On the continued fractions of quadratic and cubic irrationals.

Memoria di Korr Mauaver (a Manchester).

Summary. « Let § be a quadratic or cubic irrational, and let g_n be the n-th approximation
n

of its regular continued fraction. It ist proved thal the grealest prime facltor of n
tends fo infinity with n.

A number of years ago, I applied a method due to TH. SCHNEIDER () to
prove the following result (*):
Let § be a real irrational algebraic nwmber ; let
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where a,, a, =1, a,=>1,.. are integers, be its conlinued fraction; and

let (I—l)i’, %, g—", ... be its approximations. Then the greatest prime factor of qx
0 1 2

(hence also that of p,) is unbounded.
A method recently given by F. J. Dysox (*) allows us now to prove the
following more special, but stronger result:
If ¢ is o quadratic or cubic real irrational number, then the greatest prime
factor of q. (hence also that of p,) fends lo infinity with n.
This result follows immediately from Theorem 3 of this paper, viz.:
If € is a real algebraic number of degree n, and if
}g ~ l <g+

has infinitely many solutions in fractions g where the greatest prime factor

of q=1 is bounded, then p< Vn.
As the method of this paper may possibly have other applications, I have
tried to give all details of the proof.

(1) «Journal f. d. r. u. ang. Mathematik -, 175 (1936).

{?) « Akad. v. Wetensch. te Amsterdam », Proc. 89, 633-640, 726.737 (1936).

{3} « Acta Mathematica », 79, 225240 (1947). See also A. O. GELFOND, « Vestnik MGU »,
9, 3 (1948) and Tu. ScHNEIDER, « Math. Nachr.», 2, 288-295 (1949).
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1. The Main Lemma.

[1] Tn order to stress the generalify of the main lemma proved in this
chapter, all polynomials occurring are allowed to have their coefficients in
an arbitrary, but fixed, field K of characteristic zero. As usual, K[x] and K[x, y]
denote then the rings of all polynomials in @, or in z and y, respectively,
with coefficients in K,

[2] Let » and s be two fixed positive integers such that

r=s,
and let R(x, ¢) be a fixed polynomial in K[, y] of the form
(1) R(x, y) mhfo kfjo Ry xxhy* 2= 0.
E—.L?s.:l
If we write
@ B, =3 pi@nt,

then, from the definition, p(x) is an element of K{x] of the form
‘ o]
3 i) = hz—() Bypxh k=0,1,2,,., s

hence is of degree not higher than

in .
[3] The polynomials
) Do), P (%), e, PolX)

need not be all independent (i.e. linearly independent over K), and some of
them may be identically zero. The following algorisimn enables us to obtain an
independent subsystem of the same rank.
Denote by
u, (%) = pr), where &k, <s,

that polynomial p,(x) which is of largest index k, and does not vanish iden-

%, (%) == Pr,(%), where k, <k,,
that polynomial p,(e) which is of largest index k, and is independent of pr(x); by

ME(.’I}) :pkz(x)f where 152 < k& y



K. Manngr: On the continued fractions of quadratic and cubic wrrationals 149

that polynomial p,(x) which is of largest index k, and is independent of p(x)
and pg(®); and continuing in the same way, finally by

Uy () = pu,_ (), where k&, < k;_,,
that polynomial p,(x) which is of largest index k,_,, is independent of
P8}y Pry(),s oovy Pr,_ (),
and has the property that all polynomials (4) are dependent on

(5) u’o(x) z_pka(w); u;(w) 310191(90), ey Uy () :pkl__t(m)'
Then

(6) 1<l=<s+1

and

(b} s=k, >k >k >k ,=0
Put

® r;\:[r(l J‘?’:)} O=0, 1,.., I—1);

s
then u,(@) is at most of degree ry; moreover,

9 Isr,<r <r,<..<r_,<r
since r = s.

[4] To simplify formulae, put

k_l:s_*“‘l, kl=_1'
Then, to every index
k=01, 2,..., s,
there exists a unique integer
x=x(k) with O0=<Cx=<C!
such that
(10) by <k <l s.

By the construction in (3],
(11)  pux) is dependent on u,(x), u (), .., u,1(x) if k, <E<FEk, 1.

(If » =0, then this means that p,(x) is identically zero). Moreover, there are
elements oy, of K such that

whk)—1
(12) Py'o) = )2 o s () k=0,1,.., 9

identically in ®. In particular, when

=k, =1, 2,.., 1)
then

(13) oy _4;@:0 it 0sA<<x—2, =1 if A=%x—1.
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[5] By (2) and (12), E(x, y) can be written as

s w{k)—1

Rz, y) = 5 U X)y®,
or

-1
(14) B, y) = 2 m@u)
where v(y) is the polynomial in y defined by
ky
(15) ’U;\(y) = 2 d/clyk (); =O, 1, veey ! - 1).
k=0
By construction, the polynomials (5) are independent. We can now add

the fact that also the polynomials

(16) vo(y)s vl('y)’ ey 'Ul~—1(y),
are independent. For v,(y) is of the form

o) = ¥ + terms in lower powers of y,

and all exponents %, are different.

