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On lattice points in n-dimensional star bodies 

I. Existence theorems 

BY K. MAHLER, Manchester 

(Communicated by L. J. Mordell, EIR.S.-Received 27 April 1945) 

Let F(X) = F(x,, ..., x") be a continuous non-negative function of X satisfying F(tX) 
= ItI F(X) for all real numbers t. The set K in n-dimensional Euclidean space Rn defined 
by F(X) < 1 is called a star body. The author studies the lattices A in Rn which are of 
minimum determinant and have no point except (0, ..., 0) inside K. He investigates how 
many points of such lattices lie on, or near to, the boundary of K, and considers in detail 
the case when K admits an infinite group of linear transformations into itself. 

INTRODUCTION 

Let K be an arbitrary bounded or unbounded point set in the n-dimensional Euclidean 
space Rn of all points 

X (xl, x2, **., xn) (xl, x2, ..., xn real numbers). 

A point lattice A, 
n 

k=1 

in R" of determinant d(A) a |hk I h,k=l, 2,....,n 

is called K-admissible if no point P of A, except possibly the origin 0 - (0, 0, ..., 0), 
is an inner point of K. (P is an inner point of K if there is an n-dimensional sphere 
with centre at P and contained in K.) The minimum determinant i(K) of K is 
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defined as the lower bound of d(A) extended over all K-admissible lattices. This 
function zI (K) depends on K in a very complicated way and is, in general, not a 
continuous function of K. A K-admissible lattice Ae such that d(A) -A (K) is called 
a critical lattice of K; such critical lattices exist, for instance, if K contains 0 as an 
inner point and has at least one admissible lattice. 

Minkowski proved in his classical theorem that if K is a convex body with centre 
at 0. then 

2z1 (K) ; V(K) 
where V(K) is the volume of K. He further gave a finite algorism for obtaining A (K) 
and the critical lattices of K if K is such a convex body and n = 2 or n = 3, or if K 
is of a certain type with n = 4 (Minkowski I907, I91 I), 

Minkowski also considered another more general class of point sets, the star 
bodies (Strahlenklrper). These are point sets defined by an inequality 

F(X) 1, 

where F(X) = F(x,, ..., xn) is a continuous function of X such that 
F(X) )>O for all points X, 

F(tx1, ...,txn) = t F(xl,..., x) for real t. 

The functional equation implies that K is symmetrical in 0. This restriction is not 
made by Minkowski, but is in no way essential. He found (I9I I) for such point 
sets that 

2,(n) J (K) < V(K)> 
but his proof was never published. Recently, Hlawka (1943) gave a very ingenious 
proof based on the theory of multiple integrals, and I found a geometrical proof 
(Mahler I944) for a slightly less exact inequality.* 

New progress was made in the years from 1938 onwards when important special 
examples of star bodies in two or three dimensions were investigated by Davenport 
(I938, I939 and I944) and Mordell (I942, I943, I944, and the general method I945). 
In 1941 Mordell discovered a method for dealing with a certain important class of 
such problems. This work led me to ask myself whether Minkowski's method of 
evaluating A (K) when K is convex (Minkowski I907, I9II) could be extended to 
arbitrary bounded star bodies. I succeeded in answering this question in the 
affirmative, and found an algorism for the evaluation of a (K) if K is two-dimensional 
and bounded; and I applied this method to a few special cases. 

In the present paper, the aim is not to consider further special examples of star 
bodies, but rather to lay the foundations of a general theory of bounded or un- 
bounded n-dimensional star bodies and their critical lattices. 

In this first part, I begin by proving that if the star body K, 
F(X) < 1, 

* Addition, May 1946. A beautiful new proof of the Minkowski-Hlawka theorem was 
recently given by C. L. Siegel, Ann. Math. 46 (I945), 340-347. 
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has at least one admissible lattice, then K also admits at least one critical lattice. 
The points of such a critical lattice A on, or in the neighbourhood of, the boundary 
C of K are next studied. If K is bounded, then at least 2n points of A lie on C, as is 
almost obvious; an example is constructed in which this lower bound is attained. 
If K is not bounded, then A need not have a single point on C, as is also proved by 
means of an example. It is then easily proved that to every e > 0 there is at least one 
point P of A such that 

l F(P) < l+ 6; 

however, it remains an open question whether there are always n independent points 
of A with this property. 

From ? 14 onwards, unbounded star bodies are considered with an infinite group 
P of linear transformations into themselves; many of the most interesting lattice- 
point problems are of this type. Three different assumptions about P' are made and 
applied to the study of the critical lattices. Then three general classes of star bodies 
are found with the following three properties respectivel: (a) At least one critical 
lattice of K has a point on C (theorem 21). (b) For every e > 0, every critical lattice 
A of K contains an infinity of points P satisfying 

I < F(P) < 1+e 

(theorem 23). (c) For every e > 0, every critical lattice A of K contains n independent 
points P1, ..., Pn? satisfying 

I <,F(Pg) <I 1+ (g =1, 2, ... ,n) 

(theorem 25). The simplest example of an n-dimensional star body with all three 
properties (a), (b), (c) is that defined by the inequality 

X12 Xn I <1Il 

In the second part of this paper which is appearing in the Proc. Royal Acad. 
Amsterdam, I intend to study certain types of star bodies K according as they 
contain, or do not contain, smaller star bodies K' such that 

A (K') _ Az(K). 

1. NOTATION 

The following notation is used in this paper: 
If x1,x2, -. n (n > 2) are real numbers, then 

X = (x1, X2 ..n,X) (l-l) 

is the point in n-dimensional Euclidean space Rn with rectangular co-ordinates 
x1, x2, ..., xn. The non-negative number 

| X | -+ (X2 + X2 + ........ + x2)i (1.2) 
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is called the distance of X from the origin 0 = (0, 0, ..., 0). If 

xi - (X(1 ) X (21) ...X(1) ) . .X(r- (x(r)n X(r),...xf) (1 
are any points in Rn, and A1,..., Ar are any real numbers, then 

A1X1 + ...+ ArXr 
is written for the point 

(Alx(ll ... + Arx(l) Aix(2l + . .. + A,X(2r) .. A14(1) + ...+ ArX(f) 

The determinant of n points 

= (1) (1) x(.) X X.n). x(n) (n) 14) xi -x 1 2 n) .. I Xn n- X 

X(ll) X (1) .. X(nl)| 

x(2) (2) X(2) 
is denoted by {X1,X2, X... } X 1 X2 Xfl (1.5) 

(n) X(n) ... X(n) 

The points are called independent, if this determinant does not vanish. 
The set A of all points 

X = u1X1+ ** +UnXn, where U1, ...,unO= + 1, + 2+ 3, ... 

is called a lattice if its determinant 

d(A) {X1, X2, ...,X} I (1.6) 

is not zero; then X1, X2,..., Xn are said to form a basis of A. Any n points Y1, Y2,..., Yn 
of A form a basis of this lattice if and only if 

tYj, Y2, ., Yn}= + d(A)* (1.7) 
If P, Q, R, ... are points of A, then A - [P, Q, R, ...] denotes the set of all points 

of A different from P, Q, R1. 

2. THE REDUCED BASIS OF A LATTICE 

THEOREM 1. There exists a constant yn> 0 depending only on the dimension n 
of R., with the following property: every lattice A in Rn has a reduced basis, i.e. a basis 
Y, Y2, ..., Yn, for which 

I Y, II Y21 ... I Yn I n d (A). (2 1) 

Proof. Let XI - (xl) .., f) ) ...,I . x_ = (x( n) (n) . x(n) (2.2) 

be any basis of A. Then 
n 

- )U u?.+ xn) U )2 1UX--.?~~ 2 (2.3) 0(P(Ul, Un /f) -Y (Xglvl g....... +$f)n) | ulXl + . .U+nXn ) 
g==l 

is a positive definite quadratic form of discriminant 

d(A)2 = {XI, X2, ..., X}2. (2.4) 
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There exists a linear unimodular substitution 

ug=Ea vh, where g = 1, 2, ..., n, (2- 5) 
h= 1 

vith integral coefficients by which 0 is changed into a new form 
n 

0(ul. . u. U.) = (V1 .. ., v,) - (y1)1v_ + . Y.. +y{v()2, (2'6) 
g= l 

which is reduced according to Minkowski (I91 I ). Hence by his theorem 

-Y(1 0, ... ..0)?(0,...0)... ,O(0, 0 ... PI , 1)?yd(A)2 (2.7) 
where y, >0 depends only on n. The n points 

Y, _ (yl1 5v2 ) ...,Yn)), ......... 7Yn =Y (f)i y2 ) --#Yn ) (2-8) 
form a basis of A since 

lyl- Ynl f t-XP> ........ *Xn}-+ d(A). (2-9 
Moreover, 

P(l,O, . . , O) =1lY1f2, 1P(0,l, ... 0) = 1Y212, ., (0,0 ... ,1) Yn 2, .(2.10) 

whence the assertion. 
Theorem I may also be proved by the reduction method of Hermite (1905), 

which has the advantage that the proof of the product formula for the F's is of an 
elementary character. 

