Mathematics. — On the minimum determinant of a special point set. By
K. MAHLER (Manchester). (Communicated by Prof. J. G. VAN DER
CORPUT.) *)

(Communicated at the meeting of April 23, 1949.)
In a preceding paper 1) C. A. ROGERS proves the inequality

n—1
2

Ly A AK)<27 d(4)

for the successive minima 2, 2, ..., 4z of an arbitrary point set K for a
lattice A. In the present paper, I shall construct a point set for which this
formula holds with the equality sign. I prove, moreover, that there exist
bounded star bodies for which the quotient of the two sides of ROGERS's

n—1
inequality approaches arbitrarily near to 1. The constant 2 2 of ROGERS
is therefore best-possible, even in the very specialized case of a bounded
star body.
1) Let R, be the n-dimensional Euclidean space of all points
X = (xq, x3, ..., Xn)
with real coordinates. For k = 1, 2, ..., n, denote by I'« the set of all points

(91, gos eeor Gk o,... 0)
with integral coordinates satisfying 2)
gk %0, gcd(gy go ... gk) =1,
and by C¥ the set of all points

n—k

X =tP, wheret =2 " and Pel.
Further write
C=C,UCU...UC:
for the union of Cy, C,, ..., Cp, and
K=g,—C
for the set of all points in R, which do not belong to C.

Although K is not a bounded set, it is of the finite type. For the lattice
Ay consisting of the points

(Zgl' 2g2, S 2g,,_1 o gn),

*) This article has been sent to J. G. VAN DER CORPUT on February 12, 1949.

1) C. A. ROGERS, The product of the minima and the determinant of a set. These
Proceedings 52, 256—263 (1949).

2) ged(g1s g2 ..., gx) means the greatest common divisor of gy, go, ..., g, and similarly
in other cases.
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where g, go, ..., gn run over all integers, is evidently K-admissible, and so
BRKYSdA)=21, , & « « « » » (1)
Our aim is to find the exact value of A(K).

2) The origin O = (0,0, ..., 0) is an inner point of K, and K is of the
finite type; therefore 3) K possesses at least one critical lattice, the lattice
Asay. By (1),

A=Y, « « « » » » » v & {2

For k =1, 2, ..., n, let IIx be the parallelepiped

<1if1<h<n, h¥k;
| %y < on1 i =k,

By (2) and by MINKOWSKI's theorem on linear forms, each parallelepiped
IIk contains a point Qk 5~ O of A. Since A is K-admissible, and from the
definition of K, this point belongs to C; hence only the k-th coordinate of
Qx, 5k say, is different from zero and may be assumed positive:
Qc=0.....%,...,0), where 7, >0. . . . . (3)
The point
Q=Q; +Qx+ ... + Qu= (71,72 ..., 7n)
also belongs to A and therefore to C. Since 72 > 0, Q necessarily lies in
Cn. From the definition of this set, there exist then a positive number 7
and n positive integers qy, o, ..., qa such that

Nk =10 qQxk k=1,2,:is:0) « &« s« = = & 4)
3) The n lattice points
Q1. Qs .... Qn

do not necessarily form a basis of A; they are, however, linearly in-
dependent, and so they generate a sublattice of 4. Hence there exists a
fixed positive integer, q say, such that every point P of A can be written
in the form

1 n 7 U )
p——__ Q Q oo IIQ"= - » veeey —_ FnYn
q{PI 1 +t02Q:+...+p } (qplfh qP2Q2 qP q

with integral coefficients py, ps, ..., p» depending on P. For shortness, put
E=%. sothat £>0. . . . . . . . (5

By MiNKowsKI's method of reduction 4), we can now select a basis
pl'p2’ ceny pn
3) See my paper, On the critical lattices of an arbitrary point sef, Canadian Journal

of Mathematics, I (1949), 78—87.
4)  Geometrie der Zahlen (1910), § 46.
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of A such that each basis point Pi, where k =1,2,...,n, is a linear
combination of Q, Qo, ..., Qx, hence of the form

