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K. MAaHLER: On Dygson’s improvement of the Thue-Siegel theorem.

(Communicated at the meeting of Octcber 29, 1949.)

Two years ago, F. J. DYSON proved the Iouow.nj result 1:
“If & is an algebraic number of degree n == 2, if w is a positive number,

and if there are infinitely many rational numbers © such that
J

l
p.q are integers, q_—=1, I& cpl E < g,

then

u= }7n

This result is stronger than that of C. L. SIEGEL 2), namely

# <. min ( +s><2Vrni
s=1,2,...,n + 1

DysoN obtained his improved inequality by means of a new method for
studying the zero points of a polynomial in two variables. As his own
proof is given in a somewhat involved form, I present in this paper &
simplified proof for his main lemma (Theorem 1). Moreover, since *"1 8
proof is purely algebraic, 1 deal always with the case of an arbitrary
constant field of characteristic zero. This restriction is a natural one, since
neither Theorem 1, nor the Thue-Siegel theorem, hold generally for fields
of positive characteristic,

P.S. Since the time earlier this vear when I wrote the present paper,
a new proof of DYSON's result has been published by TH. SCHNEIDER #).
This proof applies the deaper arithmetical propertics of divisibility and
may prove more powerful 4).

[1] In this paper, K denotes a fixed field of characteristic zero; K[x],
K[y], and K[x, y], are the rings of all polynomials in x, in y, or in x and
y, respectively, with coefficients in K; and K(x) denotes the field of all
rational functions in x with coefficients in K. The terms “dependent” and
“independent” always mean, “linearly dependent” and "linearly indepen-
dent” over K.

1) Acta Mathematica 79, 225—240 (1947).

2)  Mathematische Zeitschrift 10, 173—213 (1921).

) Mathematische Nachrichten 2, 288—295 (1949).

1) Still another proof and a generalization of Dyson's theorem was given by

A. O. GELFOND (Vestnik MGU 9, 3 (1948)), but I have not seen his paper.
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| We define differentiation in K(x) in the vsual formal way. Let
to(x), u(x), ..., u;_ (x) be a finite set of elements of K(x); the determi-

ar )
1‘ dx* Aype=0,1,...,1-1
is then called the Wronski determinant of these elements and is denoted
by
{ag, ty, v ).

One easily verifies that if ¢ (x) is any further element of K(x), then
Y } Yy

<(Pu0y(}7up...,({/ll1 1>""P <u0,u1,...,111.~1>.

Lemma 1: The Wronski deteminant of any finite number of elements
of K(x) vanishes identically in x if, and only if, these elements are depen-
dent.

Proof: If
-1
2 o u(x) =0, where c; € K
1=0
then

-1 Wy

S —o =01, 1),

A=0 dx*

whence (ug, uy, ..., u;4) = 0.

Next assume that {ug, uy, ..., u;_,) = 0; we must show that u,(x),
uy(x),...,u;,(x) are dependent. This assertion is obvious for [ — 1;
assume it has already been proved for all systems of less than [ rational
functions. We may exclude the case that uz,(x) = 0 since then the Wronski
determinant certainly vanishes. Hence

-1 R T

o (x) " (g, uy, o vy 1>—— aw T we S
_ Jdmfuy) d(ufug) o d(wfug)
dx ' dx 77 dx /=

Therefore, by the induction hypothesis, there exist [—1 elements ¢, ¢y,
., ci— of K not all zero such that

dlafu) | dwfu) L dlafe)
ol | e, =o.

