ON REDUCED POSITIVE DEFINITE QUATERNARY QUADRATIC FORMS

BY

KURT MAHLER

(Manchester).

According to Minkowski's definition 1), a positive definite quadratic form in n variables with real coefficients

$$f(x) = \sum_{h_1 k=1}^{n} a_{hk} x_h x_k$$

is called reduced, if for $h = 1, 2, \ldots, n$ $f(x) \ge a_{hh}$ for all integers x_1, \ldots, x_n such that $(x_h, x_{h+1}, \ldots, x_n) = 1$, and also

$$a_{12} \ge 0$$
, $a_{23} \ge 0$, ..., $a_{n-1,n} \ge 0$.

Minkowski, using a method of Hermite, proved that there is a constant $c_n > 0$ depending only on n, such that for reduced forms ²)

$$a_{11}a_{22}\ldots a_{nn} \geq c_n D$$

where D is the determinant of f(x). For the lowest values of n, the smallest value of this constant is

$$c = \frac{4}{3}$$
, $c_3 = 2$, $c_4 = 4$

The first result is classic, the second one due to Gauss (who proved it for Seeber's definition of a reduced ternary form, which is nearly identical with the case n=3 of Minkowski's definition)³). I prove here the formula $c_4=4$, which seems to be new.*)

My proof is derived from one of Minkowski for $c_3 = 2^4$),

¹⁾ Ges. Abh. II, 53-100.

²⁾ l.c. 1); see also my note, Quart. Journ. 9 (1938), 259—262.

³⁾ Gauss, Werke II.

^{*)} Addition September 1946. Compare the paper by R. Remak, Proc. Royal Acad. Amsterdam, 44, (1931), 1071—1076, where a similar method is used to study pseudoreduction of quadratic forms.

⁴⁾ Ges. Abh. II.

and is based on the following theorem of Korkine and Zolotareff 5):

"For every positive definite quaternary quadratic form f(x) of determinant D_0 , there exists a lattice point $f(x) \neq 0$ such that

$$f(x) \le \sqrt[4]{4D}$$

with equality if and only if f(x) is equivalent to the form $\sqrt[4]{410} \varphi_0(x)$, where $\varphi_0(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + (x_1 + x_2 + x_3)x_4$. (1)

Proof of the inequality $a_{11}a_{22}a_{33}a_{44} \leq 4D$ for n = 4.

I use the vector notation; lower indices denote the different coordinates, upper ones different points.

Let

$$x^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, x_4^{(k)})$$
 $(k = 1, 2, 3, 4)$

be four lattice points such that $x^{(1)} \neq 0$, and $f(x^{(1)}) = A_{\parallel}$ is the minimum of f(x) in all lattice points $x \neq 0$; and such that for k = 2, 3, and 4, $x^{(k)}$ is linearly independent of

$$x^{(1)}, \ldots, x^{(k-1)}, \text{ and } f(x^{(k)}) = A_{kk}$$

is the minimum of f(x) for all lattice points x which are linearly independent of $x^{(1)}, \ldots, x^{(k-1)}$. The four points $x^{(k)}$ are therefore linearly independent, and their determinant

$$d = |x_h^{(k)}|_{h,k=1,2,3,4}$$

is a non-vanishing integer.

An arbitrary point $x = (x_1, x_2, x_3, x_4)$ can be written as

$$x = \sum_{k=1}^{4} X_k x^{(k)},$$

where the X_k are real numbers; let $X = (X_1, X_2, X_3, X_4)$ be the point with these numbers as its coordinates. The change of x into X is an integral linear transformation of determinant d, namely

$$x_h = \sum_{k=1}^{4} x_k^{(k)} X_k$$
 (h = 1, 2, 3, 4). (2)

If X is a lattice point, then so is x; the converse need not hold. The transformation (2) changes f(x) into a new quadratic form

$$F(X) = f(\sum_{k=1}^{4} X_k x^{(k)}) = \sum_{h,k=1}^{4} A_{hk} X_h X_k,$$

where the A_{kk} are the numbers as defined before. Since, if necessary, we may replace $x^{(k)}$ by $-x^{(k)}$, we can assume that

$$A_{12} \ge 0$$
, $A_{23} \ge 0$, $A_{34} \ge 0$. (3)

By the definition of the lattice points $x^{(k)}$,

$$\begin{cases} A_{11} & \sum\limits_{1}^{4} X_{k}^{2} > 0, \\ A_{22} & \sum\limits_{1}^{4} X_{k}^{2} > 0, \\ \text{for all lattice points } x \text{ such that } \sum\limits_{1}^{2} X_{k}^{2} > 0, \\ A_{33} & \sum\limits_{3}^{4} X_{k}^{2} > 0, \\ A_{44} & X_{4}^{2} > 0. \end{cases}$$

$$(4)$$

The same inequalities with F(X) instead of f(x) hold if X is a lattice point; hence F(X) is a reduced form.