3. THE CONVERGENCE THEOREM 

DEFINITION 1. An infinite sequence of lattices 

A1, A2A31 *... 

is called bounded, if there exist two positive numbers c, G2 such that 

d(Ar)<Cl for r = 123, 2,3 (3.1) 

1X c2 forallpoints XtO of A, when r 12, 37 (3-2) 

DEFINITION 2. An infinite sequence of lattices 

A1, A2, A3,.. 

s sad to converge, and to have as its imnit the lattice A, if there exist reduced bases 

Yl Y2r n of A,. for r 1,2,3,... (3.3) 

and a basis Y1Y2, .2, Y of A, 

such that lim | r) =0 , where q ,= ,2, ..n. (3-4) 
r->oo 
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This definition implies that the points of Ar in any finite region independent of r 

tend to the points of A, as r tends to infinity. 
From these two definitions is derived the following theorem which is fundamental 

for the study of star bodies: 

THEOREM 2. Every bounded infinite sequence of lattices contains a convergent 
infinite subsequence. 

Proof. Let A1,A2,A3, ... be any bounded sequence, and let Y(), Y(),..., Y2 ) be 
a reduced basis of Ar for r 1, 2, 3, ..., then from definition 1, 

d(Ar) cl, 1Y >,1c2, where g=1,2, ..., ,nandr_ 1,2,3, ..., (35) 
and from theorem 1, 

| y(lr)\ | Y(2| *\|y(r) d(A) where r= 1,2,3,. (3.6) 
hence y) " yncC1C2-) where g 1, 2, ... , n and r = 1,2, 3. (3 7) 

All co-ordinates of the basis points y(r) (g = 1, 2, ..., n; r = 1, 2, 3, ...) are therefore 
bounded, and so there exists an infinite sequence of indices 

'rl r2, r3, .... 

and a set of n points Y1, 4 *., Yn, 

such that lim y(rk) y |=0, where g 1, 2, ...,n, (3.8) 9 
00 k-~-coo 

whence limd(Ark) lim {Y(rk), y(rk) 2} = {y y ...,Y.. Y (3.9) 
k->o k*oo 

Further, from Ynd(Ark) | y(rk) y(rk) ... Y(k) | c, (3.10) 

and d(Ar y)yn1 j2c (3.11) 

it is deduced that y{Y1,Y2, ...n 2n} I7 nlc >0, (3.12) 

and so the lattice A of basis Y1, Y2,..., Yn satisfies the assertion. 

4. DISTANCE FUNCTIONS AND STAR BODIES 

DEFINITION 3. A function 

F(X) = F(xl,X2, Xn*,X>) (4X1) 

of the point X (xl, x2, .., xn) in Rn i8 called a distance function if it sati8ftes the 
following condition8: 

(a) F(X) > 0 for all points, and F(X) >0 for at lea8t one point; 
(b) F(tX) = t I1F(X) for all points X and all real numbers t; hence 

F(- X)= F(X) and F(O)= 0; 

(c) F1(X) is a continuous function of X. 
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DEFINITION 4. The set K of all points X satisfying F(X) < 1 is called the star body 

of distance function F(X); the subset C of all points of K withi F(X) = 1 is called the 
boundary of K. 

It is evident that a star body K has the following properties: 
(A) If X belongs to K, then tX, where - 1 < t < 1, also belongs to K. 
(B) The limit point of a convergent sequence of points of K also belongs to K. 
(C) The origin 0 is an inner point of K; i.e. there exists a positive number p such 

that all points of the sphere I X | p belong to K. 

For since F(X) is continuous, it assumes on the sphere X I a maximum value, 
say I/p. Then F(X) I X < l/p for all X # 0, whence F(X) 1, if X is a point of 
the sphere f X I < p. 

THEoREm 3. The star body K is bounded if and only if 
F(X) > 0 for all points X + 0. 

Proof. As a continuous function F(X) assumes on the sphere I X I I a minimum, 
say jt. Ifit = 0, then F(X) vanishes at a point X + 0, and so it vanishes at all points 
of the line through 0 and X; hence K is not bounded. If, however, a = 1/P> 0, 
then F(X) I X I 1/P for all X * O, hence I X I < P if F(X) < 1, and so K is bounded. 

5. THE TWO TYPES OF STAR BODIES 

DEFINITION 5. The lattice A is called K-admissible if A - [0] contat'ns no inner 
points of K. 

DEFrNITION 6. The star body K is called of the finite tye if there exists at least one 
K-admissible lattice; it is calledof the infinite type if no such lattice exists. 

THEOREM 4. Every bounded star body is of the finite type. 

Proof. Let P > 0 be a number such that j X j < P for all points of K, and denote 
by A the lattice of basis 

Xi- (P,0I...,0) X2 = (0P,..0), ..., X= (R 0, ... P). (5.1) 
Then f X | P for all points X + 0 of A hence A is K-admissible. 

TnE oEm 5. Unbouned star bodies ex?st of the finite type, and also of the infinite 
type. 

Proof. (1) The star body K of distance function 

F(X) = I X1x2 ...Xn fl/n (5.2) 
is not bounded. To show that K is of the finite type, denote by 9 any totally real 
algebraic field of degree n, by 

o', w, *., o4 (g) where q-1,2 ..., 
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conjugate integral bases of the n fields t(1), W(2), ..., *(n) conjugate to At, and by A 
the lattice of basis 

Xh ( ?, h ... . (7) where h = 1,2,.. .,n. (5 3) 
Then, except for the sign, F(X) is the norm of an integer a + 0 in St if X lies inA - [0]; 
hence F(X) >? 1 for all lattice points X+ 0. 

(2) The star body of distance function 

F(X) X2- 2 .. . I1/(n+l) (5.4) 

likewise is not bounded, but it is of the infinite type. For let A be any lattice, and 
denote by tl, t2, ..., tn, n positive numbers of product d(A). By Minkowski's theorem 
on linear forms, there exists a point X = (xl, x2, ..., xn) * O of A such that 

| , 1 | < tl7 I X2 1 '< t2l ... I - Xn| I '< tn, (5-5) 

hence 0 < F(X) < {t1d(A)}1I(n+1). (5.6) 

If it be assumed now that t1 < d(A)-1, then X is an inner point of K. Therefore A is 
not K-admissible. 

Unless otherwise stated, all star bodies considered are from now on assumed to 
be of the finite type. 

6. THE DETERMINANT OF A STAR BODY 

Let K: F(X) < 1, be a star body of the finite type. By definition 6, the set A(K) 
of all K-admissible lattices is not empty. Hence the lower bound 

A(K) = l.b.d(A) (6.1) 

extended over all elements of A2(K), exists; i (K) is called the determinant of K. 
For star bodies K of the infinite type, put A (K) oo. 

THEOREM 6. The determinant of a star body is positive. 
Proof. By the property (C) of a star body (? 4), K contains the sphere X i p, 

hence also the cube 
max((Ix1, 1x21, ..*, Ixnj) < pn-f. (6.2) 

By Minkowski's theorem on linear forms, every lattice of determinant 
d(A ) < pn n-in 

contains an inner point X $ 0 of this cube, i.e. of K, and so such a lattice cannot be 
K-admissible. Hence, for every K-admissible lattice A, 

d (Al) > pn 4-n (6-3) 

whence A (K) -pnnAn>0 (6 4) 

THEOREM 7. If the star body H is contained in the star body K, then 
A (H) < a(K). (6.5) 

Proof. Every K-admissible lattice is also H-admissible. 
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7. TnE EXISTENCE OF A CRITICAL LATTICE 

DEFINITION 7. The latte AI is called a critical lattce of K if it is K-adm issible 
and d(A) =(K). 

The following theorem i fundamental for the theory: 

THEoxEOiq 8. Every sta body of the fitnte typ posseses at least on'e r tical I lttice. 
Proof. Froi the definition of A (K), there exists an infinite sequence of K-admis- 

sible lattices 
Al, A2, A3, ., 

not necessarrily all different, such that 
lim d(Ar) A (K); (7'1) 

it may be assumed further, without loss of generality, that 

d(Ar)(2A(K), where r=1,2,3,..,. (7'2) 

Moreover, sinee the sphere X p is contained in K, 
f X j>p for all points X*O of A, where r 1, 2, 3 .... (7'3) 

From (7'2) and (7'3) the sequence {A} is hounded, and hence, from theorem 2, 
it conta' a convergent infinite subsequence 

A7i, A72 Ar$ 3,.j 

say of limit A. Denote by YE ', Y(2r,., Y(.rk) a reduced bhais of Ark, by Y Y2 Y, 
a basis of A, taken uch that 

limj Y(7/c0 Y =Q0, where q =l1, 2,.n, (7-4) 
k-coo 

hence 

d(A) I yl . yn I|{Y .Y *} limI{tYl 1,...- Yn')} = Imd(A7r) A(K). (7-5) 
k- oo k 

Let further 

17+ ** +# uYnYn+?# where u1, ...5 ,, are integers (7-6) 
be any point of A, and put 

-> 1] Yt ?- . + y%rk)n where k =J 123 . (7'7) 

then lim1ZnY(-YI=O. (7S8) 

Hence Y(1lt)+ 0 for sufficiently large k, and so F(Y1(rk)) > 1 since A, is K-admissible, 
whence 

F(Y) -= lmF(Y(t) > I. (7-9) 

From (7'5) and (7'9), A satisfies the assertion. 
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8. THE CONTINUITY OF J(K) 

If K : F(X) < 1, is any star body, and if t is a positive number, then we denote by 
tK the star body of distance function t'F(X), i.e. the set of all points X for which 
F(X) < t. From homogeneity, it is evident that 

J (tK) tn/ (K). (8.1) 

The set of all points X in K for which X t is further denoted by Kt. 

THEOREM 9. Let K, K1,K .K.2. be an infinity of star bodies of the finiwte type, satis- 
fyfng the following conditions: 

(a) To every e > 0, there is a positive integer N(e) such that Kr s contat'ned in (1 + e) K 
if r>N(e). 