{6] Denote by U(x) and V(y) the two WEoNSKT determinants

av(y)
;o T =
fey 4=0,1, 00y 3—1 = duy

()
dx*

an Uw) _—-_l

3
y Az, 1, aeey Bt

where the differential coefficients are defined in a purely formal way.
A well-known theorem states that the WRONSKI deferminant of a finite set
of independent polynomials in one variable is not identically zero: this theo-
rem remains true even when the constants field K is an arbitrary field of
characteristic zero (but not, if it is of positive characterlstlc) Therefore

18) Ux)==0, Viy==0

[7] Upper bounds for the degrees of U(x) and V(y) in « and y, respecti-
vely, are obtained as follows.
The determinant U(x) may be written as a sum of 7! terms

Z +d‘°u0(.:c)dlu @) A (%)
dee  dah 7 dwti—s

U]
where the summation extends over all permutations 4, ¢,,.., 4_, of
0, 1,..., I— 1. By the definition of wu,(x) the general term of this sum is of
degree not greater than

(ro—12) 4 r, — &)+ oo + {77, — b)),
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hence at most of degree

i—1 _
A=0
because
. . , Ww—1
b+t + .+ =04+14 .. +(01— 1),:_——-—?— .

We deduce that also U(x) is at most of degree  in x. In the same way, we can
show that V(y) is at most of degree

(20) ’U:Ek;—-

in ».
(8] The two bounds # and v contain the integers %, and », defined in [3].

Now, by (), y
el B

and so we obtain the basic inequality
(21) 71”+3)£l_- lil_—:_l)(l_'_}),
r o8 2 \r s

where these integers no longer occur on the right-hand side.

{9] From now on, let
(22) gb) Eii i g” a'nd' nb) ni’"') ﬂ"

be two systems each of % 4+ 1 numbers in K, where n is a positive integer,
and where no two numbers of the same system are equal. Let further

6,, 9,,..., 6,
be # -+ 1 real numbers satisfying
(23) 0<B8,<1 f=0, 1,.., n),
and assume that Rz, y) satisfies simultaneously the equations

oI R(x, ¥) o e s . ¢ g —
Sy m.-—_sf_o if i=0,5=0, ;+§<®,, f=0 1,.., n

=0,

(24)

[10] The two WRoNSKI determinants U(x) and V(y) can be factorized in
the forms,

@ U@=Uw et Vo=V e —m

where the exponents u, and v, are certain non-negative integers, and where
U#@) and V*y) do not vanish at any one of the points x=E, or y=1,,
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respectively. Since U(x) ist ast most of degree u in «, and V(y) is at most

of degree v in g, the fwo inequalities
»n

{26) h3] %fé “, % 'U,’S'U
f==0 =0
hold.

(11] Denote by Wix, ) the further determinant

(@) W, ) = |

We deduce, from (14), that
3R, y) 5 dUn@) & Vi)
ductony e dxt dy

5 §=0,1, oy 11

hence, by the multiplication rule for determinants,

(28) W, y)=U@x)V(y)
identically in 2 and y.

[12] Let f be one of the indices O, 1, 2,..., », and let P(x, y) be any
element in Kz, y|. If z is a further variable, then the expression,

PE, + x2®, n,+ yz"), = P«z» say,

can be written as a power series in z since, by TAYLOR’ s formula,

o oo et jﬂi_i 4]
(29) Posr 5 Sy iHg) 9P, y)

i=0 j=08!J! Emia—yT_ B=Sp

Y=nyz
This series does not vanish identically in 2z unless P(x, ) is identically zero
as function of x and y.

Hence there is a unique non-negative number © such that P«<z» is
divisible by #7®, but not by 2% for 0 > 0; if Plx, )= 0, then ® may be
taken to mean --oc. We write for shortness,

D P(x, y) = 0.
By (29), the number © has the property that
oI P(x, y)
iy |r=Ey

Y=y
vanishes for all pairs of inlegers i, j satisfying
?/20; ]20; :6“+”<5
r 8
but is different from z ro for at least one pair of infegers i, j with
320; j20, ?i—{«-z—:@.
r o8

(The second assertion has no meaning if 0 = —+ oo).
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From the definition of D P(x, y), the following relations follow imme-
diately :

-1 -1
30 D, 1 Po, )| = % D/Pite, v)
A=0 =0
and
—t
(81 D,; 2 P, y)%z min  D,P(x, y)
1=0 20,1, cruy I—1

if Pyx, ), P/, 3), ..., P;_,(x. y) is any finite set of elements of Kz, y]
From the connection with partial derivatives, it is furfher clear fhat

ity

TP, y, Y
300y 22max(0, D.Px, y) - )

S

[13] The n -+ 1 expressions
(33) DB, y) =90, (f=0,1,.., m

can be estimated in the following way.
First, by (25), we have

u
DU@=", DYy =" (=0, 1., m

whenee, by (28) and (30), we obtain the values,

Ur

_ U
34 D Wew, y)="7+"

(f=0, 1,.., n).
Secondly, we find lower bounds for the expressions (33), as follows.

