THE THEOREM OF MINKOWSKI-HLAWKA

By Kurt Mahler

Let R_n , where $n \ge 2$, be the *n*-dimensional Euclidean space of all points $X = (x_1, \dots, x_n)$ with real coordinates. A symmetrical bounded star body K in R_n is defined as a closed bounded point set containing the origin $O = (0, \dots, 0)$ as an inner point and bounded by a continuous surface C symmetrical in O which meets every radius vector from O in just one point. A lattice

$$\Lambda: x_{h} = \sum_{k=1}^{n} a_{hk} u_{k} \qquad (h = 1, 2, \cdots, n; u_{1}, \cdots, u_{n} = 0, \mp 1, \mp 2, \cdots)$$

of determinant

$$d(\Lambda) = \left| \left| a_{hk} \right|_{h,k=1,2,\ldots,n} \right|$$

is called K-admissible if no point of Λ except O is an inner point of K. Denote by

$$V(K) = \int_{K} \cdots \int dx_1 \cdots dx_n$$

the volume of K, by $\Delta(K)$ the lower bound of $d(\Lambda)$ extended over all K-admissible lattices, and put

$$Q(K) = \frac{V(K)}{\Delta(K)}.$$

A critical lattice of K is defined as a K-admissible lattice Λ such that $d(\Lambda) = \Delta(K)$.

A theorem due to Minkowski [4; 265, 270, 277], but first proved by E. Hlawka [2; 288–298] and C. L. Siegel [6], states that

(a)
$$Q(K) \ge 2\zeta(n)$$
 $\left(\zeta(n) = \sum_{n=1}^{\infty} v^{-n}\right)$

for all symmetrical bounded star bodies. It is a difficult problem to decide whether the constant on the right-hand side is the best possible one. In the present note, K is assumed to be a symmetrical convex body; under this restriction, the constant $2\zeta(n)$ in (a) will be shown to be replaceable by a larger number.

The method used is quite different from that of Hlawka and Siegel, and depends essentially on the theorem of Brunn and Minkowski on the sections of a convex body. (See [1; §48].)

Received July 28, 1946.

1. Notation. Let K be any symmetrical convex body in R_n with centre at O, and let $D = \Delta(K)$. Denote

by K_0 the intersection of K with the plane $x_n = 0$, so that K_0 is an (n - 1)-dimensional convex body symmetrical in O;

by Λ_0 any K_0 -admissible (n-1)-dimensional lattice in $x_n = 0$; by $P_h = (x_{h1}, \dots, x_{h,n-1}, 0)$, where $h = 1, 2, \dots, n-1$, a basis of Λ_0 ; by $d = || x_{hk} |_{h,k-1,2,\dots,n-1} |$ the determinant of Λ_0 ; by $\xi = (\xi_1, \dots, \xi_{n-1})$ any point in (n-1)-dimensional space R_{n-1} ; by W the cube $0 \le \xi_1 \le 1, \dots, 0 \le \xi_{n-1} \le 1$ in R_{n-1} ; by P_n^* and $P_n^{(\xi)}$ the points

$$P_n^* = \left(0, \cdots, 0, \frac{D}{d}\right), \qquad P_n^{(\xi)} = \xi_1 P_1 + \cdots + \xi_{n-1} P_{n-1} + P_n^*$$

in R_n (Sums of points, or products of points into scalars, have the meaning usual in linear algebra or vector analysis.); by $\Lambda^{(\ell)}$ the lattice in R_n of basis

 $\mathbf{1} \quad \text{the fattice in } H_n \text{ of basis}$

$$P_1, P_2, \cdots, P_{n-1}, P_n^{(\xi)}$$

and so of determinant

$$d(\Lambda^{(\xi)}) = d \times \frac{D}{d} = \Delta(K);$$

hence this lattice is either critical, or not K-admissible; by K, for $v = 1, 2, 3, \cdots$ the intersection of K with the plane

$$x_n = v \frac{D}{d};$$

since K is bounded, K_v is the null set for all sufficiently large v; by κ_v the (n - 1)-dimensional volume

$$\kappa_v = \int_{K_v} \cdots \int dx_1 \cdots dx_{n-1}$$

of K_* ; hence

 $\kappa_v = 0$

when v is sufficiently large;

by c_n any lower bound of Q(K) for all symmetrical convex bodies K in R_n .