(b) To every t > 0 and every e > 0, there is a positive integer N(t, e) such that Kt is 
contained in (1 + e) Kr if r N(t, e). 

Then lim/1(Kr) = (K). (8.2) 

Proof. From (a), by theorem 7, 

J (Kr) <(/1(( 6)K)- (l ? e)n (K), (8'3) 

whence for e- 0, lim sup J(Kr) <d(/(K). (8.4) 
r-> oo 

It will now be shown that also 

lim inf J (Kr) > ZI(K). (8.5) 

Let this inequality be false. Then there exists an infinite sequence of indices 
r1, r2, r3, ... not smaller than N(p, 1) such that 

JZ(Krk) <2dJ(K), and lim/1(Kk) </1(K)- (806) 
k-> oo 

Denote by Ark a critical lattice of Krk,; therefore 

d(Ar) < 2J (K). (8.7) 

Then from (b) above, on taking t = p, e = 1, the star body 2Krk contains KP, i.e. the 
sphere I X I < p; hence Krk contains the sphere X j< Ip. Since Ar,, is Kr -admissible, 
this implies that 

X 2 p for all points X + 0 of A,r, . 

It is clear from this and (8.7) that the sequence of lattices {Ark} is bounded. 
Therefore, from theorem 2 this sequence contains a convergent infinite subsequence 

AM =A A(2)Ark, A() r (8.8) 

of limit A, say. For shortness write 

-K,.Ek, K(2) Krk., KM3= Krk . (8'9) 
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then, as in the proof of the last theorem, 
d(A) = lim d(A(')) = limA (K(l)), (8.10) 

l-*c l-oo 

and so d(A) = lim J (Krk) <. (K). (8X11) 
k-oo 

This means that A is not K-admissible; hence A contains at least one point Y * 0 
which is an inner point of K. 

Denote now by yP), Y(, ..., a reduced basis of AY), and by Y1, Y2, ..., Ya basis 
of A taken such that 

limI Y()-Y- Y 0, where 
g-1,2, ... ,n; (8.12) 

then Y can be written as Y =U1Y1?+ -- +?nYn (8.13) 
with integral coefficients u1, ... u Un not all zero. Now put 

y(11 = Ul y1 J ln Y(n (8.14) 
then Y(Y) belongs to AV), 

YY)'+O, and lim Y() y = o, (8.15) 

whence, for sufficiently large indices 1, 

I Y(l)IK21 Yj. (8.16) 
Since Y is an inner point of K and different from 0, there is an e > 0 such that 

F(Y)S < 1 (8.17) 

hence, if I is sufficiently large, from (8.15) it follows that 

F(Y) 1+2e' (8.18) 

and so (1 + 2e) Y) +'0 belongs to K. This implies, from (8.16), that (1 + 2e) Y(l) is a 
point of Kt, where t = 2(1 + 2e) I Y 1. Hence, from (b) above, the point (1 + 2e) Y(l) 
belongs to (1 + e) K(z) if 1 is sufficiently large. This implies that Y() is a point of 

1 + K(') and so is an inner point of K(). However, this is impossible since Y(1) * 0 1+ 2e 
and since A(l) is a critical lattice of K('). 

THEOREM 10. Let K: F(X) < 1 be a star body of the finite type, G(X) an arbitrary 
distance function, and t a positive parameter. Then the star body 

K,:1F(X) < 1, where F,(X) = max (F(X), t-1G(X)), 

is also of the finite type, and further 
lim J(K,) = AJ(K). (8.19) 

t--Coo 

Proof. It is evident from definition 3 that FS(X) is a distance function. Since 
Ft(X) > F(X) for all X and t, K, is contained in K and so is a star body of the finite 

Vol. I87. A. I I 
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type. Further, since the set H: G(X) < 1 is a star body, there exists a number T > 0 
such that H contains the whole sphere I X i < r. The sphere I X I < Tt is then contained 
in tH, and so Kit, which is a subset of this sphere, is contained in Kt. The hypothesis 
of theorem 9 is therefore satisfied, and so 

zI(K) = limi(K) (8&20) 
r->oo 

for every sequence of positive numbers t1, t2, t3, ... of limit infinity. This proves the 
assertion. 

The last theorem, for G(X)- X i, shows that 
J(K) = limz(Kt). (8.21) 

t-> oo 

Originally (Mahler I943), I used this formula as the definition of J (K) for unbounded 
star bodies, so reducing the problem to one for the bounded case. 

Remark. The results of this paragraph remain true when Ji (K) = oo. 

9. LATTICE POINTS ON THE BOUNDARY OF A BOUNDED STAR BODY 

THEOREM 11. If K is a bounded star body, then every critical lattice of K has n 
independent points on the boundary C of K. 

Proof. Let A be a K-admissible lattice which does not contain n independent 
points on C. Then denote by H the set of all points of A on C, and by L the linear 
space of lowest dimension f (0 < f S n-1) containing H. By Minkowski's method of 
adaptation of lattices, a basis Y1, ..., Yn, of A can be found such that Y1, ..., Yf lie in 
and generate L, while Yf ..., Yn lie outside L. Let e > 0 be sufficiently small and 
denote by A* the lattice of basis Yl,..., Yf, (1 -e)Yf1,...,(1 e)Y1. This lattice is 
K-admissible since 0 and the elements of H are its only points belonging to K. Since 
d(A*) = (1- e)n-fd(A) <d(A), A*, is of smaller determinant than A, and so A is 
not critical. 

This theorem shows that in the case of a bounded star body K, every critical lattice 
A has at least 2n points on its boundary C, namely, n independent points P1, ..., Pn 
and their images -P1, ...,-Pn in O. If 

?P1, P2, ..._ Pn 

are the only points on C of the lattice A, then A is called a singular lattice of K; 
otherwise it is called a regular lattice. The example in the next paragraph shows that 
star bodies with singular lattices do exist. 

10. AN EXAMPLE OF A STAR BODY WITH A SINGULAR LATTICE 

THEOREM 12. There exists a bounded star body with just one critical lattice. More- 
over, this lattice is singular. 

Proof. Let e be so small a positive constant that 
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and let Q * O be a point in Rn. The set S6(Q) of all points 

P=tQ+(t-l)e?R, where t>1 and IRj1:, (102) 
is a cone with vertex at Q and its open side away from 0. For when t is fixed and R 
describes all points of the unit sphere I R I < 1, then P lies on or in a sphere centre at 
tQ and radius (t -1) e; on varying t, we obtain S(Q) as the sum set of these spheres. 

Denote further by AO the lattice of all points with integral co-ordinates, i.e. of basis 

P, = (1, O, ..., O), = (O, 1, ..., 0), ..., Pn- (O, O, ...,(10-3) 
aind of determinant d(AO) -1. 

The cube W: X Ix4/3 |X2 I<t, .. lx VY4/3 (10.4) 
contains 3n points of A0, namely, the origin 0, the 2n points ? P1, ?P2, ..., Pn 
and the m points P', P',..., PR, where 

n 
- (X(h), xh), ...,X()), X(^h)= 0,1,or-1, EIx(^) I 2. (10*5) 

g=j 

Denote by K the set of all those points of W which are not inner points of one of the 
cones 

S6( ?I,), where g= 1,2, ...,n, or SC[(1-e)PP], where h= 1,2,...,M. 

Then K is a bounded star body, and the cube 

V: Ixl I I1-6, 1 x21 < 1l-6, -, I xn I < 1-e (10.6) 

obviously is a subset of K. Therefore from theorem 7, Minkowski's theorem on linear 
forms, and from (10. 1) 

a(K)J i(V) = (1-6)n> 6 (10.7) 

On the other hand A (K) d(AO) = 1, (10.8) 

since, by the construction, AO is K-admissible. Hence, if A is any critical lattice 
of K, then 

6 < d(A)< 1. (10.9) 

Each one of the n parallelepipeds 

ub: <I IxiI?-e for 1=1,2, ... ,g-1,g+1,...,n (1010) 

from (101) is of volume 2n(1 _ 6)n-1 ) 3 > 2n. (10 11) 

Hence, from Minkowski's theorem on linear forms, at least one point of A - [0] is 
an inner point of Ug, say the point P* = (6(g), 62), .6. )). This point lies in one of 
the two cones S6( ? Pg), since the other inner points of Ug are also inner points of K. 
There is no loss of generality in assuming that P, belongs to S,(Pg) and so may be 
written as 

P- = tgPgj+ (tg-1) eRg, where t > 1 and I Rg I < 1. (10d12) 
II-2 
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Therefore if, say, B = R, f2 * q)), then 

(g) = (t- )81()88 (10-13) 
and 179 -1 (10.14) 

and since lies in U 

> 6gg= t +(t -l) eq/ tg (tgl)e> (l) tfI (10.15) 

whence, where =1 ,2... ,n. (10-16) 
I1<-tg <I 

Denote now by D the determinant 
D {P*_ p*jp *..PI} (10-17) 

by E the unit determinant 
B {P1,P2,. 7} d(A0)=t1 (10'l8) 

and by E(g1, MI ,gr) where l<r<n, ?1 <9 < .<.<gr< fn 

the determinant which is obtained from E if the points PaX1,P2.*,I in it are 
replaced by the points R1 9,1 .R.2 Rg. of the same indices. Obviously E(g1, g2, I gr) 

is equal to its cofactor of order r belonging to the rows and columns of indices 
gLI .2. g, Ur% Hence 

jE(g1, 92, . g,) r) ! (10419) 
ce the moduli of the co-ordinates of R Rg .., are not larger than 1, and 

since a determinant of order r consists of r! terms. 
From (10-12) D can be split into a sum of 2n determinants, namely, 

