(x) == Z ARkXnYr

l,

o reduce;d; oo

a11a22 . ann>CnD
D xs the determmant of 1 (). Por the lowest values

:f» 3=2 "4*4'
result Jsfclassm the second one due to Gauss (who
for Seebe s deflmtlon of a reduced ternary form,
' — 3 of MINKOWSKT'S
= 4, which seems

>
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f X is a lattice point, then so is x; the converse need not
old. The transformation (2) changes f(x) into a new qua-
ratic form

and is based on the following theorem of KORKINE an

ZOLOTAREFF 5): :
“For every positive definite quaternary quadratic fo

# (x) of determinant D, there exists a lattice point (x) %

such that

- s
F(X) = f (S Xpxl®) = T ApXpXs,
k=1 hk=1

H(x) < VD
with equality if and only if f (x) is equivalent to the for
/3D gy (x), where go(x)=2x,"+2,"+x 2 x 2 (2 Hg) %y

’here the Az are the numbers as defined before. Since, if
ecessary, we may replace x(k) by — x(#), we can assume that

A12 2 0: A23 z Oy A34 z O. (3)

Proof of the inequality ay,dsssfyy < 4D for n = 4. By the definition of the lattice points x(®),

I use the vector notation; lower indices denote the differer

coordinates, upper ones different points. Ay ’ §X§ ~0,
Let 1
x®) = (1), xF), x(3k), By (R=1,2,3, Ay % X2 > 0,
be four lattice points such that (1) =~ 0, and f (@) = A for all lattice points # such that i @)
is the minimum of  (¥) in all lattice points x 5= 0; and su A SX2>0,
that for £ =2, 3, and 4, x® is linearly independent of 8
Au X2 0,

20, . ..., a1, and [ (x®) = A
e same inequalities with  F(X) instead of f (x) hold if X

a lattice point; hence F(X) is a reduced form.
We can write F(X) as.a sum of squares of linear forms,

is the minimum of f(x) for all lattice points x which a
linearly independent of x(1), ..., #(#1), The four points x
are therefore linearly independent, and their determinant

EF(X)= 5% 4 52 + 52 4 &2
d= lxﬁk)lh,k=1,2,3,4 i F(X) 1+ & + By + E, (5)
uch that & contains only Xz, . ..., X,; except for changes

is a non-vanishing integer.

An arbitrary point # = (%, %5, ¥3 %,) can be written [ sign, this representation is unique.. If we replace X by x

cording to (2), then (5) is transformed into the analogous

e % X (b resentation
k=1 ) = &2

iy =8+68+&+8 (6)
/(x) as a sum of squares of linear forms in the x’s. In this
resentation,

where the X are real numbers; let X = (X;, X5 Xg
be the point with these numbers as its coordinates. T
change of x into X is an integral linear transformation

determinant d, namely &y vanishes if Xp = Xpy1 = .... =X, =0.

4 Let
ap= 2 2 Xg (h=1,2, 3 4).

k=1 g g & &
g) = =+ et
a3 Ay Ags Ay

(7

5) Qeuvres de Zolotareff, Vol. 1.
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,’, 22), ), p4), 75(5)=¢(i)—p(4), pBI=p(2)—p(d), Hp(1)=pB8)—p4),
)= )+ HR)_HA), HO=p)+HB)p@), H10)==H(2)-p(8)-p(4),
D=—=p(1)4-p@)+pB)—pi4), p12)==p(1)4-HE){-HB)-2p(4),

which the first four are linearly independent, such that
| g (p®) =1 =12, ..., 12).
Neither of the two linear forms

| £ =& () and &, =&, ()