We can write F(X) as a sum of squares of linear forms,

such that \mathcal{E}_k contains only X_k, \ldots, X_4 ; except for changes of sign, this representation is unique. If we replace X by x according to (2), then (5) is transformed into the analogous representation

$$f(x) = \xi_1^2 + \xi_2^2 + \xi_3^2 + \xi_4^2 \tag{6}$$

of f(x) as a sum of squares of linear forms in the x's. In this representation,

$$\xi_k$$
 vanishes if $X_k = X_{k+1} = \dots = X_4 = 0$.

Tet

$$g(x) = \frac{\xi_1^2}{A_{11}} + \frac{\xi_2^2}{A_{22}} + \frac{\xi_3^2}{A_{33}} + \frac{\xi_4^2}{A_{44}}$$
 (7)

⁵⁾ Oeuvres de Zolotareff, Vol. 1.

be a new quadratic form of determinant

$$D' = \frac{D}{A_{11}A_{22}A_{33}A_{44}}. (8)$$

Since by the definition of the minima A_{kk}

$$0 < A_{11} \leq A_{22} \leq A_{33} \leq A_{44}$$

we get from (4) for lattice points x that

$$g(x) = \frac{\xi_1^2}{A_{11}} = \frac{f(x)}{A_{11}} \ge 1$$
, if $X_1 \ne 0$, $X_2 = X_3 = X_4 = 0$;

$$g(x) = \frac{\xi_1^2}{A_{11}} + \frac{\xi_2^2}{A_{22}} \ge \frac{\xi_1^2 + \xi_2^2}{A_{22}} = \frac{f(x)}{A_{22}} \ge 1$$
, if $X_2 \ne 0$, $X_3 = X_4 = 0$;

$$g(x) = \frac{\xi_1^2}{A_{11}} + \frac{\xi_2^2}{A_{22}} + \frac{\xi_3^2}{A_{33}} \ge \frac{\xi_1^2 + \xi_2^2 + \xi_3^2}{A_{33}} = \frac{f(x)}{A_{33}} \ge 1, \text{ if } X_3 \ne 0, X_4 = 0;$$

$$g(x) = \frac{\xi_1^2}{A_{11}} + \frac{\xi_2^2}{A_{22}} + \frac{\xi_3^2}{A_{33}} + \frac{\xi_4^2}{A_{44}} \ge \frac{\xi_1^2 + \xi_2^2 + \xi_3^2 + \xi_4^2}{A_{44}} = \frac{f(x)}{A_{44}} \ge 1,$$
if $X_4 \ne 0$. (9)

Therefore for every lattice point x,

$$g(x) \ge 1$$
.

By the theorem of Korkine and Zolotareff, this implies $1 \le \sqrt[4]{D'}$ and therefore by (8),

$$A_{11}A_{99}A_{33}A_{44} \le 4D. \tag{10}$$

We consider firstly the case that the sign of equality holds in (10), so that g(x) has the determinant $D' = D/4D = \frac{1}{4}$. By the theorem of Korkine and Zolotareff, g(x) must therefore be equivalent to

$$\varphi_0(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + (x_1 + x_2 + x_3) x_4.$$

Hence there are 12 essentially different lattice points 6)

 $p^{(1)}, p^{(2)}, p^{(3)}, p^{(4)}, p^{(5)} = p^{(1)} - p^{(4)}, p^{(6)} = p^{(2)} - p^{(4)}, p^{(7)} = p^{(3)} - p^{(4)},$ $p^{(8)} = p^{(1)} + p^{(2)} - p^{(4)}, p^{(9)} = p^{(1)} + p^{(3)} - p^{(4)}, p^{(10)} = p^{(2)} + p^{(3)} - p^{(4)},$ $p^{(11)} = p^{(1)} + p^{(2)} + p^{(3)} - p^{(4)}, p^{(12)} = p^{(1)} + p^{(2)} + p^{(3)} - 2p^{(4)},$

of which the first four are linearly independent, such that

$$g(p(l)) = 1$$
 $(l = 1, 2, ..., 12).$

Neither of the two linear forms

$$\xi_1 = \xi_1(x) \text{ and } \xi_4 = \xi_4(x)$$

in (6) vanishes identically. Hence at least one of the four numbers

$$\xi_1(p^{(k)})$$
 $(k = 1, 2, 3, 4),$

say the number $\xi_1(p(k))$, and at least one of the four numbers

$$\xi_4(p^{(k)})$$
 $(k=1, 2, 3, 4),$

say the number ξ_4 ($p^{(k_2)}$), is different from zero. If $k_1 = k_2$, then

$$\xi_1(p^{(k_0)}) \neq 0, \ \xi_4(p^{(k_0)}) \neq 0 \quad \text{for } k_0 = k_1 = k_2.$$