1;> = tl t2*-*trfi+2;} ~ ~ ye t(l>>w gr)- I__.,2 I7 (10* 20 
r=1 

tl 92 ffr n 
with the abbreviation = . (10-21) 

= r=-1 1l g2 '7r 
9:k<g.X < . .. <gr 

Now from (10 1) and (10- 19) 

E(j 9lf2, g*r) |er r! er,< (re)rS (< )A-4(1 Jo -1l 
hence 

n t I ~~t -1 t -1I t 1 
| 1gl g ** g)__ 1__ * r _|<y* {t(it)..1}r U' ____t 

r =1 t1 gr rfl gr 

11n (1 +{VU- ) )-i} -g-t)-1 = (t1t2.* .-tn)'f1 u{1 +Vt(}l) (t7-1)}-1,n ( 10'23) n~~~~ 

whence Df I{1?V(o) (t -1)} (10-24) 

and D > 2 tI tg-1+ II V+ 2() (t 1)}. (10-25) 
=1- .g=1 
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From (10.1), (10 16) and (10 24) then 
n n n nlIllX 3 

D <1M { )/()+ ?/(j- 1) (tg U} = { (}D < 0 33(1 6)-n< . 
g= 1 g=1 g=l 1 

(10.26) 
Further, since 2 - (141 )rIn > o for r =1, 2,. .., n, then from (10 16) and (10-25), 

n n 
D,>2]jf1+(t -1)1}-Hf1+VGDo(tg-1)J 

g=1 g=1 

= 1+r*f{2_(l U)r/n}(tg _I1) ... (t r-1)> 1~ (10-27) 

with D = 1 if and only if t= t2= ...t = 1. 

This proves that 1 e D< , (10-28) 

the lower bound being assumed if and only if t= = ... = tn= 1, i.e. if 

P*PP*P PP 
I1 = Pli P2* -P2 ...X Pn = Pn- 

Since D > 0, the n points P*, P*, ..., P* are independent; therefore 

D=jd(A), (10.29) 

where j is a positive integer. From (109) and (10-28) it follows that 

5>j- 6 j<2, (10.30) 
and soj - 1, d(A) D > 1, with equality if and only ifA = AO. Since A0 is K-admis- 
sible and since d(Ao) - 1, this completes the proof that Ao is the only critical lattice 
of K, and also that AO is singular. 

COROLLARY. For any given integer m >, n, there exists a bounded star body K with 
a critical lattice having just 2m points on the boundary of K. 

Proof. Nearly obvious, because any star body K' has the required property if 
it satisfies the following three conditions: (a) K, as defined in the last proof, is a 
subset of K'. (b) AO) as defined in the last proof, is K'-admissible. (c) Just 2m points 
of A0 lie on the boundary of K'. 

Remark. In an earlier paper on star domains,* I discussed a method by which 
to obtain A (K) and the critical lattices for every bounded two-dimensional star body, 
provided the boundary consists of a finite number of analytical arcs. This method 
may be extended to the n-dimensional case, but, naturally, the calculations now 
become very complicated. 

11. THE LATTICE FUNCTION F(A) 
If A is a lattice, t a positive number, and tA denotes the lattice of all points tP 

where P runs over A, it is obvious that 
d(tA) = tnd(A). (1 11) 

* Mahler-On lattice points in two-dimensional star domains, to app6ar in the 
Proceedings of the London Mathematical Society. 
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Further, if K denotes the star body (not necessarily bounded) of distance function 
F(X), write 

F(A) = l.b. F(P), (11.2) 
for the lower bound of F(P) extended over all points P + 0 of A. Then the symbol 
)P(A) has the following evident properties: 

A is K-admissible if and only if F(A) > 1. 
A is a critical lattice of K if and only if F(A)-1, d(A) = A1(K); 

further F(tA) = tF(A) if t>0. (11.3) 
A star body is therefore of the finite type if F(A) > 0 for at least one lattice, and is 
of the infinite type if F(A) = 0 for all lattices. 

In the special case when K is a bounded star body, it is easily seen that F(A) is 
a continuous function of A; i.e. if.Al, A125 A3, . . . is a convergent sequence of lattices 
of limit A, then 

lim F(Ar) = F(A). (11.4) 

If, however, K is an unbounded star body, then F(A) need not be continuous, as 
the following example shows. We choose 

F(X) = I X1X2 ... Xn |n (11n5) 
and take for A the lattice of basis 

Xh - (ol)o(2) ...,co(n)), where h = 1,2, ..n, (11.6) 
as defined in the proof of part (1) of theorem 5; there is no restriction in assuming 
that this basis is reduced. Further, denote by 

1) 2> ...,Xn) where r 1, 2, 3,... 
an infinity of sets of n independent points with rational co-ordinates such that 

limIXI )-XhI = 0, where h= 1,2,...,n, (11.7) 
r-->oo 

and such that further Xr3, X ..., X( form a reduced basis of the lattice AT generated 
by these n points. Then by the proof of theorem 5, 

F(A)>1, (11.8) 
while, on the other hand, F(Ar) = 0 (11.9) 
and limF(Ar) = O, (11.10) 

r-* oo 

since a linear form with rational coefficients represents zero. 

12. LATTICE POINTS NEAR THE BOUNDARY OF AN UNBOUNDED STAR BODY 

It was seen in ? 9 that a critical lattice of any bounded star body has at least 2n 
points on its boundary. For unbounded star bodies, this is no longer so; as will be 
seen in the next paragraph, there exists an unbounded star body of the finite type 
such that at least one of its critical lattices has no point on its boundary. 
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It may then be asked, however, whether lattice points lie arbitrarily near to the 

boundary of K. The answer is given by the nearly obvious 

THEOREM 13. If K: F(X) < 1 is a star body of the finite type and A is a crtitical 
lattice of K, then to every e > 0 there exists a point P of A such that 

1< F(P) < I e. (12.1) 
Proof. If F(P) > 1 + e for every point P * 0 of A, then 

F(A) > 1 + e, (12.2) 

whence F(A) 1. (12.3) 

Therefore A is also K-admissible, but is of smaller determinant than A, and so 

A is not critical. 
This theorem leads to: 
PROBLEM A. Let K: F(X) < 1 be a star body of the finite type, A a critical lattice of K, 

and e > 0 any arbitrarily small number. Do there exist n independent points P1, P2, ..., Pn 
of A such that 

1<F(Pg)<1+e, where g =1,2,...,n? (12.4) 

I have not been able to decide this question. The difficulty lies in the fact that 
F(A) may be discontinuous, and so the method of the proof of theorem 11 cannot 
be applied. 

Remark. From theorems 8 and 13, for any given e > 0, every lattice of determinant 
d(A) = A (K) contains a point P + 0 satisfying F(P) < 1 + e. 

13. AN EXAMPLE OF AN UNBOUNDED STAR BODY WITH NO CRITICAL 
LATTICE POINTS ON ITS BOUNDARY 

THEOREM 14. Let FO(X) be the distance function 

FO(X) x1 X2 Xn... xn ln, (13.1) 

and let further F(X) be any distance function satisfying the conditions 

F(X) > FO(X) if Fo(X)>OO (13X2) 

F(X) 1 iX Fo(X)>O, IX-1'F0(X)-->O. (13.3) 
FO(iXF(X>O 

Denote by Ko and K the star bodies of distance functions FO(X) and F(X), respectively. 
Then 

A (K) = A (KO). (13.4) 

Proof. K is a subset of Ko, and so from theorem 7, it follows that 
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Now assume that Jl(K) <,A(KO); (13.6) 

this assumption leads to a contradiction, as will be proved. 
The function f(X) defined by 

<7F(X) if F:(XI)* (13.7) 
1 if FO(X) = 0, X * O,. 

and not defined if X 0, is continuous and therefore bounded for all points of the 
unit sphere I X = 1. Let c > 1 be its upper bound on this sphere: 

f(X)s<c if IXI =1. (13.8) 
Then, since f(tX) = f(X) for t*0, (13.9) 
c is the upper bound off(X) for all X * 0, therefore 

F(X) < cFo(X) (13.10) 
for all X, since this inequality remains true if X = 0. 

Let now A be any critical lattice of K; then, from (13.6), 

d(A) <z(Ko) (13.11) 

or, say, d(A) = (I + c)-(f+l)i(KO), (13.12) 
where oc is some positive number. Put 

(1 +ca)A = A', (13.13) 
so that A' is (1 + oc) K-admissible, and 

d(A') = (1+ c)-'A(KO)<A(KO). (13.14) 
Denote further by I the set of all points of A' which are inner points of Ko. If P 

is any point of X, then 
F(P) > 1 +ca FO(P) < 1, (13.15) 

whence F(P) (13.16) 

and further, from (13-10), 

Fo(P) > -F(P) " + > 0. (13.17) 

But from (13.3) there exists a positive number ,8 such that 

F(X) ?c< if FO(X)#O, XJ-1FX(X)<fi. (13.18) 

Hence, by the inequalities just proved, 

I P - Fo(P) > /, (13.19) 

and so p (P) (13.20) 
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Next, if P-( p1p,...p ),then 

PiP ..."*S4 34 (P) I (13.21) 

and max p1p|, 1p2 1, .IP 1), II<; (13-22) 

and so,,finally, I P1I IP2.PR 1A(1c) >Q4i / )an (13.23) 

Denote by r any positive integer, and by Y- QX the unimodular linear trans- 
formation 

y, = rn1i Ya = r-1 Z ... yn - r xn. (13.24) 

Further denote by Ar= QrA' the lattice of all points Q Q=,P where P runs over 
A' and by Er Dr2 the set of all points Q Qr P where P lies in Z. Then obviously 

d(Ar) d(A'), (13 25) 
and Er consists of all and only all those points of Ar which are inner points of KE. 

