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Mathematics. — On the area and the densest packing of convex domains.
By K. MAHLER (Manchester). (Communicated by Prof. J. G. vAN
DER CORPUT.)

(Communicated at the meeting of December 21, 1946.)

In the preceding paper “On irreducible convex domains” 1), I studied
the critical lattices of convex domains in the (xq, x,)-plane and proved that
every such domain contains an irreducible convex domain of equal deter-
minant.

Of these results, applications are made in the present paper, which deals
with two closely allied problems:

Problem I: If V(K) and A(K) denote the area and determinant of a
cenvex domain K, fo find the lower bound of

_VI(K)
Q= A w)
extended over all convex domains K.

Problem II: About every point P of a lattice A as its centre describe a
convex domain K(P) congruent to K and with the same orientation, but
assume that no two domains K(P) overlap. Choose A such that the ratio
of the area covered by the domains K{P) to the whole plane assumes its
largest value, q(K) say. To [ind the lower bound of q(K) extended over
all convex domains.

MINKOWSKI established the close connection between Q(X) and g(K)
and obtained the upper bounds for Q(K) and ¢{K), and some lower bound
for Q(K). Also Problem II has been considered before 2), but no solution
seems to have so far been given. I have not succeeded in solving either of
the two problems. But I show in this paper how they can be reduced to a
question in the calculus of variations. I prove further that this variation
problem does admit of a best possible solution in form of an irreducible
convex domain, and that this solution is not an ellipse, contrary to what
might be expected.

All the first paragraphs deal with Problem I; the application to Problem
IT is made at the end of this paper.

§ 1. Formulation of the problem.
Let

xXy=ax;+ fx, x,=yx +0x,
be any affine transformation of determinant

d=ad—y>0,

1) Quoted as ICD. Compare this paper for all the definitions and lemmas.
%) See W. BLASCHKE, Differentialgeometrie II, § 27, problem 17.
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and let K be any convex domain 3) in the (xq, x5)-plane. When (xy, x2)
describes K, then (x’y, x’5) describes a second convex domain K’. As is
well known 4), the areas V(K), V(K’) and the determinants A(K),
A(K’) satisfy the equations

VK)=dV(K), AK)=dV(K).

Hence the quotient,

K
Q)= 1 (1
is an absolute invariant,
QKHNY=QK),. . . . . . . . .

for all affine transformations.
An upper bound for Q(K) is given by MINKOWSKI's classical theorem
on lattice points in convex domains, viz.

QK< 4;
the equality sign holds only for parallelograms and certain classes of hexa-
gons 5).
It is the lower bound for Q(K) with which this paper is concerned. A
trivial lower bound for Q(K), namely

QK)=1,

follows immediately from the obvious inequality V(K) = A(K) 6). Else-
where, I proved the much better inequality 7),

Q(K)= V12,

but this is also not the exact lower bound for Q(K).

In order to obtain the exact lower bound for Q(K) in the set of all
convex domains, the following restrictions on K may be imposed without
loss of generality:

(A): K is not a parallelogram; for otherwise Q(K) =4, and this is
not the smallest possible value for Q(K), since, e.g. for an ellipse

_ 2

V3
(B): A(K) = 1; this condition may be enforced by means of a suitable
similar transformation, on account of (1).

Q(K) <4.

3)  As in ICD, all convex domains are assumed symmetrical in O = (0, 0).

4) The first equation is classical; for the second one see Theorem 16 of my paper
“Lattice points in n-dimensional star bodies I". Proc. Royal Society A, 187 (1946),
151—187.

5) Geometrie der Zahlen, §§ 34—35.

6) ICD, § 7.