Pk:(fpkx.fpkz,....fpkk.o....,O) P (6)
where
Dk1, Pkz. - - - » Pkk are integers, and pxr >0 . . . . (7)
It may, moreover, be assumed that

0 < px: < pu: for all pairs of indices k, I satisfying 1 < k<I<n. (8)
4) Lemma: Let
Lh(x)=k§18hkxk (h=1,2,...,m)

be m linear forms in n variables x,, Xo, ..., xn, with integral coefficients
ank not all zero. Denote by

a = gcd ank
the greatest common divisor of these coefficients, and by
L(x) = ged Lr(x)
the greatest common divisor of the numbers Ly(x), where h = 1,2, ..., m.
Then there exist integers xy, Xy, ..., xn such that

L(x) = a.

Proof: By the theory of elementary divisors5), two integral uni-
modular square matrices

(bgr) and (ck1)
of m2 and n2 elements, respectively, can be found such that the product
matrix
(ben) (ank) (cxi), = (dg1) say,

of mn elements is a diagonal matrix, viz.

dee =0 if g#£1L

Put
r = min (m, n)
and
X — Ig:'l Ckl x',. Lg (x') :hgl bgh Lh (x),
so that

L ,—gdggx,gifggr.
g lx —{ 0 ifg>r

Then evidently
a = gcd (dyq, doo, ..., drr)

5) See e.g. B. L. VAN DER WAERDEN, Moderne Algebra, Vol. 2 (1931), § 106.
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and
L (x)=ged Lg (x") =ged (dyy %1, d3z X2, . . ., drr X7),
and the assertion follows on putting
X1=x2—=...—=x,=1.
5) Every point P of A can be written as
P = x,P; + x3Py + ... + xaPn
with integral coefficients xy, xs, ..., xa. Therefore P has the coordinates

P= (ELl (x). EL; (X), co oy ELn (x)), e o o o o (9)

where, for shortness,
n

Ly(x)= - Peh Xg (h=1,2,...,n). . . . . (10)

g=
Let now dk, for k =1, 2, ..., n, be the greatest common divisor of the
coefficients
per With 1=h=g=k.

From this definition, it is obvious that
di is divisible by dk41 for k=1,2,...,n—1. . . . (11)

Since the matrix of the n forms L;(x), Ly(x), ..., Ln(x) is triangular,
dir may also be defined as the greatest common divisor of the coefficients of
X1, X9, ouey Xk

in the forms
L,(x), Ly(x), ..., Lk(x).

It follows therefore, for k = 1, 2, ..., n, from the lemma in 4) that there
exist integers

Xk1» Xk2s « « « » Xkk
not all zero such that the greatest common divisor of the k numbers

k .
ghk=g§lpgnxkg h=212,,.+: %)
is equal to d«. B
The point
Rk=xk|Pl +xkzP2+...+xkk Pk#:O e e e . (12)
belongs to A and has the coordinates
Re=1Eginéganssoes&EPunr0isvss @ o &« » » » (13)

which are not all zero and satisfy the equation

ged(gie gaer oo v gr) =dk. « . . . . . (14)
Since Rk is not an inner point of K, it belongs to one of the sets
C,, C,, ..., Ck. We conclude therefore, from the definition of these sets,
that

n—k

Ede=2"  (k=L2Z....n). . . . . . (15)
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6) Next let ¢ be the positive real number for which

n—k

{ min 2 " dy=1, whence 0<¢<<& . . . (16)

There is then an index »x with 1 = % = n such that

>2”n;" for k=1,2,...,n.?
tdeq” . (17)
=2" for k== S

From these formulae (17):
n—k rz—k

de=¢(1.2" =27 d, (k=12,....n).
Hence, if k < %, then
1
dk?de/v
whence, by (11),
dv=2d, for k=1,2,....,—1. . . . . (18)

If, however, k = x, then

and (11) implies now that
dr =d. for k=x»,x+1,....,n.. . . . . (19
On combining (18) and (19), we obtaiﬁ the further inequality,
¢rdid,...dp=0"dydy...dp =21 (Cd) =2, . (20)