From its definition as a determinant, W(x, y) may be written as a sum of 7!

terms

G HOR (w, y) Ot R(w, y) -t DE(, y)

=¥ =+
Wi, y) = Z T iy’ dahdyt 77 Qwh—dytt

(@

H

where the summation extends over all permutations 4,. 4,,.., ¢, of
0, 1..., I — 1. But, by (32) and (33),

ailAFlB(ﬁﬁ, g}
o g |
the general rules (31) and (32) imply therefore that
_— b A
(3B) DW(x, y) = min = max({), ®f____,)’
(9 A=0 r 8

where the minimum extends again over all permutations ¢,, ¢,..., 4_,
of 0, 1,..., I—1.

Annali di Matemation. Serie IV, Temo XXX 20
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Next
W A ) o A ( N 4
max(O, @r—- ; ——E)kma’X(—-‘;, @,—;—~§)—-max O, @r'—'g '*‘-;
and
“2‘1 z'_Azl(l—— 1)’
1=0 ¥ 2r
and so (35) implies the simpler inequality
5l AN l—1
(36) D,W(, )= 3 max (0, @f—§>- ( - ) (f=0,1,.., n)

Comparing now the results (34) and (36) for D, W(x, y), we obtain
1 N _u, v, (I—1) .
REO max (O, @f——g)é 7 —I"-s— -+ oy (f=0, 1,.., n).

Finally, on adding these inequalities over f=0, 1,.., », and making use
of (21) and (26), we obtain the basic inequality,

a1 X I(— 11 1) 1—1)
87 Eo l..5_:.}011131);((), @,——g)_<_l—— 5 <;+§ +n-+1)- T
(14] In order to simplify this inequality, put
!
and
(89 X;=min (0,, X), A,=min (O8)+ 1, ) =0, 1,..., n).
Then
Ay —1<Xs<<A,
so that
5 N4t AU A—1y_s
2 maX<0, 0, g).—__— k) (@, — 5) = QA,(Q(%, — )= X026, — X

the left-hand side of (37) is therefore not less than
s
2

We also need a simple estimate for the right-hand side of (37). To this
purpose, denote by & a real number satisfying

(41) 0<d<1,

and assume that » and s have the lower bounds given by

(40) f?:o X,(20, — X)).

on 5
2 on 2=+
(42) r=gss, =z =h
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Therefore, by (6),

1 6 1 5
and
1 1 I —1\ _Bf{1 mns\ b5 38

Because now the right-hand side of (37) can be written in the form

O L e A aif

it is at most equal to
43) ‘%(22{ — X1 4 9).

[15] On substituting the lower and upper bounds (40) and (43) in (37), we
obtain the very much simpler inequality,

(44) éo X,(20, — X) < (2X — XL + 5).

From this, an even simpler inequality may be obtained which contains only
the numbers ©,, but not the numbers X,.
For if, first,
X=0; then X,=6,,
and so

(45) Xf(2®f -— Xr) —_— ®f2 2 ®f2(2X — XE)’
because
0<2X —X¥=1—(1—Xy=<1

from 0 < X =<6/b.

Let, secondly,

X < @f, thus Xf: X.
Then, from the special form (1) of E(x, y), necessarily
@f‘é 1 (f: O, 1, vee s 1’&),
since otherwise R(x, y) would vanish identically. Therefore
X, (20, — X;) =X(20, — X) = 0/2X — X*)+ X {201 — 0, + (1 — 0 X},

whence
(46) X268, — X)) = 06/2X — X?).

The inequalities (44), (45), (46) together imply that

% 022X — X< ¥ X,(20,— X)<(@X — X1 +2),
=0 f=0

that is,
A7) 3 0 <145
f=0
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Our investigation has thus let to the following result:
TuuoreM 1. - Let K be an arbitrary field of characteristic zero; let & be
a real nuwmber satisfying
0<d=1;

and let v and s be fwo positive inlegers for which

5n 5

r= 3*5 S, 8 ;:’35 s

n being an arbitrary positive integer. Denote further by R(x, y) a polynomial
of ‘the form

with coefficients in K ; let
&> Eu-"x €. and Nos Nosseer Mn

be two systems of n 4 1 elements of K each such that each system has only
different elements; and let &,, ¥,,.., ¥y be n + 1 non-negative real numbers.
Then if, -for £ =20, 1,..., n, the relations

i+]
9"/ R, y) e, =0
dxtoy’ yw;;

hold for all indices i, j with '
i=0, j=0, ;+J§<a~,,

necessarily
¥l
=0
For, by the definition of D R(x, y) = 0, in [13], it is clear that
0,=> 1%, f=0,1,.., n),

and so the assertion is contained in (47).