7)  See my paper, “On the theorem of MINKOWSKI-HLAWKA"”, which is to appear
in DUKE's Journal.
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(C): The boundary C of K contains the six points,
Pi=(""§0), Py=(""{y V1), Ps= (V45 ¥3),

12 , ’ , (2)
P.,:-—— Pl, P5"-:-— pz, ps: — ps,

and these points are the points of a critical lattice A" of K of basis P’y,
P’,. For assume that the conditions (A) and (B) hold, and choose any
critical lattice of K. Then, by ICD, § 3, this lattice has just six points on C,
such that three of them together with the origin form the vertices of a
parallelogram. Since the lattice is of unit determinant, it can be transformed
into A’ by means of an affine transformation with d — 1.

We can now restate our problem as follows:

Problem 1": To find a convex domain K of minimum area satisfying the
three conditions (A), (B), (C). Its area gives the required lower bound
for Q(K) = V(K) 8).

§ 2. Proof that the lower bound is attained.
Denote by H’ the hexagon with the six vertices (2), and by H” the
polygon
P, Py P, P; P; P; Py Py P; P5 P P,
where PY,...,DP¢ are the points

Pi= ("5, P}, Pi=(0, ¥ 12), Py =(—= V"%, V),
P{—=— D), P{=— Pj, P{ —— Pj.
If K is any convex domain satisfying the conditions (A), (B), (C), then
it contains H” as a subset, and is itself contained in H”. Denote by 3 the
set of all such convex domains.
As already mentioned in § 1, Q(K) = 1 for all convex domains, and so
VK)>=1
for all elements K of 5. Hence the lower bound
Q= 1Lb. V(K)
Kin ¥
extended over all elements of X is a positive number, and is in fact also
the lower bound of Q(K) extended over all convex domain. Evidently
Q<4
Definition: A convex domain K is called extreme if Q(K) = Q.
Theorem 1: There exists an extreme convex domain.
Proof: Choose an infinite sequence

Ki.K),Ks,.o. . . . . . . . . . (4
of elements of X, not all necessarily different, such that

lim V(K,)=Q.

n->lo

(3)

8) That the area of K attains its lower bound, is proved in the next paragraph, and
is here already taken for granted.
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All these convex domains K. are subsets of the bounded polygon H”.
Hence, by the selection theorem of BLASCHKE ?), it is possible to choose an
infinite subsequence, '
K, Kpyp Koy,
of (4) which converges to a convex domain, K say. Then, firstly,
V(K)=Q.
Secondly, it is obvious that K has the properties (A) and (C). Thirdly,
it has also the property (B), since 10)
A(K)=lim A(K,)=1.
row

Hence K is an extreme convex domain, and the assertion is proved.

Theorem 2: Every extreme convex domain is irreducible.

Proof: If K is reducible, then, by ICD, Lemma 13, a convex domain K’
contained in, but different from, K can be found such that A(K’) = A(K).
Hence Q(K) > Q(K’) = Q, and so K is not extreme.

§ 3. A parameter representation of K.

The last result allows us to restrict the convex domains to be considered
still further and to restate the problem as follows:

Problem 1”: To find an irreducible convex domain K of minimum area
Q satisfying the three conditions (A), (B), (C).

For the investigation of this problem, we apply Lemma 9 of ICD:

“Let K be an irreducible convex domain which is not a parallelogram.
Then to every point P; on C, there exists a unique critical lattice
A = A(P,) containing P,. This lattice has just six points Py = P/(P,)
(I=1,2,...,6) on C. Let A4, ..., Ag be the six arcs into which these
points divide C; denote further by Pf a variable point on A,, and by
P =Pi(Py) for 1 =2, ..., 6 the other [ive points of A(Py) on C. If P}
describes A, continuously in positive direction, then Pj, for | =2, ..., 6,
describes A in the same manner.”

This lemma leads to the following parameter representation of the
boundary C of K:

Let P = (xy, x,) be the general point of C. Then denote by ¢ a para-
meter which runs from O to 2z when P runs in positive direction over C

from Py=(¥"%, 0) back to P}; thus
x=x(f)) x=x()

are functions of ¢ defined for 0 = ¢ = 2z in the first instance. So as to
simplify the considerations, extend these two functions to all real values
of ¢ by the periodicity condition,

X (t+27)=x,(t), 2,(t+ 27)=x,().