T dx dx
Since the characteristic of K is zero, this implies that
u (x) i, (x) R (x) _
C SN T C T T e Cley =0
) T T T

for some element ¢, of K, whence the assertion.
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[3] Let now wuy(x), u(x), ..., 2,y (x) be a finite set of independent
polynomials in K[x], and assume that u,(x) is of the highest degree
amongst these, the degree d,, say. Then constants ¢y, ¢y, ..., ¢;—y in K can
be found such that

ul!) (x) = ¢ g (x) + wi (x) 2=1,2,...,1—1)

are all of degree less than d. Assume that u,{x) is of highest degree, d,
ceP in K

say, amongst these [ — 1 polynomials. Then constants ¢, ¢fl), ..
can be found such that the [ — 2 polynomials

u? (x) = P ul) (x) + u) (x) (A=2,3,...,1--1)

1

are all of degree less than dy. Assume that u)(x) is of highest degree,
d, say, amongst these polynomials. Then constants ¢, ¢, ...,c?  can be
found such that the I— 3 polynomials

ul? (x) = P u? (x) + 1P (x) (1=3,4,...,1—1)

P

are all of degree less than d,. Continuing in this way, we obtain a set of [
polynomials

of degrees
do, d], dz, ey ({[7]
respectively, where
dy>dy >dy > ... >di.

By the construction, each polynomial 1{?{x) differs from v, (x) only by a
linear expression inug(x), uy(x), ..., 1, | (x) with coefficients in K. Hence,
by a simple property of determinants, the identit

<

)7

(ago g, ooy ugyy = (ug, ul, oo, aED)
holds.
Lemma 2: Let uy(x), u (x),...,uq,  (x) be polynomials in K[x] of
degrees not greater than d. Then the Wronski determinant

O TR TR
is a polynomial of degree not greater than [(d —1+ 1).

Proof: It suffices to prove the assertion when the polynomials are
independent. The polynomials

o (x), al (%), ..., ul N(x),
as just constructed, have degrees

do{;:d-“o, dlgdl—']" d[ 1 d“*(l—"l)
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- 3 . % : . — Te oy g £
Furthermore, the Wronski determinant (ug, uf), ..., ll(ll~1l)> is a sum of
/! terms of the form

where iy, iy, ..., i;_; run over all permutations of 0,1, ...,/ — 1. Each such
term is of degree

{ -1

= 2l )] 2 (i D = =D,

2=0

A

whence the assertion.

[41 If P(x,y) is any polynomial in K[x, y], then write

0y P (x, ..
Pij(x, y) = lfwiial(*’tagz ((,j=0,1.2,...).

We denote by r and s two positive integers which will be fixed in the next
section, by & and 5 two elements of X, and by ¢ a non-negative real
number. We then say that P(x, i) is at least of index ¢ at (&, ) if

Pij (&) =0 for i =0,j=0, ; +{s <

in the special case ¢ == 0, there are no conditions.
This definition can be replaced by an equivalent one, as follows. Denote
by z an indeterminate. Then

P o o= o rs(iJri) .
(§+x28%n-+yz") »«ii j%optj ) xiylz N s, =P {z) say,
becomes a polynomial in z with coefficients in K[x, y]. This formula shows
that P(x, y) is at least of index ¢ at (&, ) if, and only if, P (z) is divisible
by 2z (i.e. all powers of z occurring in P{z) must have exponents not
less than rs). If we multiply several such expressions

P, {(z),P,{z),..., P {z)
which are divisible by
er:"“' erz‘l,' L, FAL Ly
respectively, then the product is divisible by
er(l’)‘,+z’/,+,..+ Pyr_y)

Therefore the following result holds:

Lemma 3: [f, for 1= 0,1, ...,1—1, the polynomial Pi(x, 1) in K[x, 1]
is at least of index ; at (&, 1), then

By (x,y) Py (x,y) ... P (x,y)
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is at lcast of index
Yo+ 4.+
at (£, 7).

[5] From now on,

r N
R(x,y) = 2 X Rux"y"3£0
h=0 k=0

is a fixed polynomial in K[x, y] of degrees not greater than r in x and s
in y; here r and s are given positive integers. We further denote by

Bo O ..\ Oy (n=0)
a finite number of rea! numbers satisfying
0< =1 (f=0,1,...,n),
and by
£ &y En and oy

two sets, each of n 4 1 elements of K, such that no two elements of the
same set are equal.