If P = (P14P2 ...,Pn) is a point of L and Q = (ql, q2, q,q ) is the corre- 
sponding point of r, then, from (13 23) 

q, I rn-1IP11>(+zf,r)-, (13-26) 

and so 1QI> Iqll>('c) (fr)n-'. (13.27) 

As in 8, denote by Kf, where t > 0, the set of all points X of Ko for whi h X < t. 
Then the last inequality for Q shows that there exists a monotone increasing 
function R(t) of t such that 

Ar is Kb-admissible if r > R(t). (13.28) 

Now the sphere I X j ( 1 is obviously a subset of Ko, hence also of Kf if t> 1. 
Therefore, from (13.28), 

Q[ I for all points Q?0 ofAr if r>R(t) and t>1. 
Also since d(Ar) d(A') for r = 1, 2,3, * . (13 29) 

the sequence of lattices A,, A2, 3 ... is bounded. 
But then, by theorem 2, this sequence contains a convergent infinite subsequence 

of lattices 
Arx l, Ar,A3 .. I 

say of limit A*. Since, from (13.14), 
d(A*) = limd(Ar) d(A)<1(Ko), (13.30) 

k-+->oo 
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A* cannot be Ko-admissible; there is then a point P* of A* which is an inner point 
of K0 and so also an inner point of Kg if t is sufficiently large. Further, as in earlier 
proofs, it may be shown that there are points 

Pr) Pr2, Pr3~ ..*. of Ari, Ar2, Ar3, ... respectively, 

such that lim P* 0. (13.31) 
k->oo 

But then Prk is also an inner point of Kt if k is sufficiently large, contrary to (13-28). 
This completes the proof. 

THEOREM 15. There exists an unbounded star body of the finite type with a critical 
lattice which has no points on the boundary of this body. 

Proof. The same notation is used as in theorem 14, but it is assumed that F(X) 
satisfies, instead of (13-2), the stronger condition 

F(X) > FO(X) if FO(X) > 0; (13-32) 

e.g. take F(X) = IX(X) (+ ) (13-33) 

Let A be a critical lattice of Ko. Since K is a subset of Ko, A is K-admissible; further, 
since from theorem 14, 

d(A) A(KO) A(K), (13.34) 

A is a critical lattice of K. But the boundary of K consists only of inner points of 
Ko, and so no point of A may lie on the boundary of K, as asserted.t 

It is easily proved from ? 15 that Ko and so also K have an infinity of critical 
lattices. The question also arises: 

PROBLEM B. Do there exist critical lattices of Ko which are not critical lattices of K, 
and do these lattices have points on the boundary of K? 

14. STAR BODIES WITH AUTOMORPHISMS 

Let X = (x1x2, ...,xn) and X'-(x,4,...,xn) be two points in Rn. The linear 
substitution 

n 
Q: X,= aUhXh, where -1,2, ... ,n, (14.1) 

k-=1 

of determinant = Ia. g,h1,2, . #, (14.2) 

or shorter XI = QX (14.3) 

has an inverse X =,Q-'X'. (14.4) 

The substitution defines a one-to-one mapping of Rn on itself. 

t A much simpler proof of theorem 15 will be given in Part II of this paper. 
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If A is an arbitrary lattice, then QA denotes the lattice of all points P' = QP 
where P belongs to A; obviously 

d(QA) = | d(A). (14.5) 
THEOREM 16. Let K: F(X) < 1 be a star body of the finite type, Q a substitution of 

determinant w * O, F'(X) the distance function 
F'(X) = F(QX), (14.6) 

and K' the star body F'(X) < 1. Then K' is also of the finite type, and 
A (K')= A oK'(K). (14.7) 

Proof. If A is any K-admissible lattice, then A' = Q-'A is evidently K'-admissible, 
and so K' is also of the finite type. Further A (K') is not greater than the lower bound 
of d(Q-1A) - I -' d(A) extended over all K-admissible lattices, i.e. 

Al(K') < A KA(K). (14.8) 
Since F(X)- F'(Q-1X), conversely 

A1(K)< 1A l(K'). (14.9) 
From these two inequalities, the assertion follows at once. 

DEFINITION 8. The linear substitution X' = QX is called an automorphism of the 
star body K: F(X) < 1, if identically in X, 

F(X') = F(X). (14*10) 

It is obvious that such an automorphism leaves both K. and its boundary C 
invariant. 

THEOREM 17. If the star body K is of the finite type and admits the automorphism 
X' = QX of determinant w, then w = + 1. 

Proof. By theorem 16, A (K) - I1-'zl (K), whence I U 1 = 1 since a (K) + O. 
This theorem shows that star bodies having automorphisms of determinant 

o + ? 1, are necessarily of the infinite type, e.g. the star body of distance function 
F(X) = I x2x2 ... xl Il(n+1 with the automorphism 

x- t-1(n-x, x= tx2,..., xn tx (t>O). (14*11) 

It is obvious that if K is of the finite type, then the set of all automorphisms of K 
forms a group. Whether this group is finite or infinite, discrete or continuous, depends 
on K itself. 

DEFINITION 9. An unbounded star body K of the finite type is called automorphic 
if it admits a group r of automorphisms Q with the following property: 'There exists 
a positive constant c depending only on K and F such that to every point X of K there 
is an element Q of P satisfying 

QX < c.' (14.12) 
A few examples of automorphic star bodies are given in the next section. 
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15. EXAMPLES OF AUTOMORPHIC STAR BODIES 

(1) Let r > 0 and s >O be integers such that r + 2s n, and let F(X) be the distance 
function 

r s 1/n 
F(X) = HX-1 X (15.1) 

It was shown in the first part of the proof of theorem 5 that the star body 
K: F(X) < 1 is of the finite type if r = n, s = 0. Just the same proof applies when s > 0, 
except that the field ! there must now be algebraic with r real and 2s complex 
conjugate fields. If the trivial cases r 1, s = 0 and r 0, s = 1 be excluded, then 
K is not bounded and admits a continuous group of automorphisms depending on 
n -1 parameters, namely, the group of substitutions 

x ptpxp, where p=1 2 . . . r, (15.2) 
t x x~~/ t 

Xr+(T r+oxr+o--tr++ol r+8+0) r+8+01 r+$?o 'r+o + tr+0o.Xr+s+ 5, 

where c r =1,2 ...,8, (15.3) 

while t., t2, ..., tn are n real numbers such that 
r s 

II_tp 1- (t2a + tr2 + 1. (15.4) 
p=l 0-1 

The star body K is automorphic since obviously every point X of K can be,trans- 
formed into a point X' of bounded distance from 0 by one of these automorphisms. 

(2) Let r be an integer such that 1 < r < n -1, and let K be the star body of distance 
function 

-r n 
it(X)= EXP x2 * (15-5) P 1' 

p=Kl of-r+ 

By the theory of quadratic forms, K admits a group of automorphisms depending 
on -2n(n -1) real parameters. It is again possible to show that every point in K can 
be transformed by one of these automorphisms into a point of bounded distance 
from O. Hence K is automorphic provided it is of the finite type, and so the following 
problem arises: 

PROBLEM C. Is the star body of distance function 
r n 

F(X) = E xp- x2. (15.6 
p=l oCr+l 

of the finite or of the infinite type?t 
For 2 < n < 4, K is of the finite type, because there exist indefinite quadratic forms 

in n variables with integral coefficients and of given signature which do not repre- 
sent zero non-trivially. If, however, n > 5, then, by Meyer's theorem (Bachmann 
I898), every indefinite quadratic form with integral coefficients does represent zero; 
so the solution of problem C may be difficult. 

t Addition, May 1946. In a joint paper, H. Davenport and H. Heilbron have just shown 
that K is of the infinite type if n > 5. 
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(3) Let n = 2, and denote by 8 any number with O < 0 < 1. The line segments 
joining the pairs of points 

(ok 0-k) and (0k+1, 0-k-1), where k = 0, + 1, + 2 ... 
form an infinite polygon H; let C be the curve consisting of H and the images of H 
in 0 and the two axes. Then C forms the complete boundary of a two-dimensional 
star body K. There is no difficulty in proving that K is of the finite type and that it 
admits the infinite group of automorphisms 

x=+ OkxG, + 0-kxh, where k= , ? 1, 2, ... 
and g=l,h=2 or g=2,h=1. (15.7) 
It can be shown that every point of K can be transformed by one of these auto- 
morphisms into a point of bounded distance from 0; hence K is an automorphic 
star body. 

16. PROPERTIES OF THE LATTICE FUNCTION F(A) 
It was seen in ? 11 that F(A) need not be a continuous function of A. The next two 

theorems on sequences of lattices have therefore some interest: 
THEOREM 18. Let A1, A2, A3, ... be a convergent sequence of lattices, say of limit A. 