9)  'W. BLASCHKE, Kreis und Kugel, 62.
10)  Theorem 9 of my paper, lc. 4), &
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Denote further by
P (t) = (x, (8). x2 ()

the point on C of parameter ¢, and by A(¢) the critical lattice of K con-
taining P(¢). It is clearly possible to choose the parameter ¢ in such a way
that the six points of A(¢) on C are just given by

P(t—’;—%y—t). where h=0,1,....,5;

in particular, it is necessary that

p(-’?)—:p',, (h=1,2.....6).

Since A(t) is critical, the quadrilateral
oP@P e+ 2\ P(t+27
3 3
is a parallelogram of area A(K) = 1; hence
P@H—P <t+ ’;) 4P (H— %—“) —o0, %P(t),P (t + ’3i> %: L.
The first condition is equivalent to the functional equations,
x; () — x; t+1 G [t 2z =0,
3 3
2
x, () — %, <t + %) + x, (t + —3’f> =0,

which have the general solution,

x (=a, ()cost+ b, (t)sint; x, () =a,(f)cost-+by()sint, (5)

where
a, (t), by (£), a5 (£), b, (f) are functions of t of period %

The second condition is equivalent to the equation,
x, () x, <t+ %)-xx (H— %) xn@H=1;

cn substituting the expressions (5) and simplifying, this cquation takes
the form,

a ()b, ()—a, (b =4V . . . . . . (6)
The conditions P (%E) — P} give the initial values,

a0)=b0=+%4%  a0=>b(0=0 .. . @0
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Next, the condition that C is a convex curve is equivalent to the in-
equality, ‘
a, (t,) cos t; + by (t,) sin £y, a, (t,) cos t; + by (t;) sin £y, 1
a, (t,) cos t, + by (£;) sin £, a, (t;) cos t, 4 b, (t)) sint,, 11 =0
a, (t;) cos 5 + by (£5) sin £5, a, (¢5) cos ¢35 -+ b, (t5) sin £3, 1 ‘ '
if 0 <t,<<lt;<<2m

If a,(t), by(t), as(t), bo(t) have second derivatives, then this inequality
implies that

(8)

jtial( cost-+ b, (f)sint}, %{az(t)cost+b2(t)sint}

d2

(&)
d {a, (f)cost+ b, (f)sint}, 5; {a,(t)cost-+ b, @) sint}

WV
o

I have not succeeded in expressing either of these two formulae in a more
convenient form. (See, however, § 5.)
Finally, an explicit value for the area V(K) of K is found in the following
way, under the assumption that a; (¢), by (£), ax(¢), bo(t) are differentiable:
In the integral,

_1r dx, (t) dx, (t)
VK=, j 3x, (P2 (9 L
the integrand may be written as,

20020 g P10 =

={a,(t) b, () —a,(t) b, ()} +} A () cos? t + B(t) cos tsin £ 4 C (¢) sin? ¢},

where
AN =a (9 g?ﬁ;@ _— daét(t)'
B () =a (f) ‘%@ —by(f) g%(g b, (9 di;t(t) —ay (9 gi%:t”(__t),
Co="b 0,0,

Since by (6),

f{31 )62 (02 (051 (0] de =7,

evidently,

27
2% -+ %ng () cos® ¢ + B (t) cos t sin t + C (¢£) sin? ¢{ dt.
0
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The integral on the right can be much simplified since A(¢), B(t), C(¢)
are periodic functions of period g To this purpese, replace ¢ under the

integral sign by
7 27
Litge ity

and take the arithmetical means. Since

cos? t -+ cosz(t—{— %) -+ cos? (t—i—Z;) —
ein? 2 T .2 27\ 3
= sin’f 4 sin <t+ 3>+sm <t+ 3>-—_ 5
and
. T\ 7 2 AN 2n
costsintt+cos |t~ |sin{t+ )+ cos|t+=)sin|t+ =5 | =0,
3 3 3 3
this leads to the formula,