2. The main lemma. Let $X = (x_1, \dots, x_{n-1}, vD/d)$ describe the set K_{\bullet} , and define the point $\xi = (\xi_1, \dots, \xi_{n-1})$ in R_{n-1} by the equation

$$X = v P_n^{(\xi)} = v(\xi_1 P_1 + \cdots + \xi_{n-1} P_{n-1} + P_n^*),$$

so that

$$x_k = v \sum_{h=1}^{n-1} \xi_h x_{hk}$$
 $(k = 1, 2, \cdots, n-1).$

Then ξ describes a certain set in R_{n-1} , L_{ν} say, and this set is of volume

(1)
$$\lambda_{v} = \int_{L_{v}} \cdots \int d\xi_{1} \cdots d\xi_{n-1} = \frac{\kappa_{v}}{dv^{n-1}},$$

since the linear equations connecting the x's with the ξ 's are of determinant $v^{n-1}d$.

Next let M_v be the set of all points $\eta = (\eta_1, \dots, \eta_{n-1})$ in the cube W for which there exist n-1 integers u_1, \dots, u_{n-1} such that the point

$$X = u_1 P_1 + \dots + u_{n-1} P_{n-1} + v P_n^{(\eta)}$$

= $(u_1 + v \eta_1) P_1 + \dots + (u_{n-1} + v \eta_{n-1}) P_{n-1} + v P_n^*$

lies in K_r , and let

$$\mu_v = \int_{M_v} \cdots \int d\eta_1 \cdots d\eta_{n-1}$$

be the volume of this set. Evidently η belongs to M_{*} if, and only if, the point ξ defined by

$$v\xi_1 = u_1 + v\eta_1$$
, \cdots , $v\xi_{n-1} = u_{n-1} + v\eta_{n-1}$

is a point of L_r . Since η lies in W, these equations imply that

$$0 \leq v\xi_1 - u_1 < v, \quad \cdots, \quad 0 \leq v\xi_{n-1} - u_{n-1} < v,$$

and so, for any given point ξ of L_v , each of the integers u_1, \dots, u_{n-1} has just v possible values. Hence to every point ξ of L_v correspond at most v^{n-1} points η of M_v , obtained by as many translations from ξ . Therefore

$$\mu_v \leq v^{n-1}\lambda_v , .$$

whence from (1),

(2) $\mu_{\nu} \leq \frac{\kappa_{\nu}}{d}.$

LEMMA 1. The volumes κ , satisfy the inequality

$$\sum_{v=1}^{\infty}\kappa_v\geq d.$$

Proof. Let η be any point of W. The lattice $\Lambda^{(\eta)}$ is either *critical* or not *K*-admissible. In the first case, there exist n independent points of $\Lambda^{(\eta)}$ on the boundary of K; in the second case, at least one point of $\Lambda^{(\eta)}$ different from O

is an *inner* point of K and so cannot belong to Λ_0 since Λ_0 is K_0 -admissible. Hence $\Lambda^{(n)}$ contains in both cases a point

$$X = u_1 P_1 + \cdots + u_{n-1} P_{n-1} + u_n P_n^{(\eta)}$$

of K not in the plane $x_n = 0$. Since K is symmetrical, -X also belongs to K; therefore, without loss of generality, the coefficient u_n , or v say, is positive. This means that X belongs to K_v , hence η to M_v . The cube W of unit volume is therefore covered completely by the sets M_1 , M_2 , M_3 , \cdots , whence

$$\sum_{v=1}^{\infty} \mu_v \geq 1$$

The assertion follows now from (2). (For Lemma 1 and its proof, see [3]. It was used there for proving a slightly less exact result than the theorem of Minkowski-Hlawka.)

3. A value for c_2 . In two dimensions, the theorem of Minkowski-Hlawka gives

$$Q(K) \ge c_2$$
, where $c_2 = 2\zeta(2) = \frac{\pi^2}{3} = 3.28 \cdots$.