We prove that if there is no index k = 1, 2, 3 or 4 such that both $\xi_1(p^{(k)})$ and $\xi_4(p^{(k)})$ are differt from zero, there is still at least one index k_0 in the interval $1 \le k_0 \le 12$ such that

$$\xi_1(p^{(k_0)}) \neq 0, \ \xi_4(p^{(k_0)}) \neq 0.$$
 (11)

For reasons of symmetry, it obviously suffices to consider the cases that $k_1 = 1$, $k_2 = 4$, or that $k_1 = 1$, $k_2 = 2$. In the first case

$$\xi_1(p^{(1)}) \neq 0, \ \xi_4(p^{(1)}) = 0; \quad \xi_1(p^{(4)}) = 0, \ \xi_4(p^{(4)}) \neq 0,$$

and therefore

$$\xi_1\left(p^{(5)}\right) = \xi_1\left(p^{(1)}\right) - \xi_1\left(p^{(4)}\right) \neq 0, \ \xi_4\left(p^{(5)}\right) = \xi_4(p^{(1)}) - \xi_4(p^{(4)}) \neq 0.$$

In the second case

$$\xi_1(p^{(1)}) \neq 0, \ \xi_4(p^{(1)}) = 0; \quad \xi_1(p^{(2)}) = 0, \ \xi_4(p^{(2)}) \neq 0,$$

and furthermore without loss of generality

^{•)} The equation $\phi_0(x) = 1$ has the twelve solutions (1000), (0100), (0010), (0001), (100 - 1), (010 - 1), (101 - 1), (101 - 1), (101 - 1), (111 - 1), (111 - 2), and twelve further one derived from these by changing all signs.

$$\xi_1(p^{(4)}) = \xi_4(p^{(4)}) = 0;$$

hence

$$\xi_1(p^{(8)}) = \xi_1(p^{(1)}) + \xi_1(p^{(2)}) - \xi_1(p^{(4)}) \neq 0,$$

$$\xi_4(p^{(8)}) = \xi_4(p^{(1)}) + \xi_4(p^{(2)}) - \xi_4(p^{(4)}) \neq 0.$$

The lattice point $p^{(k_0)}$ in (11) satisfies the further inequality

$$X_4 = X_4 (p^{(k_0)}) \neq 0$$
,

since $\frac{X_4}{\xi_4}$ is a non-vanishing constant. Hence by (9)

$$g(p^{(k_0)}) = 1 = \frac{\xi_1(p^{(k_0)})^2}{A_{11}} + \frac{\xi_2(p^{(k_0)})^2}{A_{22}} + \frac{\xi_3(p^{(k_0)})^2}{A_{33}} + \frac{\xi_4(p^{(k_0)})^2}{A_{44}} \ge$$

$$\ge \frac{\xi_1(p^{(k_0)})^2 + \xi_2(p^{(k_0)})^2 + \xi_3(p^{(k_0)})^2 + \xi_4(p^{(k_0)})^2}{A_{44}} = \frac{f(p^{(k_0)})}{A_{44}} \ge 1,$$

and since $0 < A_{11} \leq A_{22} \leq A_{33} \leq A_{44}$, we must have

$$A_{11} = A_{22} = A_{33} = A_{44} = \sqrt[4]{4D}$$
.

Therefore f(x) is equivalent to the form

$$\sqrt[4]{4D} \varphi_0(x)$$
.

Hence, if f(x) itself is reduced, then 7)

$$a_{11} = a_{22} = a_{33} = a_{44} = \sqrt[4]{4D}$$

and the assertion is proved

Secondly, let (10) be true with the sign "<". The form F(X) has the determinant Dd^2 ; therefore by a well known property of positive definite quadratic forms

$$Dd^2 \leq A_{11}A_{22}A_{33}A_{44},$$

and by (10),

$$\mathrm{D}d^2 < 4\mathrm{D}, \ d^2 < 4, \ d = \mp 1,$$

since d is a non-vanishing integer. Hence now the reduced form F(X) is equivalent to f(x); therefore, if f(x) is also reduced, then the statement follows at once, since 7)

$$a_{11} = A_{11}, \ a_{22} = A_{22}, \ a_{33} = A_{33}, \ a_{44} = A_{44}$$

since both are lowest forms.

Mathematics Department,

24th May, 1940.

Manchester University.

(Received, March 30, 1946).

Two equivalent reduced forms $f(x) = \sum_{h,k=1}^{n} a_{hk} x_h x_k$ and $F(X) = \sum_{h,k=1}^{n} A_{kh} X_h X_k$ satisfy the equations $a_{kk} = A_{kk} \qquad (k = 1, 2, \ldots, n),$