VIK)=24+1K), . . .. .. .0

V 3
where
27

I(K):—‘}—ng(t)—}—C(t)} dt,
hence, ’

-f% 0920 a9y %20 b, P4 10)

We see then that Problem 1” is essentially equivalent 11) to fhe fellowing
Problem 1”: To find four functions a((t), by(t), as(t), bo(t) of period

731 satisfying the conditions (6), (7), (8), and giving the integral I1(K) in
(10) a smallest value.
§ 4. The integrals of the EULER differential equations.

There is no difficulty in applying the classical EULER-LAGRANGE method
to Problem 1’, omitting, however, the inequality condition (8).

Write an, by instead of ax(t), ba(t), and use a dot for the differential
coefficients with respect to ¢; denote further by 1 a suitable function of ¢.
Then the EULER equations for the function

F(ay, by, a5, b)) = {a, aZ_al a, + b, bz“‘bl b,} +“31 bz‘”asz"‘VF

11) It is not a priori evident that the boundary of an extreme convex domain has
everywhere a tangent, thus that ajy(£), by(¢f), az2(t), bz(t) are differentiable for all ¢.
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i.e. the differential equations,

g—f}:—%g-g:& %—%gg: (h=1,2),
are as follows:
2a, + Ab, = 2b,—Aa, = 2a, + Ab, = 2b,—Aa,=0. . . (11)
On eliminating 1 from the first or the last two equations (11), we get
a,él~l—bll;,=O, azéz—}—bzI;Z:O.
whence, on integrating for f,
al+bl=yi, a4bl=yl, . . . . . (12

where y4, 7o are independent of ¢. If, on the other hand, 1 is eliminated
from the first and the third equation, then

a; a, a; a;
b, = b, or CRT 2__.2
1 2 V yi—a? Y yi—a?

whence, on integrating again for ¢,

a
cos—! et B = cos™! il _ F. e e e e e e (13)
71 72

where I is a further number independent of ¢.
The two equations (12) and (13) imply that there is an angle @ such
that

a; =y cos O, b, =y,s5in O,
a;=7yy¢cos (04 I'), by=y,sin (04 TI).
On substituting these values in (6),

ab,—a,by=y,y,sin'=4+V4 . . . . . (15

(14)

Further, from (5),
x; == a; cost + b, sin f=1y, cos (t— ),

x,=aycost+ b,sint=y,cos(t—O—1),
and so,

y2xcos '+ v, ]/;g-—m_;c_f sin I'= 7y, x,,
whence from (15),
Vixl=2yyxixcos '+ y2x2=4. . . . . (16)
Since
sin I'#0, |cos I'| < 1.
this is the equation of an ellipse E which evidently has the properties,

_ 2=z

A(E) =1, V(E):Q(E)_ﬁ.
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For instance, the circle Z,
e+a2=V4 . . . ... (17)
obtained for

— 7T
n=y,="4% I'= 5

is of this kind; it passes through the six points P’s.

§ 5. A property of ellipses.

Theorem 3: No ellipse is an extreme domain.
Proof: By affine invariance, it suffices to prove the assertion for the
circle Z defined in (17), i.e. for the functions

a, () =b,() =1, a,(t) = b, () = 0 identically in ¢

Denote by ¢ a small positive number, and consider the neighbouring
domain K: belonging to the functions,

a () =""4(1 +esin68), by ()=—¢(cos6t—1), |

_ (18)
a, () =0, by() =V 4 (1 + esin 6t).§

These functions satisfy both the identity (6) and the initial conditions
(7). Further, on substituting in (8’), this determinant can be developed
into a power series

v+ né’i un (t) &"

in ¢ which converges absolutely and uniformly in ¢ if ¢ is sufficiently small.
Moreover, the coefficients ua(t) are continuous functions of ¢. The
determinant is therefore positive for sufficiently small positive ¢, and so
K: is then a convex domain.