We show the following better result:

LEMMA 2. If K is a symmetrical convex region in the plane, then

$$Q(K) \geq c_2$$
, where $c_2 = 12^{\frac{1}{2}} = 3.46 \cdots$

Proof. Assume first that the boundary C of K does not contain any line segments, and choose an arbitrary critical lattice Λ of K. Then this lattice has three points P_1 , P_3 , P_5 on C such that $P_1 + P_5 = P_3$, and any two of these points form a basis of Λ . Since, if necessary, a suitable affine transformation may be applied, we may assume that P_1 , P_3 , P_5 are the points

$$P_1 = (1, 0), \qquad P_3 = \left(\frac{1}{2}, \frac{3^{\frac{1}{2}}}{2}\right), \qquad P_5 = \left(-\frac{1}{2}, \frac{3^{\frac{1}{2}}}{2}\right),$$

and that therefore

$$d(\Lambda) = \Delta(K) = \frac{3^{\frac{1}{2}}}{2}.$$

Let

$$P_4=(0,\xi)$$

be the point where the x_2 -axis intersects C. By the hypothesis about C, P_4 is an inner point of the triangle with vertices at P_3 , $P^* = (0, 3^{\frac{1}{2}})$, and P_5 , and so

$$\frac{3^{\frac{1}{2}}}{2} < \xi < 3^{\frac{1}{2}},$$

whence

$$\frac{1}{2} < \frac{3^{\frac{1}{2}}}{2\xi} < 1.$$

Therefore the line

$$x = \frac{3^{\frac{1}{2}}}{2\xi}$$

separates P_1 and P_3 , and so intersects C in a unique point

$$P_2 = \left(\frac{3^{\frac{1}{2}}}{2\xi}, \eta\right) \quad \text{with} \quad 0 < \eta < \frac{3^{\frac{1}{2}}}{2}$$

between P_1 and P_3 . Denote by P_6 the point

$$P_6 = P_4 - P_2 = \left(-\frac{3^{\frac{1}{2}}}{2\xi}, \xi - \eta\right);$$

evidently $\xi - \eta > 0$. The lattice Λ^0 of basis P_2 , P_4 is of determinant

$$d(\Lambda^*) = \begin{vmatrix} \frac{3^{\frac{1}{2}}}{2\xi} & \eta \\ 0 & \xi \end{vmatrix} = \frac{3^{\frac{1}{2}}}{2} = \Delta(K);$$

it is thus either critical or not K-admissible. Hence P_6 either lies on C or is an inner point of K.

Therefore the 12-sided polygon with vertices at

$$P_{1} = (1, 0), P_{2} = \left(\frac{3^{\frac{1}{2}}}{2\xi}, \eta\right), P_{3} = \left(\frac{1}{2}, \frac{3^{\frac{1}{2}}}{2}\right), P_{4} = (0, \xi), P_{5} = \left(-\frac{1}{2}, \frac{3^{\frac{1}{2}}}{2}\right),$$
$$P_{6} = \left(-\frac{3^{\frac{1}{2}}}{2\xi}, \xi - \eta\right), -P_{1}, -P_{2}, -P_{3}, -P_{4}, -P_{5}, -P_{6}$$

is contained in K. This polygon is of area

$$\begin{vmatrix} 1 & 0 \\ \frac{3^{i}}{2\xi} & \eta \end{vmatrix} + \begin{vmatrix} \frac{3^{i}}{2\xi} & \eta \\ \frac{1}{2\xi} & \frac{3^{i}}{2} \end{vmatrix} + \begin{vmatrix} \frac{1}{2} & \frac{3^{i}}{2} \\ 0 & \xi \end{vmatrix} + \begin{vmatrix} 0 & \xi \\ \frac{1}{2} & \frac{3^{i}}{2} \end{vmatrix} + \begin{vmatrix} -\frac{1}{2} & \frac{3^{i}}{2} \\ -\frac{3^{i}}{2\xi} & \xi - \eta \end{vmatrix} + \begin{vmatrix} -\frac{3^{i}}{2\xi} & \xi - \eta \\ -1 & 0 \end{vmatrix}$$
$$= \eta + \left(\frac{3}{4\xi} - \frac{\eta}{2}\right) + \frac{\xi}{2} + \frac{\xi}{2} + \left(-\frac{\xi - \eta}{2} + \frac{3}{4\xi}\right) + (\xi - \eta)$$
$$= \frac{3}{2}\left(\frac{1}{\xi} + \xi\right) = 3 + \frac{3(\xi - 1)^{2}}{2\xi} \ge 3,$$

KURT MAHLER

whence

$$V(K) \ge 3, \qquad Q(K) \ge \frac{3}{3^{\frac{1}{2}}/2} = 12^{\frac{1}{2}},$$

as asserted.