Then 
F(A1) >, lim inf F(Ar)- (16 1) 

r--oo 
Proof. Choose reduced bases V(Yr) V(r)Y... yr) of Ar, and a basis Yl, Y2,., Y. of 

A such that 
lim I y(r) -y = 0, where g = 1, 2,.. .,n. (16.2) 

Every point P * 0 of A can be written as 
P = uJYJ + .................... + UnYn (16.3) 

with integral coefficients ul, ..., un not all zero. Put 
p u 1yr ... -164) Pr- 1(r + Un Y(nr) ( 1 6. 

then Pr+ O, and Pr lies in Ar. (16.5) 
Hence F(Pr) > F(Ar) (16A6) 
Therefore by the continuity of F(X), 

F(P) = lim F(Pr) > liminflF(Ar), (16.7) 
r-?oo r o 

as asserted. 
THEOREM 19. Let A11, A12, A3, ... be a convergent sequence of lattices, say of limit A, 

and assume that q = lim F(Ar) exists and is positive. Let there also be a constant c > O 
r-? oo 

and an infinite sequence of points P1, P2, P3, .. . such that 
Pr4O; IPrlIc; PrliesinAr, where r-1,2,3,..., (16.8) 

lim F(Pr) exists and is equal to ?b. 
roo 
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Then lim F(Ar) F(A), (16.9) 

r-*oo 

and there exists a point.P $O of A such that 
F(P) F(A). (16.10) 

Proof. There is a positive number p such that the sphere X p < P is contained 
in the star body F: F7(X) < 1. Put 

2= lp0. (16.11) 

Then the sphere j X o o is contained in the star body F(X) 0- ujp, i.e. in F(X) < F(Ar) 
for all sufficiently large r, say for r > ro. Therefore for every point Q * 0 of Ar, since 
F(Q) > F(Ar), 

IQI>o if r>ro. (16.12) 
Let, in particular, Y(j, Y(, ..., Y(r) be a reduced basis of Ar and Y1, Y2, ..., Yn basis 
of A taken such that 

lim Y(g)-Y Y = 0, where q=1,2 ...,n. (16-13) 

Then I Yg)I>or for r>ro, g= 1,2, ..,n. (16-14) 
On the other hand, from theorem 1, 

I y(ir) I I Y2r I I Y, 7 Ynd(Ar). (16.15) 
Also, from the hypothesis, limd(Ar) d(A), (16416) 

hence -ld(A) 2 d(Ar) ? 2d(A) for r > rl, say, (16.17) 
and so 

I YgI <2o(A1)7y d(A) for r>max(ro0r1) where, g 1, 2, ..n. (16-18) 

Since P1 is a point of Ar different from 0, 
Pr- .... ?ruyY (16.19) 

with integral coefficients u(r) ...,(r) not all zero. On solving this vector equation 
for ur), . .n., 

d(r) I u() - {y(r) Y)2 . Y(n} jj u() {y(), y(r) p y y(r)}| 
(16*20) 

Hence the lower bound for d(Ar) and the upper bounds for Y(r) and Pr imply that 
| u(ff) | < c , ( 1 6 ~~21) 

where c' is a positive number independent of r and g. 
There exisits then an infinite sequence of indices 

rl= ,r2,r3, ..., where limrk= o, (16.22) 

such that the coefficients 
Uk) -2u.sayg where k=1,2,3,.;=1,2,...,n, (16.23) 
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assume integral values independent of k, and such that at least one of these integers 
U1, u is different from zero. Further 

pr-1 +Y...? y(rk), where k l1 2 3 ..., (16-24) 
and so the points Prk tend to the limit point 