7) The critical lattice A we have been considering, has the basis
P, D,, ..., P, of the form (6). Its determinant is therefore

d(A)Zénpllpzz.--pnn. . . . . . . . (21)

since all factors on the right-hand side of this equation are positive.
From the definition of dx,

prk is divisible by di for k=1,2,...,n. . . . (22)
Hence by (20) and (21),
d(d)=¢&"d,d,...dn =21

whence

AKI=Z2™ & 5 &« = « = » % (23)
The same right-hand side was, by (1), also a lower bound of A(K); hence
the final result

AK)=2~. . . . . . . . . A4

is obtained.
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8) By means of the last formulae, all critical lattices of K can be
obtained as follows.

It is clear, from the previous discussion, that to any critical lattice A,
there is a unique index x with 1 = % = n such that

2d, for k=1,2,...,2—1,

d. for k=x,x+1,...,n, (24)

k —

and that further
(=& . . . . . . . . . . (25
pl1=d11 p22=dz....,pm1=dn; T (26)

for otherwise d(A) would be larger than 27-1. Since we may, if necessary,
replace & by dx£, there is no loss of generality in assuming that

d=1,. . . . . . . . . . (27
whence, by (17):

n—r

E=2n_. ., . . . . . . . (28
The basis points Py, P, ..., P, become,

n—z n—z» n—r
by=\2n P12 ™ pi2..., 2P pkk.O.....O)
with integral pxi. By (7), (8), and (24)—(28), moreover

2if k=1,2,...,x—1,
pkk:gliszx,x—}-l.....n.% (29)
and
0 fFI<I<EkSx—1,
prki =<0 if x<<I<k<hn, N ()]

Oorl if x<k<<n I<I<x—1.

It is also clear that different choices of » and of the integers p«: lead to
different critical lattices. Since for exactly

(2—1) (n—2x + 1)

coefficients pi: there is the alternative px1 = 0 or 1, there are then for
each x just

2(x—1) (n—x+1)

different critical lattices. We find therefore, on summing over x, that the
total number N (n) of different critical lattices of K is given by the formula

N(p)= 3 20-nw—s+0, . . . . . . (B)
x=1

Thus N(n) = 3.9, 33, 161, 1089, ... for n = 2, 3,4, 5, 6, ....
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9) We next determine the successive minima
VST PR

of K in the lattice A, of all points with integral coordinates.

Denote by AK, for 2 > 0, the set of all points 2X where X belongs to K.
The first minimum 2, of K for A; is defined as the lower bound of all
2> 0 such that 1K contains a point of A, different from O; if further

= 2,3,...,n, then the n-th minimum 2« of K for A, is defined as the
lower bound of all 2> 0 such that 2K contains k linearly independent
points of A.. We find these minima as follows.

Consider an arbitrary point

P=(g1.92 ...90) # O
of A;; here gy, go, ..., gn are integers. Put
d =gcd (g1, g2 ---r gn), so that d =1,
and assume, say, that
gk F0, but gky1—=...=gn=0,

for some integer k with 1 =k =n. Then P/d belongs to I'x, and tP
belongs to Ck if and only if

n—k
=27 dl,
Therefore 1K, for 2> 0, contains P if, and only if,
A=k
A>2 nd.
We deduce that if
il L
A2 2,

then AK contains no lattice point except O; if, however,
_ Bk B
2 A A2 M oy s oxowow o s (B1)
where k =1, 2, ..., n, then 2K contains just the points of the k sets
Fl' F2, — Fk.

Hence, if (31) holds, then AK contains k, and not more, linearly inde-
pendent points of A;. The successive minima of K for A; are therefore
given by the equations,
_n—k
=2 n (k=1,2,....n). . . . . . (32
By (A), this implies that

n—1

=27 d(y).. . (O

We have thus proved that in the special case of the point set K and the

n g —
_znk nzl

Mi... 3, AK)=2 k=1 " 2n-1—=2
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lattice Ay, the sign of equality holds in ROGERS’s inequality for the
successive minima of a point set 8).

