
SIMULTANEOUS DIOPHANTINE APPROXIMATION

BY H. DAVENPORT AND K. MAHLER

1. Hermite said that "La recherche des fractions p’/p, p"/p qui approchent
le plus de deux nombres donns n’a cess depuis plus de 50 ans de me proccuper
et aussi de me dt!sesprer". Though some progress has been made since the
time of Hermite, notably by Minkowski, the problem of simultaneous Diophan-
tine approximation to two given irrational numbers a, f by fractions of the
same denominator is still, in most of its aspects, unsolved and apparently in-
tractable. It is well known that there are constants c such that the inequalities

c

r3/2

have an infinity of solutions, but the best possible value of c is not known (see
[2; 70-72]). In this note we use

as a measure of simultaneous approximation, and we show that in this formula-
tion the problem can be substantially solved. We prove:

TEOREM 1. (a) If c > 2/23t, and a, are any two irrational numbers, there
exist an infinity of fractions p/r, q/r for which

(b) This is false if c < 2/23t.
The same methods lead us to the closely related result:

TEOREM 2. (a) If C > 2/23t, and a, are any real numbers for which 1, a,
are linearly independent, then there exist an infinity of sets of integers p, q, r satisfying

clap + q + r < p2 + q2
(b) This is false if c < 2/23t.

(p + q > 0).

2. The proof of (a) in each case is based on the application of a principle
due to Mahler [3; Theorem 10, Part I] to a theorem of Davenport. We proceed
to give the proof of Theorem (a). Let K be the body in three dimensional space
defined by

(x -t- Y)Izl _< 1,
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and let 4 denote the lower bound of the determinants of all lattices which have
no point other than 0 in the interior of K. It was proved by Davenport (see
[1], [4]) that

(1) 4 1/2(23) t.
Now let be any positive number, and let K() be the body defined by

(x + y’) zl < , x + y < .
Let 4() be the analogue of h for K(). If > 0, the transformation

x x/t, y y/t, z t2z,
which is of determinant 1, transforms K() into K(t), hence we have (by the
affine invariance of

X() a(t).

Now let t ,,. Each body 4(t) is contained in K, and on the other hand any
bounded portion of K is contained in K(t) if is suftieiently large. By the
theorem of Mahler already mentioned (in the notation of that theorem, we are
using here the case F(X) {(x" -t-

lim 4(t)

Hence

a() a 1/2(23)

for any > 0.
This means that if is any lattice of determinant less than 1/2(23) t, there is

a point of other than 0 which satisfies

(x" -k- y’) [zl <_ 1, x" + y" <_ ".
If we apply this result to the lattice defined by

x p- ar, y q- r, z r/c (c > 2/23),
where p, q, r take all integral values, we deduce that there exist integers p, q, r
which satisfy

r[(p- ar)" -]- (q- Or)’} _< c,

(p-- ar)’-I- (q-- Or)" <_ .
Since a, are irrational, it follows from the second of these inequalities tha
r -- oo as - 0. This proves Theorem 1 (a).
The proof of Theorem 2 (a) is the same, except that in place of the condition

x’ -t- y _< ’ we use z _< , and that we apply our result to the lattice defined by

x p, y q, z (ap -k- Oq -}- r)/c (c > 2/23).
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3. It is also possible to prove the parts (a) of our theorems without using
Mahler’s theorem, by an appropriate modification of Davenport’s proof of (1).
The underlying idea is the same as that used above, and we content ourselves
with a brief indication for the case of Theorem 1 (a). We define M to be the
lower limit, as r -- oo, of

r{(p- cr) q- (q- r)2}.
By proceeding as in Davenport’s paper [1], with minor modifications, we obtain
a lattice in x, y, z space which satisfies the conditions (a), (b), (c) on p. 100 of
that paper, except that in place of (4) we have the weaker condition

either {(xq-z)z q-yZ} zl > 1 or xzq-yz > K,

where K is arbitrarily large.
work of that paper.

This alteration does not affect the subsequent

4. We now proceed to the proof of Theorem 1 (b).
for any e > 0, two real numbers a, such that

We have to construct,

2
lim r (p ox)" - (q r)=l > ,

where p, q are the integers nearest to ar and Br. The numbers a, are necessarily
irrational, for if one or both of them were rational, the lower limit would be zero.
The construction is based on properties of the cubic field k(k), where

1.3247.-- is the real root of 1 0. The conjugates of k are
0 -1/2k q- i and 0 -1/2 i, where we can suppose b > 0. We have

(2) (- )( -)( ) 23i,
since the discriminant of the cubic equation is 23. If $ is any integer of k(),
we denote by ’ and ’ its conjugates in k(8) and k(O) respectively. We require
the following result:

LEMMA. For any > 0 there exist integers Xl ha of k(b), given by

(a) x, u, + + w, x,. u,. + + w, x u + v +
where u wa are integers of determinant 1, such that

(4)

Proof.
follows:

Let N be a large positive integer. Choose u vl w uz, vz, w. as

u N, v O, w 1,

v. is the prime nearest to N/b,

u is the integer nearest to 1/2v.
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As N -o , we have v. N/b, u2 1/2v2

and so

On the other hand,

Now

x u, + (- 1/2 + i)v, + (- 1/2 + i)%,,

),f u,-1/2,v + (1/4- )w, N,

3), (v 4w) o(N).