Throughout this note, we make the assumption that R(x, y) is, for
f=0,1,...,n, at least of index #; at (5, 17), so that

Rij (¢rup) =0 if if;o.j\;o,»}+!;<af,f:o,1....,n.
[6] Since

s r \
R(x,y)= 2 (2 thx”)y".
k=0 \ /=0

/

the polynomial can be written in the form

-1
R (x,y) = 72 w (x) v (),
L =0
where the u's are elements of K[x] of degrees not greater than r, the v's
are polynomials in K[y] of degrees not greater than s, and where
< [ < min (r, s) + 1.

Amongst all representations of this form, select one for which the number
[ of terms is a minimum. Then both the [ polynomials

gy (x), uy (%), ..., w1 (%),
and the [ polynomials

vo (y), vy (), ... v (1),
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are independent. For if, say, the u's are not independent, then we may
assume that u; (x) can be written as

o (x) = 2 a,u, (x)
0
where the coefficients az lie in K; therefore

12
R (x,y) :}%‘0 w, (x) {vi (y) + v (y) )

becomes a sum of only I —1 terms, contrary to the definition of L.
We conclude therefore from Lemma 1 that neither of the two Wronski
determinants

U (x) = {up (%), 1y (x),..., 01 (x)) and V(y) = {vo(y v v (y)
vanishes identically. Moreover, by Lemma 2,

U(x) is at most of degree [(r — {4 1) in x,
and

V(y) is at most of degree I[(s—I1+1) in y.

[7] Denote by (x —&;)"/, where f = 0, 1, ..., n, the highest power of

x — &y dividing U(x), and by {y—#,)*/, where f = 0, 1, ..., n, the highest
power of y — 1, dividing V' (y). Since all the &'s and also all the #'s are
different, U (x) is divisible by

1 (x—é&p)7/
f=0
and V(y) is divisible by
n )
1T (y—mns)".

/=0

Therefore, on comparing the degrees, we obtain the two inequalities,
ro+ry 4. +rn<l(r—l+l),a
50+51‘¥“ +~/z\l(5"‘l+1)‘s

[8] We next introduce the determinant
w (x, y) - ;;R/u (x, y) fx,u:O,l,...,h-h

Since

-1
2 ul) (x) o4 (y7),

R/,, (% y) =

] x! ! f
the product rule of determinants leads to the identity,

Ux) V(g ={112!.., 1= W(x,y).
so that also W (x, y) does not vanish identically.
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[9] Let f be one of the indices 0, 1, ..., n. Then, by hypothesis, R(x, )
is at least of index Gy at (&y,7/); therefore Rxu(x, y) is at least of index

max <0, O; — ; — {:)

at (&7, 7).
Now W(x,y) is a sum of ! terms of the form

FRioxy) Rijn(xy) ... Rip_ 11 (x, 1),

where iy, iy, ..., i;_; run over all permutations of 0,1, ...,{— 1. By Lemma
3, such a term is at least of index

I

I b

! TR AN ] i A
\ max<0,ﬁf~;_g>;zmax LR -
r

A=0 A=0

at (&7, 77). Since

-1 ; -1 7 —_
S L=

i—or  a—or  2r '

the whole determinant W (x, y) is therefore also at least of index

-1 \ .
2 max (0' by — g) L U

1=0 2r

at (§r,17).

[10] On the other hand, U(x)V (y) is divisible exactly by

(x—&)"T (y—up)¥,

so that

O U (X)) V(g
|
|

S:OifiZO.j20,1+1<ff+sf,
. . r S r S
ilj10x 0y’ (

T £ 0df i = = s/
From the identity
U(x) Vig)={112]... (10— Wi(x ),

we therefore deduce the relations

-1 / .
3 max (o,af—fl)—l(l D s (F=0.1,...,n).

2=0 s 2r Sor s
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On adding these n -+ 1 inequalities and the two inequalities (I), we obtain
the final inequality

3 5 max (0,5’f—§><(ﬂ+l)l(lz—;1) g Lt ) M= IED g

f=04i=0 r N

where now the unknown degrees ry and s; no longer occur.