Finally, if C contains line segments, then C can be approximated as nearly as we like by means of symmetrical convex curves with continuous tangent. The assertion follows now from the continuity of V(K) and $\Delta(K)$, hence of Q(K), as functions of K. (The exact value of the lower bound of Q(K) for n = 2 will be discussed in more detail in a separate paper.)

4. Consequences of the theorem of Brunn-Minkowski. From now on, the symbols K_* and κ_* for the intersection of K with the plane $x_n = vD/d$ and its (n-1)-dimensional volume will be used even if v is not an integer. We further denote by τ_* the quotient

$$\tau_v = \frac{\kappa_v}{\kappa_0};$$

by u and w two numbers such that

$$u < w$$
 and $\kappa_v > 0$ if $u < v < w$;

by K(u, w) the section of K for which

$$uD/d \leq x_n \leq wD/d;$$

and by V(u, w) the volume

$$V(u, w) = \int_{K(u, w)} \cdots \int dx_1 \cdots dx_n$$

of K(u, w).

LEMMA 3. If

$$v = (1 - t)u + tw \quad and \quad 0 \le t \le 1,$$

then

$$\kappa_v^{1/(n-1)} \ge (1 - t)\kappa_u^{1/(n-1)} + t\kappa_w^{1/(n-1)}.$$

This is the theorem of Brunn and Minkowski. (See [1; §48] or [5; §57].)

LEMMA 4. The volume V(u, w) satisfies the inequality

1

$$V(u, w) \geq \frac{(w-u)D}{nd} \sum_{h=0}^{n-1} (\kappa_{u\kappa_w}^{h,n-1-h})^{1/(n-1)}.$$

Proof. Put v = (1 - t)u + tw, so that $x_n = vD/d = ((1 - t)u + tw)D/d$.

616

Then

$$V(u, w) = \int_{uD/d}^{wD/d} \kappa_v \, dx_n = \frac{(w-u)D}{d} \int_0^1 \kappa_v \, dt,$$

whence by Lemma 3,

$$V(u, w) \geq \frac{(w-u)D}{d} \int_0^1 \left\{ (1-t)\kappa_u^{1/(n-1)} + t\kappa_w^{1/(n-1)} \right\}^{n-1} dt.$$

On evaluating the integral, the assertion follows at once.

LEMMA 5. If $v \ge 1$, then

$$\kappa_{v} \leq \{v \kappa_{1}^{1/(n-1)} - (v-1) \kappa_{0}^{1/(n-1)}\}^{n-1}$$

and

$$\tau_{\bullet} \leq \{1 - v[1 - \tau_{1}^{1/(n-1)}]\}^{n-1}.$$

Proof. The first inequality follows from Lemma 3 if $u_r v$, w, t are replaced by 0, 1, v, 1/v, respectively. The second inequality is obtained from the first one on dividing by κ_0 .

LEMMA 6. If $v \geq 1$, then

 $\tau_v \leq \tau_1^v$.

Proof. The assertion follows immediately from the last lemma on putting

 $x = 1 - \tau_1^{1/(n-1)}$

in the well-known inequality

$$1 - vx \leq (1 - x)^{v}.$$

5. Recursive formulae for c_n . The evaluation of lower bounds for Q(K) depends on a recursive algorithm. On the assumption that a value for c_{n-1} has already been found, one for c_n is obtained by the following considerations:

Choose the lattice Λ_0 in the plane $x_n = 0$ as a critical lattice of K_0 ; hence, by the induction hypothesis,

(3)
$$\kappa_0 \geq c_{n-1}d.$$

Denote further by w the largest positive integer such that

(4) $\kappa_w > 0.$

By Lemma 1,

(5)
$$\kappa_1 + \kappa_2 + \kappa_3 + \cdots \geq d;$$

hence $w \ge 1$. We distinguish now two cases.