P =uY+ ... +unY+O (16.25) 
which is a point of A. From the hypothesis 

F(P) -lini F(Pr) lim F(P) Jlim F(Ar) (16-26) 
k---> oo r-4^00 r-+o 

whence F(A) < lim F(Ar)- (16-27) 
r-+oo 

Moreover, from the last theorem, 

F(A) ? hm F(Ar), (16.28)- 
* ~~~~~~r->oo 

and so the assertion follows at once. 

17. LATTIC:E POINTS ON THE BOUNDARY OF AN AUTOMORPHIC STAR BODY 

THEOREM 20. Let K: F(X) < 1 be an automorphic star body, and let A be any lattice 
such that F(A) > 0. Then there exists a lattice A* and a point P* of A* such that 

F(P*) F(A*) F(A), d(A*) d(A). (17.1) 

(Remark. A* need not be different from A. The theorem remains valid if F(A) 0, 
but then is nearly trivial.) 

Proof. Assume that A contains no point P such that 

F(P) F(A); (17.2) 

otherwise the assertion is certainly true. There exists then an infinite sequence of 
points P1, P2, P3 ... of A such that 

limF(PI) F(A)>0; (17.3) 

assume that all these points are different from 0. 
For each point Pr select an automorphism Qr of K such that 

|QrPr < C. (17-4) 
Put QrrQr, Q rA Ar (17.5) 

so that Qr belongs to Ar, is different from 0, and satisfies the inequality 

IQr < c. (17.6) 
By the invariance of K, F(Qr)= F(QrPr) F(Pr), (17.7) 

hence from the hypothesis lim F(Q) = F(A) > 0. (17.8) 
r->K0 
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Further, from theorem 17, Qr is of determinant + 1, and so 

d(Ar) = d(A). (17.9) 
Next, it is shown that F(Ar) = F(A). (17.10) 

For if P runs over all points of A - [0], then Q = Qr P runs over all points of Ar - [01, 
and vice versa. But by the invariance assumption, 

F(Q)= F(P), (17.11) 
and by definition, 

F(A) l.b. F(P), F(Ar) l.b. F(Q), (17.12) 
P in A-[O] Q in Ar-d0] 

whence (17 10) follows at once. 
Finally, the sequence of lattices 

A1, A2, A3, 

is bounded. For from (17.9), the determinants d(Ar) are bounded, and from (17.10), 

F(Q) > F(A) for all points Q # 0 of AX (17.13) 

Hence, if p is any number such that K contains the sphere I X 8 p, i.e. F(A) K 
contains the sphere I X s< pF(A), then 

I Q > F(A) p for all points Q + O of Ar. (17.14) 
From theorem 2, there exists then an infinite subsequence of lattices 

Arj, Ar2, Ar3, 

which tends to a limit, say the lattice A*; from (17.9) 

d(A*) = limd(Ark) = d(A). (17.15) 
oo 

Hence the supposition of theorem 19 is satisfied if one substitutes therein for the 
sequence of lattices {Ar}, the lattice A, and the sequence of points {Pr} respectively, 
the sequence of lattices {Alk}, the lattice A*, and the sequence of points {Qrk} of the 
present proof. The asserti6n follows therefore at once from theorem 19. 

Remark. Theorem 20 does not assert that every lattice A* satisfying 
F(A*) =iF(A), d(A*) = d(A) (17.16) 

contains a point P* such that F(P*) = F(A*). Thus take n = 2 and Et(X) = I x1x2 ji. 
Then, as follows from results in the theory of indefinite binary quadratic forms 
(Koksma 1936), there exists an infinity of lattices A* such that 

F(A*) = 1, d(A*) = 3, (17.17) 
and some, but not all, of these lattices contain points P* such that 

F(P*)= 1. (17.18) 
The following particular case of the last theorem is of special interest. 
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THEOREM 21. Every automorphic star body K has a critical lattice with at least one 
point on the boundary of K. 

Proof. A lattice A is a critical lattice of K if and only if 

F(A) = 1 d(A) = JI(K). (17.19) 

Now, from theorem 8, critical lattices of K do exist; the assertion follows therefore 
at once from theorem 20. 

PROBLEM D. IDoes every critical lattice of an automorphtc star body K have at least 
one point on the boundary of K? 

The example in theorem 20 does not answer this question, but makes it probable 
that the answer is in the negative. 

Theorem 20 further suggests the following: 

PROBLEM E. To study the set dp of the values of d(A) where A runs over all lattices 
A satisfying F(A) = 1. 

The set dF has a smallest element which is, of course, J (K); this number and the 
other elements of the set may be considered as the successive minima of the lattice 
point problem for the body K: F(X) < 1. Even in the case F(X) = I x1x2 1i, dF is a 
very complicated set (Koksma I936), and the same is to be expected for other un- 
bounded star bodies. It is then rather surprising that in the case of automorphic 
star bodies, all these minima are actually attained in the sense that to every element 
a of dF there exists a lattice A* and a point P* of A* such that 

F(P*) F(A*) 1, d(A*) _ 6. (17.20) 

18. THE INVARIANT SUBSET OF AN AUTOMORPHIC STAR BODY 

Let K: F(X) < 1 be an automorphic star body, and let r be a group of auto- 
morphisms Q of K. We denote by 27 the set of the points X in R. which have the 
following property: 

'There exists a positive number a(X) depending only on X such that 

SQX s a(X) for all Q in -.) (18'1) 

This set 2r is called the invariant manifold of ]i. It may contain only the origin, and 
it has the following properties: 

(a) If X lies in Lp, and Q is an element of -r, then Y -QX also lies in 1r, and we 
may take 

a(Y) = a(X). (18.2) 

For let Q1 be an arbitrary element of P. Then Q2 = Q1Q also belongs to r, and so 
by the definition of a(X), 

I Q1 Y I = I Q2XI < a(X). (18.3) 

Vol. i87. A. I2 
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(b) If X1,X2,I...,X is any number of points of 1r, and if t1, t2,...,tm are real 

numbers, then t1 X1 + t2 X2 + ... + tmXm also lies in Er, and we may take 

a(t1Xl+t2X2+ * +tmXm) I t1 I a(X1) + I t2 a(X) + I.. + I a(Xm). (18X4) 

For if Q is any element of F, then 

IQ(tiXi + * + tmXm)| tl=QXl+... + tmQXm| 

It,1 IQXi +I + I tmI IQXm I Ia(Xi) + + |+tm a(Xm). (18-5) 
From (b), Zr is a linear manifold. Let it be of dimension a where 0 < a < n, and let 

pi,..., P be a set of a independent points Of 1r. Then the: points X Of 1r may be 
written as 

X-= 61P, + * * + 66a (18.6) 
with real coefficients 6,8..., ; conversely, every such point X belongs to 28. On 
considering this vector equation as a system of n equations for the n co-ordinates, 
we find on solving for 61, ..., 68 that 

max(I 1 8 L.. ) yIX I (18.7) 
where y is a positive number depending only on the choice of P1, ..., Pa. 

(c) There exists a positive constant b such that if X is any point of 1r, Q any 
element of r, and Y = QX, then 

b-11XII YI<blX1. (18.8) 
For let X-61P, + .+ 6Pa. Then 

i Y P = | max (| 1) DP, I + J i 
<yIXI{a(P1)+...+a(P)}j=b|Xj, (18-9) 

where b y{a(Pl) + + a(Pa)}. 

Further if X is in Er and Y = QX, then Y is also in fr and X -Q-1 Y. Hence by 
the same proof I X i b I Y i, whence the assertion. 

Let now Jr= K x 1r be the set of all points of 2r which belong to K; we call 
Jr the invariant subset of K. 

(d) The invariant subset Jr is a bounded set. For let X be any point of Jr. By 
definition 9, there exists a positive constant c and an element Q of r such that 

IQXI?c. (18.10) 
Hence from (c), X I< b QX bc, (18.11) 

as asserted. 
This result shows that the dimension a of 2r and Jr is at most n - 1. For let this 

assertion be false so that a = n. Then Er coincides with the whole space Rn, and 
therefore Jr is identical with K. Hence, from (d), K is a bounded set, contrary to the 
definition of an automorphic star body. 
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Probably & satisfies the stronger inequality & < n -2. The following example 

shows, however, that 6& can be any integer in the interval 

O< a n n-2. 

Take for K the star body of distance function 

F(X) = max ({X2+ +x2}, I X+1 
X I()), (18*12) 

and for r the group of automorphisms 

xi1-x1t ... ,x?-xal x+1l=tx+l,8) ... x1=n tnxw,, (18-13) 

where ty,+1 .... tn are real numbers of product t8+1 ... tn =1; then Zr is the 6-dimen- 
sional linear manifold 

x+1... x = 0. (18.14) 

The automorphic star bodies with a 0 are of particular interest; then both Z. 
and Jr reduce to the single point 0. To this type belong, for instance, all the star 
bodies considered in ? 15. In ? 20, a general property of star bodies with a = 0 will 
be proved. 

19. AN IMPROVEMENT ON THEOREM 13 

THEOREM 22. Let K: F(X) < 1 be any star body of the finite type. Then there exists 
to every number e > 0 a positive number t t(e) such that every critical lattice A of K 
contains at least one point P satisfying the inequalities 

1 < F(P) < 1 +, [ P < t. (19.1) 
Proof. By the remark to theorem 10, there is a positive number t* = t*(e) such 

that the star body 
K*-=K(t*): F(X) < 1, I X I< t* 

is of determinant zl(K*) > (1 + ?< T (K). (19.2) 

Put t = (1+)t*, K** = (1+) K* (19.3) 

so that K** consists of the points satisfying 

F(X)<1+2' |X| < (1+-2)t*=t, (19.4) 

then zl(K**) =(1+) A(K*)>A (K). (19.5) 

Hence every lattice of determinant A (K) contains a point P + 0 for which 

F(P)<1+2<1+ [ jPj<t; (19.6) 
I2-2 
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if the lattice is critical with respect to K, then moreover 

F(P)> 1, (19.7) 
whence the assertion. 

20. AIUTOMORPHIC STAR BODIES WITH IFp = Jp = {O} 

THEOREM 23. Let K: F(X) A 1 be an automorphic star body for which 2r and 8o 
also Jp consist of the single point 0. Further let A be any critical lattice of K, and e any 
positive number. Then there exists an infinite sequence of different points P1, P2, P3,*. 

of A such that 
1?F(P)<1?e, where A==1,2,3. (2041) 

Proof. Assume the assertion is false. There is then a positive number 6 and a 
critical lattice A of K such that the inequality 

I <, F (P,U) < I + e(20-2) 

is satisfied by only a finite number of points of A, say by only the m points 

P1 P2P Pm; 

by the last theorem, m is not zero. It may. be assumed, without loss of generality, 
that e and A have been chosen so as to make m a minimum, that is, 

There does not exist any positive number et and any critical lattice A* 
of K such that the inequality 

1< F(PZ) < 1+ e* (20*3) 

is satisfied by less than m points P* of A*. 
This minimum assumption implies, in particular, that 

F(P,> 1,where j=1,2, ... ,m; (20-4) 
for if, for instance, F(Pm) = 1 + a > 1, then, on putting e* -, A8* A, there are less 
than m points P* of A* such that 

1 < F(P*) < 1 +6*. (20 5) 

Let now Q be any automorphism in F. Then from (20.2), (20.4) and theorem 22, 
the lattice QA has the following properties: 

There are just m points P* of QA for which 
1 <F(P*)< 1+e, (20*6) 

viz. the points p* = QPi, QP2 ...,I QPm; (20 7) 

and, in fact, F(QIP) = 1, where ,u = 1,2, ...2 m. (20 8) 
There is, moreover, a positive number t independent of Q and jt such that 

iQIP, i < t for at least one index It with 1 < It < m. (20 81) 