) vanishes identically. Hence at least one of the four
bers

¥

be a new quadratic form of determinant

D
D= e )
AnApfasha

Since by the definition of the minima App
0 <ApSARSApSAw

we get from (4) for lattice points x that

Q &

_t _ 1>y 0 X,=X,=X,=0;
(X)M_A-;-————A—l]-:':l,lel# > 2 3 4 4

g8 848 /. By
g Y 1 fX 0 "'X ~-—O,
EW =g Ta,Z A, " Am =T s

E(pW) (k=1,2,3,4),
) = _f_f_ .5_3_ _E_?,,_ > £+ _ 1= > 1 if X450, X the number &, (p(k), and at least one of the four numbers
‘ Ay Ay Agg T Agg Ass E,(pR) (B==1,2,3,4),
2 2 2 . g2 1 224 2
(x) = E}_ % _f?__ Eé_z G646 T & = f(x)z the number &, (p(#), is different from zero. If & =%,
Au Ap ' Agp Au Ay Aag ™

£ (plhol) 520, &, (plka)) 520 for Fy = by = k.

e prove that if there is no index 2 =1, 2, 3 or 4 such that
th & (p(®) and &, (pt¥) are diffent from zero, there is still
east one index %, in the interval 1< %;< 12 such that

£ (ptha)) £ 0, &, (ptha)) £ 0. (11)

reasons of symmetry, it obviously suffices to consider
he cases that k, =1, k=4, or'that & =1, k=2.In

‘Therefore for every lattice point %,
gzl

By the theorem of KORKINE and ZOLOTAREFF, this implies
1< \/ D’ and therefore by (8),

A11A2"A33A44 = 4D (10

We consider firstly the case that the sign of equality hold
in (10), so that g (x) has the determinant D’ = D/4D =
By the theorem of KORKINE and ZOLOTAREFY, g (=) mus
therefore be equivalent to

(po(x)—-xl+x2+x3+x4+(x1+xz+x)x4'

Hence there are 12 essentially different lattice points ¢)

& (pW) 70, & (p0) = 0 & (p) =0, &, (p0) 0
herefore

PO = & (p) = &, (p) £ 0, &, (pB)=F,(p1) — £,(p)) 20,

he second case

5 (W) S£0, £ (p0) = 0; £ (p@) = 0, £, (p) 0,

furthermore without loss of generality

) ‘The equation ¢, (%) = 1 has the twelve solutions (1000),(0100), (0010), (0001
(100 —1), (010 —1), (001—1), (110 —1), (101—1), (011 —1), (111 —1
{111 — 2), and twelve further one derived from.these by changing all signs.

-
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& (W) =&, (p¥) = 0;

£ () = & (W) + & (p®) - £, (p®) 0,
£y (P8) = &, (p1) + &, (p®) — £, (p) 0.
* The lattice point p(k) in (11) satisfies the further inequality
Xy = X, (plk)) 5£0,
since % is a non-vanishing constant. Hence by (9)

()2 | Eg(p0)® | E(p)
.

hence

4
g (p) = 1 = 51(11%))2 L&l
: 11

p
Ap Ags Ay .
< GBI+ (PO e (P [P0 | .
= Au . .
and since 0 < A;; <A, <A ;< A, we must have
Ap=An=A7Ayp=~7Ay= \4/21‘1—)”&
Therefore f (x) is equivalent to the form
V4D g, (x).
Hence, if f (%) itself is reduced, then 7)
@y = Oy = Gy = Ay = V4D,
and the assertion is proved . ... T
Secondly, let (10) be true with the sign “<”’. The form
F (X) has the determinant Dd? therefore by a well known
property of positive definite quadratic forms

D < ApApAgshu

and by (10),
D2 < 4D, 2 <4, d=—=F I

since d is a non-vanishing integer. Hence now the reduced
form F (X) is equivalent to f (x); therefore, if f (x) is also
reduced, then the statement follows at once, since )

@y = Ay, Gy = Agy, a3y = Agg, Ay — Ay

n n. ~ ,
1y Two equivalent reduced forms 7 () = Zapp #p%pand F (X) = F AppXpX) .
) q n orms f (¥} e h TR { h,k__lckk Bk ‘, %%

app = Arp (=1, 2, ..M ﬁ&,‘%‘ ,g&x

. . i 'WI )
satisfy. the -equations .
&i

‘

since both are lowest forms.
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