KURT MAHLER

If w = 1, then from (5), $\kappa_1 \ge d$. By symmetry, K contains the two congruent convex bodies K(0, 1) and K(-1, 0), and so, by Lemma 4, is of volume

$$V(K) \ge 2V(0, 1) \ge \frac{2D}{nd} \sum_{h=0}^{n-1} (\kappa_0^{h, n-h-1})^{1/(n-1)}$$
$$\ge \frac{2D}{n} \sum_{h=0}^{n-1} c_{n-1}^{h/n-1} = \frac{2D}{n} \frac{c_{n-1}^{n/(n-1)} - 1}{c_{n-1}^{1/(n-1)} - 1}.$$

Hence in this case,

(6)
$$Q(K) \ge c_n^i$$
, where $c_n^i = \frac{2}{n} \left[\frac{c_{n-1}^{n/(n-1)} - 1}{c_{n-1}^{1/(n-1)} - 1} \right].$

Next let $w \ge 2$. Then K contains the two congruent convex bodies K(0, 2) and K(-2, 0), and so

$$V(K) \geq 2[V(0, 1) + V(1, 2)]$$

$$\geq \frac{2D}{nd} \bigg\{ \sum_{h=0}^{n-1} (\kappa_0^h \kappa_1^{n-h-1})^{1/(n-1)} + \sum_{h=0}^{n-1} (\kappa_1^h \kappa_2^{n-h-1})^{1/(n-1)} \bigg\}.$$

The right-hand side is decreased on replacing κ_2 by 0 and κ_1 by any lower bound for this number. Such a lower bound is deduced from (5) and Lemma 6 as follows:

$$d \leq \kappa_1 + \kappa_2 + \kappa_3 + \cdots = \kappa_0(\tau_1 + \tau_2 + \tau_3 + \cdots) \leq \kappa_0(\tau_1 + \tau_1^2 + \tau_1^3 + \cdots)$$
$$= \frac{\kappa_0 \tau_1}{1 - \tau_1},$$

whence from (3),

$$\tau_1 \geq \frac{d}{\kappa_0 + d'}, \qquad \kappa_1 \geq \frac{d\kappa_0}{\kappa_0 + d} \geq \frac{c_{n-1}}{c_{n-1} + 1} d.$$

Hence, on substituting in the inequality above,

$$V(K) \geq \frac{2D}{n} \left\{ \sum_{h=0}^{n-1} \left[c_{n-1}^{h} \left(\frac{c_{n-1}}{c_{n-1}+1} \right)^{n-h-1} \right]^{1/(n-1)} + \frac{c_{n-1}}{c_{n-1}+1} \right\},$$

and so in this case,

(7)
$$Q(K) \ge c_n^{ii}$$
, where $c_n^{ii} = \frac{2c_{n-1}}{n(c_{n-1}+1)} \left\{ \frac{(c_{n-1}+1)^{n/(n-1)}-1}{(c_{n-1}+1)^{1/(n-1)}-1} + 1 \right\}.$

The results just found may be formulated as

LEMMA 7. Put

$$c_n = \min(c_n^i, c_n^{ii}),$$

618

where c_n^i and c_n^{ii} are defined in (6) and (7); then

 $Q(K) \geq c_n$

for all symmetrical convex bodies in R_n .

6. The numerical evaluation of c_n . If, in applying the last lemma, any one of the two constants c_n^i and c_n^{ii} is decreased, then c_n does not increase and so remains a lower bound for Q(K). It is therefore permitted to carry out all numerical calculations to only *three places* after the decimal point.

Starting with the value

$$c_2 = 3.464 < 12^{\frac{1}{2}}$$

given by Lemma 2, this remark leads to the following constants:

$$c_3 = 4.216, c_4 = 4.721, c_5 = 5.028, c_6 = 5.187, c_7 = 5.222, c_8 = 5.187,$$

 $c_9 = 5.116, c_{10} = 5.031, c_{11} = 4.942, c_{12} = 4.857, c_{13} = 4.779, c_{14} = 4,709,$
 $c_{15} = 4.646, c_{16} = 4.590, c_{17} = 4.551, c_{18} = 4.505, c_{19} = 4,464. c_{20} = 4.428.$

From the computation,

$$c_n = egin{cases} c_n & ext{ for } n \leq 5, \ c_n & ext{ for } c_n^{ ext{ i} ext{ i}} & ext{ for } 6 \leq n \leq 20, \end{cases}$$

and c_n decreases from n = 8 onwards.