10) The point set K is neither bounded nor a star body. It can, however,
be approximated by a bounded star body of nearly the same minimum
determinant and with the same successive minima, as follows.

Let ¢ be a small positive number. If X is any point different from O,
then denote by S:(X) the open set consisting of all points

tX +e(t—1)Y
where ¢ runs over all numbers with

t>1,
and Y runs over all points of the open unit sphere
|Y|<1;
evidently S¢(X) is a cone open towards infinity with vertex at X and axis
on the line through O and X. Let further Se be the closed sphere of radius
1/¢ which consists of all points Z satisfying
|Z|=1/e.

We now define K. as the set of all those points of K which belong to

Se, but to none of the cones
n—k

S. ZTX). where Xely and k=1,2,...,n.

Since only a finite number of the cones contains points of S, it is clear
that K. is a bounded star body.

Let A, 43,...,4, be the successive minima of K. for A. Since K: is a
subset of K, necessarily

B>k (k=1,2.....n).

We can in the present case replace these inequalities immediately by the
equations

=N (k=1,2,....,n) . . . . . . (33

because the n boundary points

2"7_1.0,...,0),(0,2,’7_2....,o),...,(o,o,....1).

in which the successive minima of K for A, are attained, are still boundary
points of K: provided ¢ is sufficiently small.

11) We further show that
lim A(K)=AK). . . . . . . . (349

>0

6)  See lc. 1).
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Let this equation be false. There exists then a sequence of positive numbers

€1, 82, 83, .00 (;91>52>53>--->O)
tending to zero such that

lim A (K,)
r+wo
exists, but is different from A(K). But then
lim AK: )<AK), . . . . . . . (35
r-»>w

since each K¢ is a subset of K. As a bounded star body, each K possesses
at least one critical lattice, Ar say; by the last formula, it may be assumed
that

dA)=AK,)<AK) (r=1,23..).

Moreover, all sets K¢, contain a fixed neighbourhood of the origin O as
subset. The sequence of lattices

Ay, Ao, As, ...
is therefore bounded, and so, on possibly replacing this sequence by a

suitable infinite subsequence, we may assume that the lattices Ar tend to
a limiting lattice, A say. By (35),

d(4)=lim d(4)=lim A (K,)<AK). . . . . (36)

and therefore A cannot be K-admissible. Hence there exists a point P =£ O
of A which is an inner pecint of K. This means that P, for sufficiently small
€¢>0, is also an inner point of K-.

We can now select in each lattice Ar a point P; 5% O such that the
sequence of points

pl,P2,p3,...

tends to P. Hence, for any fixed sufficiently small ¢ >0, all but a finite
number of these points are inner points of K. Now, since

&r > €rt1,

each star body K- _ is contained in all the following bodies
K. K, Ke 5....

r+1? TMEp42r TREpg3
Therefore, when r is sufficiently large, then the point P, is an inner point
of Ke , contrary to the hypothesis that A, is a critical, hence also an

admissible lattice of K: . This concludes the proof of (34).

12) The two formulae (33) and (34) imply that

n-1

lim 2} 2. .. 4, A (K)=2 % d(4,).
e=>0

Hence if d > 0 is an arbitrarily small number, then there exists a positive
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number ¢ such that the successive minima 4;, 43,...,4, of K¢ satisfy the
inequality,
n-1
_ hily...;n A(K)>(1—0)2 2 d(4,)
where A, is the lattice of all points with integral coordinates.
n-1
We have therefore proved that the constant 2 2 in ROGERS's in-
equality is best-possible even for bounded star bodies. This is very sur-
prising as this inequality applies to general sets.

Mathematics Department, Manchester University.

December 15, 1948.

Postscript (May 16, 1949): In a note in the C.R. de '’Academie des
Sciences (Paris), 228 (March 7, 1949), 796—797, Ch. Chabauty announces
the main result of this paper, but does not give a detailed proof.