X’ u2 1/2dv + (1/4d k)w o(N),

3),; k(v dw) N.

Hence (4) is satisfied if N is sufficiently large.
Further, the expressions

have no common factor greater than 1. For their values are -v. u Nv2
respectively, and v is a prime, and 0 < u. < v by (5), since 0 < 1/26 < 1. Hence
there exist integers u:, v3, w. which satisfy

u(vw vw) + v(wu. wu) + w(uv -uv,) 1.

This proves the Lemma.
Continuing the proof of Theorem 1 (b), we observe that

(6) (hlp -4- hq -4- hr)(hp -4- hq -4- Xr)(hp -4- hq A- h.r) >_ 1

for all integers p, q, r which are not all zero, since the product is the norm of
the integer hp -4- hq -4- hr of k(). The determinant of the three linear forms
in the product is 23i, by (2) and (3). We now determine real numbers a,
such that

kp-t- hq-4- hr h(p ar) "4- k’(q- r).

This is possible, since X/,’ is not real, and so every complex number, and in
particular -h., is representable as aX +/X. We can write (6) as

I}’,P A- ),q + X3r [{a(p at) A- 2b(p- ar)(q--- Br) -t-c(q- r)} > 1,

where

We have
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and therefore, by (4),

(7) <--1 <,
a

where depends only on , nd tends to zero with . Since the determinant of
the lineur forms in (6) wus 23i, we hve

(8) [),a A- ),./ A- ka [(ac b) (23) t.

By (7) we have, for any real x, y,

ax + 2bxy + cy <_ ax + 2a xy + a(1 + )y2

<_ ax @ ,a(x + y2) W a(1 @ )y2

_< a(1 -t- 2) (x -t- y2).

Hence, for any integers p, q, r that are not all zero,

1
X,p + X2q A- XarJ{(p ar) A- (q /r)2} >_

a(1 -4- 2e)"

In particular, if we make r -- , and give p, q the integral values nearest to
ar,/r respectively, we deduce

1 r
li___m r{(p )2 W (q fir) >_

a(1 -t- 2el)
lim

Xlp W X2q W X3r[

2
23 i A- 2,)/’

by (8). The fraction in brackets falls short of 1 by as little as we please, by
(7), on taking sufficiently small. This proves Theorem 1 (b).

5. Finally we prove Theorem 2 (b).
Lemmu, and let

Let ), X. Xa be the numbers of the

These are integers of k(), since, by (3),

(9)
1 U3V2 U2V3 + (U3W2 U2W3)(O + O) + (W2V

-W- V,- U,(- 1),

where U, V, W are the cofactors of u, v, w in the determinant of u,
wa. The conjugates of , g, ga are given by
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It follows from the simple properties of minors, applied to the determinant
formed by Xl, X2, ha and their conjugates, that

and consequently, by (4),

(10) va 1 i < .
For all rational integers p, q, r which are not all zero, we have

(11) (uIP + 2q + mr)(p + q + ur)(p + q + u-r) 1,

since the product is the no of the integer utp + q + uar of k($). The de-
ten,ant of the three linear fos in the product has absolute vMue 23t, by
(9) and (2). We can ite the second factor as

r(vl ..i/v)p + ( ,i/v)q + (.p + ,q + )/

Hence, ff we put a u/va, B u/a, we cn write (11) as

(ap + Bq + r)(pp + aq + ,(ap + Bq + r))(p + 5q + (ap + Bq + r)) 1,

where p, , are complex numbers, and alp satisfies

(12) - i < ,
by (10). so from the deteant of these linear fos, we have

(13) [p-- 23t.

Now make p and q tend to infinity in ny manner, and give r the integral
value nearest to -ap Bq. Then ap + Bq + r is bounde, whereas
pp + aq . Hence

(14) lim (aT + Bq + r)(pp + aq)(p + q) >_ 1.

By the same method as in the previous proof, it follows from (12), (13), (14) that

2
lim ]aT + Bq + r] (p2 + q2) > - ,,

where d is arbitrarily small with . This proves Theorem 2 (b).

No ded in proof. Mahler has since proved that the results of Theorems
1 (a) and 2 (a) are tree also when c 2/23t, provided we read, in place of < in
the main equality. For ts, and rather more, see Theorem 0 of Part II of [3].
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