7. The final result. It still remains to find a lower bound for c_n as n tends to infinity. From their definitions, c_n^i and c_n^{ii} , and so also c_n , are greater than

$$c_n^{iii} = \frac{2c_{n-1}}{n(c_{n-1}+1)} \frac{(c_{n-1}+1)^{n/(n-1)}-1}{(c_{n-1}+1)^{1/(n-1)}-1} = \frac{2c_{n-1}}{n} \sum_{k=0}^{n-1} \left(\frac{1}{c_{n-1}+1}\right)^{k/(n-1)}.$$

Further

$$\sum_{h=0}^{n-1} \left(\frac{1}{c_{n-1}+1}\right)^{h/(n-1)} \ge \int_0^n \left(\frac{1}{c_{n-1}+1}\right)^{x/(n-1)} dx$$
$$= \frac{(n-1)\{1-(c_{n-1}+1)^{-\lfloor n/(n-1)\rfloor}\}}{\log(c_{n-1}+1)}$$
$$\ge \frac{(n-1)\{1-(c_{n-1}+1)^{-1}\}}{\log(c_{n-1}+1)},$$

whence

$$c_n^{\text{iii}} \ge \frac{2(n-1)}{n} \frac{c_{n-1}\{1 - (c_{n-1}+1)^{-1}\}}{\log(c_{n-1}+1)}$$

or

$$c_n^{iii} \ge \left(2 - \frac{2}{n}\right) \frac{c_{n-1}^2}{(c_{n-1} + 1) \log (c_{n-1} + 1)}$$

Write for shortness,

$$\varphi(x) = \frac{19}{10} \frac{x^2}{(x+1) \log (x+1)}.$$

Then by this inequality

$$c_n^{ ext{iii}} \ge \varphi(c_{n-1}) \qquad \qquad ext{for } n \ge 20,$$

and so even more,

$$c_n \ge \varphi(c_{n-1})$$
 for $n \ge 20$

(8) Put

$$\psi(x) = (x + 2) \log (x + 1) - x,$$

so that

$$\varphi'(x) = \frac{19}{10} \frac{x\psi(x)}{\{(x+1) \log (x+1)\}^2}.$$

Since

$$\psi(0) = 0, \qquad \psi'(x) = \log (x+1) + \frac{1}{x+1} > 0 \qquad \text{for } x \ge 0,$$

evidently

$$\psi(x) > 0 \qquad \qquad \text{for } x > 0$$

and therefore

 $\varphi'(x) > 0 \qquad \qquad \text{for } x > 0.$

Hence $\varphi(x)$ is a steadily increasing function of x.

A simple discussion shows that the equation $\varphi(x) = x$ has the positive root, $x = 3.296 \cdots$; therefore finally,

(9)
$$\varphi(x) > X$$
 if $x > X$.

Since, by the table of the last paragraph, $c_n > X$ for $n \le 20$, we finally conclude from (8) and (9) by complete induction that $c_n > X$ for all n. Hence the following result has been proved:

620

THEOREM. There exists a positive constant a (which may be chosen as a = 1/6) such that

$$Q(K) \ge 2\zeta(n) + a$$

for every dimension $n \geq 2$, and for every symmetrical convex body K in R_n . Hence the Theorem of Minkowski-Hlawka does not give the best possible result for such bodies.

It seems highly probably that the true lower bound of Q(K) tends rapidly to infinity with n. A pointer in this direction is given by the following values for spheres S_n in R_n :

$$Q(S_2) = 3.627 \cdots, Q(S_3) = 5.923 \cdots, Q(S_4) = 9.869 \cdots,$$

 $Q(S_5) = 14.888 \cdots, Q(S_6) = 23.870 \cdots,$
 $Q(S_7) = 37.798 \cdots, Q(S_8) = 64.940 \cdots.$

On the other hand, the true lower bound for Q(K), in *n* dimensions, is almost certainly *not* assumed for S_n , but has a smaller value, and I have in fact proved this when n = 2.

BIBLIOGRAPHY

- 1. T. BONNESEN AND W. FENCHEL, Theorie der konvexen Körper, Berlin, 1934.
- 2. E. HLAWKA, Zur Geometrie der Zahlen, Mathematische Zeitschrift, vol. 49(1943), pp. 285-312.
- 3. K. MAHLER, On a Theorem of Minkowski on Lattice Points in Non-Convex Point Sets, Journal of the London Mathematical Society, vol. 19(1944), pp. 201–205.
- 4. H. MINKOWSKI, Gesammelte Abhandlungen I, Berlin, 1911.
- 5. H. MINKOWSKI, Geometrie der Zahlen, Berlin, 1910.
- 6. C. L. SIEGEL, A Mean Value Theorem in Geometry of Numbers, Annals of Mathematics, vol. 46(1945), pp. 340-347.

MANCHESTER UNIVERSITY.