On substituting the functions (18) into the integral (10) for I(K:),
this integral becomes,

2z

I(K)y=v"27 s‘f{—a+ac056t~sin6t} dt=—""108 =2 < 0.
0

Therefore from (9),

VI(K) < % = V(Z), QK)<Q(2).

as asserted.
Coroliary: The lower bound of Q(K) extended over all convex domains

K is smaller than 23 .

V3
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§ 6. Another form of the variation problem.
Problem 1 can be expressed in many other ways as a problem in the
calculus of variations. One particularly simple formulation is as follows:
Assume that
A(K)=2,

and that the boundary C of K passes through the six points,

pi=1(2,0), p,=(1.1), ps=(—1,1), ps=—py, ps=—pP2 Ps= —P3;
this is permitted since

pr+ps=ps {pupi=2.
Denote by
Py =(x1,x3), Py ={(x1,x), P3s=(x", x7)
three points of C on the arcs p;ps, paps, psPi, respectively, which belong
to the same critical lattice of K. Then x, is a single-valued continuous
function of x; for — 1 = xy = 1 such that

xo =1 for x; = —1 and x; = 1.
The conditions,
P+ Py=P, {P,P}=2

are satisfied by chosing,
(2l 1 (2 1te 1+o
pl — <x2 "I'" 2 X1 2 xz) ’ p3 = ( % 2 X1y 2 x1> '

where o = ¢(x;) is a continuous function of x;; on identifying Py with ps
or ps, one finds that

o(—1)=—1, o(l)=1.
There are further some rather complicated conditions involving the first
and second derivatives of x5(x;) and p(x;) which express that C is
convex.
A simple calculation leads now to the integral

3 , : ,__ d
~j%~i—@— —xlxz)+4f729+29’§dxl < dﬁ)

for V(K). I omit the discussion of EULER's equations which gives the same
results as the other method.

Final remark: It seems highly probable from the convexity condition,
that the boundary of an extreme convex domain consists of line segments
and arcs of hyperbolae. So far, however, I have not succeeded in proving
this assertion.

§ 7. The relation to Problem IIL

Let K be a convex domain, and let A and 2 = 24 be two lattices such
that
4 consists of the points 2P where P belongs to A.
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Denote by K(P) the convex domain of all points
P 4 X where X belongs to K,
by
2= 2 K(P)

Pinil
the join of all domains

K (P) where P belongs to 2,

and by X'y the set of all points X = (xy, xy) of X which belong to the
square Zpg:

By MINKOWSKI 12), the following results hold:
(1) The ratio,

V(3R __ V(Zr)

V(Zr) 4R?
of the areas of 2p and Zp tends of a limit, ¢(K, A) say, as R tends to
infinity.

(2) When P and P’ run over all pairs of different elements of 4, then
no two domains K(P) and K(P’) are overlapping if and only if A is K-
admissible.

(3) If Ais K-admissible, then,

VK)_ V(K)
WED=30 T 1d @y
Since
d(4) = A(K)

for all K-admissible lattices, with equality only if K is critical, the lower
bound of q(K, A) extended over all admissible lattices 4, say q(K), is
thus given by

V (K)
4 A (K)
Hence the two problems I and Il are completely equivalent.

We see, in particular, from the results proved earlier that there exists
a convex domain (viz., an extreme domain) such that

JT
< ==
Y12
and that this domain is not an ellipse.

Mathematics Department, Manchester University.
September 29, 1946.

12) Diophantische Approximationen, 82—90. MINKOWSK! considers the case of three
dimensions; but the ideas are the same for the plane. His notation is different from the
one used here.