[11] The double sum on the left-hand side of (II) is easily replaced by
a simple one. Put

Aj=min ([f;s]+1,1)  (f=0,1,...,n)

so that
[ ! gﬁf"’% if 0<1<{d4;—1
max(O,H;—~;>:« s AT
(O if A=Ay,
Therefore
= AN i Af—1>
. AT A A1
liomax (0, O s) = }éo (Hf s) y A (2«9f p ,
so that the left-hand side of (II) may be written as
Ap—1
1 Af(zaf-mlw~>.
=0 s
In order to simplify further, put
X:—i—, Xf::min(é‘f,X) (f:O,l,...,n).
Then
s Xy =min (s 05, s X) = min (s by, I)
and

1, —
Aj—1<"s Xy << Ay, hence Ay <26f——i—f;—"l) —=sX; (26— Xy).

Therefore (II) implies that

5 Xf(26’f—Xf)<(n+l)1(1_1)+l(’”1+1) +1(S-1+1)'

2 =0 2r r s

Next, the right-hand side of this inequality may be written as
I(—1 lr—1+1 —I1+1 I
D)y Le=l4D) | Lo +)(,__)+

r s
0’“‘1)(1:21))3
2r

(n-+1)

! _p =0\ _ RS T
+(;+(” n >_s<2X X445ty <S+
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Because, by [6],
[ <" min (r, s) +1<s+1,

the inequality becomes therefore

S i sy (1 S Q}’_D 2
2000 X) S 20 X <+ > )g

[12] So far, r and s have been left arbitrary. Let now o be a number
satisfying

0< o1,
and restrict r and s by the conditions,
s=2=s5 ez 2Us
=y - 20
Then
) e )

X_i<3j1<1+“2“X>' igs @Eyifs

so that

L1 € (n T'J,),S,\) \/\5 K T 0 — Y ,
2—X\s 2c ] "4\5 5 2

and our inequality takes the simple form
3 Xf(Z(gj——Xf) 240 {1 —(1—X)%.
f=
But, for f=10,1,...,n
X8 —X)— 6311 —(1—X)?} =67 (1—X)— (6;— X;)?
is not negative, since either X -~ #;, when X; — 4, and
07 (1= X)?—(0;— X =67 (1— X)* = 0;
or X << 0y, when X; = X and X = 1 and therefore
07 (1—X)?— (0~ X=X (1—6)) {6; (1 —X) + (6;—X)| =0.
IHence
=X 2 > é;- Xi(26;—X;) < (240) {1—(1—X) 2,
and since (1 — X)‘~’ <1, we obtain finally the result,

n
X6 240,
f=7
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Our discussion has thus led us to the following theorem:

Theorvem 1t Let 6, 8,, 6,,...,68, be n -2 real numbers satisfying

031, 0<CH,==1,0<# =1,...,0< 6, <1,

and let r and s be two integers satisfying
5 -5 (n— l)
S = -, r — -
-9 - 20

Let
R (x,y)£0

be a polynomial of degrees not greater than r in x and s in y, with coeffi-
! £
cients in a field I of characteristic zero; wriie

, 0"/ R (x.y) e
Rij(x,y)= i1 oxi 0yl (i,j=0,1,2,...).

Further let
&o. & and Hor His e v o Mn

be two sets, each of n + 1 elements of K, suzch that no two elements of the
same set are equal. I} now

Rij (¢ ys)=0foriz= 0, j =0, v;'-—{—r{;<{if, f=0,1,...,n

then
O+ 6. . 026

In a second paper, I shall prove an analoguous theorem for polynomials
of the form

);'R;,kx”y" (h}O,k?O,};qL’;gl).

and apply this result to the study of the continued fractions of algebraic
numbers.

Institute for Advanced Study, Princeton, N.J., U.S.A.
July 16, 1949.