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From (20-4), Pm is different from 0, and so does not belong to Er. Hence there 
exists an infinite sequence 

{Q(m)} = {Q(m) Q(m)Qm), (20'9) 

of automorphisms Q(m) of K such that 
lim | Q(M) PM I -x. (20.10) 
r->oo 

Now construct m - 1 infinite subsequences 
- {Q)} >-{9l2gnQ(/L) Q3/L),Q (20-11) 

of {Q(m)} according to the following rule: 
Suppose the sequence {QA(1)} has been defined. If now 

lim i 2(#+1)p |= 00 (20-12) 

then let {Qr/t)} be identical with {Qt+l)}: 

Q) Qrr+l), where r 1, 2, 3, ... (20 13) 

If, however, lim inf j Qi+l)fP (20.14) 
>r--oo 

is finite, then ch'bose for {Q,1)} an infinite subsequence 
9 Q(g+) = -Q(X+1),i- + (20*15) 1 r Q(it #2.i+1), Q 4#u) 

1 

of {QS(A+l} such that the point sequence 
{QS2)P ,/ S22' 3(3'P,, *P*} (20416) 

tends to a limit, say the point P. 
This means that the last sequence {Qr1L)} has the following properties: 

lim jQ1)PMj 0 -O. (20.17) 
r-*oo0 

If a is one of the indices 1, 2, ..., m - 1, then either 

lim Q1)P I ==_ 00 (20418) 
r-*oo 

or there exists a finite point P, such that 
lim jQ(TPT-P,j =0 O. (20.19) 

r--> co 

Denote then by 1'l Ia2, . g. ., those different indices ,t with 1 I t m for which 
lim Qr), ' -oo, (20 20) 
r-? oo 

by ,u* #2 . . . Ah those for which 
lim I Qr(l) P/4- P* 0 ; (20-21) 
r- ov 

hence ?+h = m. From (20411) and (20.17), then 
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Since Q(l) is an automorphism of K, it is evident that 

d(Q(')A) = 4(A) - A(K), F(Q(')A) = F(A) = 1, where r = 1,2,3,... (20.23) 
(for the second equation, compare the proof of theorem 20), and so the lattices 

{9(1)An9(2z)An9(l) } (20 24) 

form a bounded sequence. From theorem 2, one can therefore choose an infinite 
subsequence {Qr} of automorphisms 

Q1 = Q(l)Q Q Q3 =Qrm .... (20.25) 

in {QDl)} such that the corresponding sequence of lattices 

A1 = 1AA 2 = Q2A, A3 = 3A, 3 . (20 26) 

tends to a limit, the lattice A*, say. 
Then from (20 23) it follows that 

limd(Ar) A(K), limF(r) = 1. (20 27) 
r->- co r-- x 

Further, from (20 8k), and the construction of {Q()} and {Ar}, each lattice 

Ar =Qr A, where r = 1,2,3, ...2 , (20 28) 

contains a point P(r) - Wp(r) with 1 < A(r) m - 1, (20 29) 

such that P(r) O l P(r) lt, F(P(r)) = 1. (20*30) 

An application of theorem 19 therefore gives 

d(A*) = lim d(Ar) = A (K), F(A*) = lmF(Ar) = 1, (2031) 
r->co r-co 

which means that A* is a critical lattice. Now a consideration analogous to that in 
earlier proofs makes it evident that the points 

P* P* 
Pei 

* 
2 

p 
.. 

p 
e# 

as defined in (20-21), are the only points P* of A* such that 

6 ~~~~~(20-32) 1 < F(P*) < I + 2;(0 2 2 

moreover F(P *) - F(P *) - * - F(Pa*) = 1. (20 33) 

Hence A* is a lattice of the same type as A, except that m is replaced by the smaller 
number h. This contradicts the minimumr assumption (20 3); the hypothesis is 
therefore false and the assertion is true. 

PROBLEM F. Does the assertion of theorem 23 remain true if 2r is of positive 
dimension d? 

Closely related to problem F is the following question which I also have not been 
able to solve: 
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PROBLEM G. To decide whether there exists an automorphic star body K: F(X) < 1 
with the following two properties: (a) The invariant manifold 2p is of positive dimension. 
(b) There exists a critical lattice A of K and a positive number ca such that 

F(P) > 1 +ca (20.34) 

for all points P of A wh?ich do not belong to 2r. 

21. STAR BODIES OF RANK 

The considerations in ? 18 can be generalized and lead to the following definition: 
]DEFINITION 10. Let K: F(X) < 1 be a star body of the finite type with a group F 

of automorphisms Q, and let 6 be an integer such that 1 < 6 < n - 1. Then K is said to be 
of rank 6 with respect to F if 6 is the largest integer such that to every positive number t* 
and to every 6-dimensional linear manifold M containing 0 there is an element 
Q = Q(t*, M) of r satisfying 

QX I > t*F(X) for all points X of M. (21.1) 
An example on this definition is given by 
THEOREM 24. Let K be the star body of distance function 

r s l/n 

F(X) - x ]J +(4? X2+s?x ?) , where r+2s n, (21.2) 
p=I cr-1 

and let P be the group of all automorphisms Q of K defined by 
x p- txp where p- 1,2 ...,r, (21.3) 

g l Xr+sr = tr+<rZr+a-t r+S+X +S+ where - 1, 2, ...,s 2 
Xr+s =- tr+S+, r+r +troXr+s+oi (21.5) 

where t1, t2, ..., tn are real numbers satisfying 
r s 

H tp I| (t2c +t2+S+0.)= 1. (21*6) 
p=1 0-1 

Further let r>0O, s>0, r+s>1. 
Then K is of rank r + s -I with respect to P. 

Proof. An arbitrary linear manifold M through 0 of dimension r + s-I can be 
defined by n - (r + s-i1)-s + 1 independent homogeneous linear equations 

ahlXl+ah2X2+** +akflX,= O, where h=1 2, ... s?+1 (21.7) 
and where the a's are real numbers. Two cases may now be distinguished: 

(a) First assume that r > 0, and that at least one coefficient 

ahk with 1 < h < s + k < kr 

is different from zero, say the coefficient al1. 
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Then, on solving the equation, 

allxl + a2x2+ * = 0 (218) 

for x1, x1=b2x2+ ..+bnxw, (21.9) 

where b ,... bn are real numbers; hence there is a positive constant y such that 

Xl x1 < y{X1 + *7* +xn* X(21410) 

for all points X of M. Put now t = yllnt*, and apply the automorphism X' = QX 
defined by 

x t(n-1)x1 X txl, (21X11) 

that is x1= tn'xl, x2- =14 ....,x n1x . (21.12) 

Then F(X) F(X'), (21.13) 
and from (21-10) it follows that 

(t ) ( t + ) (21,14) 
whence 

r s 
F(X') y{4X2 + + Xf}2 JJ xp II (xr + + y){xx2 + ...+ ni{l+(r-l)+Zs} 

p-2 a:=1 
(21.15) 

Hence 

tnp(X)n-F(X(X')nyj XI In, QX I I X' I>, y-1/ntF(X) -t*F(X) (21.16) 

as asserted. 
(b) Secondly, let either r = 0, or assume that r > 0, but that all coefficients 

ahk with 1 < hs+ 1, 1 k<r 
vanish. 

Then the equations defining M are of the form 

ah,rlXr+1+ah,r+Xr+2+ ***+ahnxn = , where h- 1,2, ... ,s+ 1. (21.17) 

Arrange the 2s co-ordinates xr+in Xr+2, ...,X as s pairs 

(Xr+,xr+s+o,), where o = 1,2, ...,s. (21.18) 
Since the s + 1 equations defining M are independent, and since there are only s such 
pairs of co-ordinates,,it must be possible to express at least one such pair of these 
co-ordinates in terms of the others. Now assume this is the pair (Xr+i, xr+s+l), and 
that on solving for Xr+l, xr+s+i, the following equations are obtained: 

Xr+1 E (bOyXr+o, + blXrrs++), Xr+s+i = s r+Xr+sXr+s+e)C (21.19) 
o-2 a=2 

where the coefficients 6 l, 0", cS, c are real numbers. Hence there is a positive con- 
stant y such that 

x2+1 + X2r+8+1 < y 2 +xr + x2 (21.20 r r r 
+sC-2) 



On latttce points in n-dimensional sta'r bodies 185 
for all points X of M. Put now t = 7112st*nI2s and apply the automorphism Xi' QX 
defined by 

x =xp, where p =1,2, ... r, (21.21) 

t- (,6-'xr,l) Xre?+1 t8Xr+s+i, (21.22) 
X-p~ ZtXr+c,., Xr ps = tX , where o = 2, 3 ..., s (21.23) 

or conversely, xp xI, where p = 1, 2 ..., r (21.24) 
X tslx1 x' -ts-IL 21-25) Xrl- r+1l r+S1- Xr+S+ln1 

x --t-1x' -t-lv 
t81x 

Xr7Z t'+ 'r EsJrc- re C where c- r2,3,... s (21.26) 
Then again F(X) F(X'), (21.27) 
and from (21-20) 

s 

t(-)X + Xr+sfr) Jt (Xr + Xrs+S+) yt-2 I XI 12 (21 28) 
o-= 2 

whence 
r -s 

t2sF(X')n, 1yXI2i xp2i 'S 
.,yXIA2+27sA1 y -t2S()fnl fl xp rI (xr+.+Xrt+S+) Iy t2r2s1yX'ln. (21.29) 

Hence I QX I= i XI >y-l1nt2s/fnF(X) = t*F(X), (21.30) 
as asserted. 

Up to now it has only been proved that the rank 5 of K with respect to Pis at least 
r + s-1; one now proves that 8 < r + s. This is trivial from definition 10 if s 0. 
Let therefore s> 0. Consider the special (r + s)-dimensional linear manifold MO 
defined by the equations 

xrrs+a-0 where o-=1,2,...,s. (21.31) 
It suffices to prove that, however Q is chosen in F, there is at least one point X of 
'Ml such that 

IQX I < /(n + 1) F(X). (21.32) 
There is no loss of generality in assuming that the point X is such that 

F(X)-1; (21.33) 

hence the point X = (x1, ..., X, Xr, ..., Xr+s, 0, .. 0) of MO satisfies the equation 
r s 
fi x ,1 H r+ 1, (21.34) 

p=1 0-1 
but is otherwise arbitrary. 

Let nowQ be any element of F, and X the point above of MA. Then the co-ordinates 
of X' QX take the form 

P- tp p, where p = 1,2, ... r, (21.35) 

xr tr+ Xr+o ar?+su a tr where _ 1l, 2,...,s (21.36 
r 

and where 11 tp n(t2+ t21711 (21.37) 
p=1 =lC'. 
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Choose now X in Mo such that 
xp=_tpl, where p-1,2,...,r, (21.38) 

Xr+a (t2 + t2?s+c,) f (21.39) 
- where o = 1,2, .,s 

Xr+s+ = 0, J (21-40) 

then evidently F(X) = 1, as assumed. This choice of X implies that 
x'p-1, where p = 1,2, ... ,r, (21.41) 

xr+ + Xr+S+,1, where o =1,2, ... .s, (21-42) 

and so X' 2=r+s<n+l, (21-43) 

whence 1 QX I I X'I < V(n+ 1) = V(n+ 1) F(X), (21.44) 
as asserted. This completes the proof. 

THEOREM 25. Let K: F(X) < 1 be a star body of rank a with respect to F, A a critical 
lattice of K, and e an arbitrary positive number. Then there exist d + I independent 
points P1, P2,..., P+1 of A such that 

I<F(P )<+e, where ItC1,2,..., 6+1. (2145) 

Proof. Let the assertion be false, i.e. assume that there is a critical lattice A. 
of K and a positive number e such that all lattice points P0 of AO satisfying 

1 < F(PO) < 1 r (21.46) 
lie in a certain 8-dimensional linear manifold M containing 0. 

From theorem 22, there is a positive number t such that every critical lattice A 
of K contains at least one point P such that 

1<F(P)<1+e, PI<t. (21.47) 

Further, by the last definition applied with t* t + 1, there exists an automorphism 
Q in P such that 

IQX I (t + 1) F(X) for all points X in M. (21.48) 

Denote now by P1, PW .3,. 

the points of AO for which 

I<PF(Pr)<1+e, where r= 1,2,3,...; (21.49) 
by hypothesis, these points belong to M. Then the only points Qr of the lattice 
A = QA0 satisfying 

1< FQ)< 1 + 6 (21.50) 
are those given by Qr=Pr, where r = 1,2,3, .. , (21.51) 
and for these points j Qr = I QPr j > (t + 1) F(Pr) > t + 1 (21-52) 

contrary to the existence result (21.47). Hence the assertion is true. 
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From theorems 24 and 25 it is deduced that if K is the star body of distance 

function 
F(X)= I x1x2 ... Xn 1ln, (21.53) 

and A is any critical lattice of K, then there exist n independent points P1 P2,... )P 
of A such that 

l<F(Pg)<l+e, where y=3 2,...,n, (21.54) 

however small e is chosen. Hence problem A can be solved in this special case, and 
the answer is in the affirmative. 

I am greatly indebted to Professor Mordell for his help with the manuscript. 
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