Let us now collect our results for simple star domains. We have
developed a method of constructing a finite or infinite set of lattices
containing all critical lattices. This set has the remarkable property
that the determinants of its elements assume only a finite number of
different values, the smallest of which is the minimum A(/Q.

The members of the set are:

1. The singular lattices with at least one point in S. (§9.)

2. The singular lattices with no points in S. These are obtained by
solving the equations (12). (§ 9.)

3. The regular lattices with either one point in I! or with tico independent

points in S. (§11.)

4. The regular Indices with no jwints in 2. and having exactly six points
on C. These are obtained by solving the equations (24) and
(25). (§13.)
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5. The regular lattices with no points in 2 and having at least eight
points on C. (§14.)

C. The set may further contain non-critical lattices either satisfying
the conditions for stationary solutions, or having a certain
number of points in 2 or on C, or possessing tac-lines of a
certain direction. (§§9, 11, 13, 14.)

The method of the paper reduces the problem of finding A(i£) to a
finite number of elementary questions no longer involving number theory,
namely, the solving of sets of equations in a small number of unknowns.
I show in further parts of this paper that the method is practicable.

16. Unsymmetrical star domains.

We have considered so far only star domains K which are symmetrical
in the origin. This restriction can now Tbe easily removed.

Let H be a closed set in the (x, y) plane containing the origin as
an inner point and bounded by a Jordan curve J of the following kind:

(a) J consists of a finite number of analytical arcs.

(b) Every radius vector from the origin intersects J in a single point.

If H is not symmetrical in 0, then denote by K the set of all points P
for which at least one of the two points P, — P belongs to H. Then K
obviously is a simple star domain (§8).

As in §§ 3 and 4, we define //-admissible lattices, the lower bound A(#),
and critical lattices with respect to H. Then a lattice which contains at
least one point P ^ 0, and so both points P and — P of if, contains also
at least one point ± P of H, and vice versa. Therefore the H-admissible
lattices are identical with the JT-admissible lattices, the critical lattices
of H are identical with those of K, and

(31)

Hence there is no difference between the lattice problem for H and the
lattice problem for K.

17. The use of sub-domains.

By Theorem 2,
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when the star domain K' is contained in the star domain K. Hence if
there exists at least one critical lattice of K' which is admissible and
therefore critical with respect to K, then

This remark enables us to derive from known results new ones for
larger domains. For instance, since

we find without difficulty for h, a regular hexagon or a regular star hexagon
of side a,

This method of extension applies in particular to infinite star domains.
These are defined in the following way. Let S be an arbitrary point set
in the (x, y)-plane, and 8(r) the subset of all points of S which lie in the
circle Fr. Then S is called an infinite star domain if it is not bounded,
and if S(r) for every r > 0 is a simple star domain f.

There need not be admissible lattices with respect to an infinite star
domain. If there are such lattices, then we can again define A($). It
does not now follow that critical lattices exist. But for certain infinite
star domains, critical lattices may exist, and these may be already critical
for all subsets S(r) where r is sufficiently large. Then, as above, we can
consider S(r) and find the value of A(#).. As examples, I mention the
domains

where F(x, y) is a cubic binary form; these were considered for the first
time by L. J. Mordell%.

Addition {March 1945). In the three years since this paper was
written, I have extended the theory of star domains to bounded or
unbounded star bodies in any number of dimensions, and have proved
a number of existence theorems. I have also evaluated A (If) for some
special domains, e.g. the domain

W

f By the preceding paragraph, it suffices to consider infinite domains which are
symmetrical in the origin.

J Proc. London Math. Soc. (2), 48 (1943), 198-228,
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These results are contained in the following papers:

(1) Journal London Math. Soc. 18 (1943), 233-238.

(2) Proc. Cambridge Phil. Soc, 40 (1944), 107-120.

(3) "On lattice points in a cylinder", Quarterly Journal of Math.,
17 (1946), 16-18.

(4) " On lattice points in n-dimensional star bodies, I, I I " .

My student, Mrs. K. Ollerenshaw, D.Phil., has evaluated A(if) for
some very interesting classes of star domains; see Journal London
Math. Soc, 19 (1944), 178-184; Proc. Cambridge Phil. Soc, 41 (1945),
77-96; and a paper to appear in the Quarterly Journal of Math. One
of the domains considered by her possesses a continuous infinity of
singular lattices.

The University,
Manchester, 13.