2. Construction of the Aproximation Polynomial.

[16] In this and the next chapter, we consider polynomials F(w, g, #,...)
in one or more variables, and in most cases with integral coefficients. Such
a polynomial is said to be of degree # >0 in « if it can be written in the form

F@, y, 2, ..) == 0, 2, )" 4,4, 2 )"t 4 o -+ By, 2, ..0),

where a,(y, 2, ...), &,(¥, 2 ...), ... Gu(¥, 2, ..) are polynomials in y, 2, ... alone.
The polynomial is said to be of exact degree n>=0 if the highest coeffi-
cient a,(y, #,..) does not vanish identically in #, #,.... Every polynomial of
negative degree is identically zero.

the numerical coefficients of F(x, ¥, #, ...).
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(17) LeMMA 1. - Let
fl) =amx" +ax" ! +..+a, and glx)=>bx™ +ba® 4 .. +b,

be two polynomials with integral coefficients. Then there exist two further
polynomials

qe) = c @ " 4= ¢, ™" 4 . A Cpn and ¥() = A"t - d @2 4= o A+ dyy

with inlegral coefficients such that

a,mex O mon () = f@jgl) + rx),  [r@) < |2[FE]™ O " )]
Proof: If m <<n — 1, then the assertion is satisfied with
max(0 m—mn-+1)=0, gx)=0, rx)=gk).
Let therefore from now on
m=mn, so that s=max(0,m—n+1)=1 s—1=max (0, m —n)=0;

we assume that the assertion has already been proved for all polynomials g(x)
of degree less than m.
Write a, =0 if k> n, and put

g*(m) = m,g(x) — bomm_ﬂf () =
= (a,b, — a,byr 1 4 (ah, — a,b)x" 2 4 ... 4= (4,hn — A Dy).
Then g*(x) is of degree m — 1 and has integral coefficients satisfying
@) | <2[f@)||g@)|-

By the induction hypothesis, there exist two polynomials ¢*(x) of degree m —n—1
and r(x) of degree n — 1, both with integral coefficients and such that

a3 gHw) = f @) @) + r@), 1) | <12 [Ff@)| gt ) | < |2 [F@)|]*[g@) |-
The first formula implies that

asg(®) = f(X)g(w) + r(x) where g(x)=bx" "+ ¢*().

Since q(x) is of degree m —mn and has integral coefficients, this proves the
assertion.

[18] LEMMA 2. - Let r and s be two positive integers, and let © be a posi-
tive nuwmber. Denote by N(O) the number of solutions in imlegers h, k of the
inequalities
(1) h=0, k=0, il
Then

o 111
56 rsgN(®)£§<® +;+§>?s.



168 K, MAHLER: On the continued fractions of quadratic and cubic irrationals

Proof : For every pair of integers h, k satisfying (1), let @, be the square
of all real points (x, %) for which

h<<x<<h+1, E<y<k~+1,

0®) = U O

the join of all these squares. Every point (x, y) of Q(8) belongs to a pair of
integers h, k satisfying (1), and so
h4+1 Ek+1 1 1

x Y . )
r+§< ¥ + s <®+;‘+§’

and denote by

hence Q(B) is contained in the triangle

©.Y 1,1
©=0, y=0, —+T <O+ 4+
of area
1 ( 1 1)2
510 4+=4=)rs.
2 r 8
On the other hand, the triangle
»=0, y=0, T+¥<0
of area
! Ors
2
is clearly contained in @(8). Since @(8) is of .area
N@®©)-1,
this proves the assertion.
(19] In what follows,
flr) = a,x" 4+ a,x" ' 4+ ... + Gy, where a, =0,

is a fixed polynomial of exact degree # =2 in x with integral coefficients ;
we assume that the equation
fl)=0

has no multiple roots, but allow f(x) to be reducible in the rational field.
We denote by ¢ > 0 a fixed constant, and by » and s two positive integers
on which further on certain inequality conditions will be imposed. We further
denote by A4 a positive integer to be chosen later, and consider the sef, S4)
say, of all polynomials
P, y)= I X P}zkﬂ'}hyk
h=0 k>0

h
Rk
r 38
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with integral coefficients Py satisfying
| Plec, y)l=n}’a1§IPhk}£A.

Each coefficient P, of Plx, y) has 24 -+ 1 possible values; moreover, by

Lemma 2, P(x, y) has at least %rs coefficients. The set S(4) contains there-

fore at least

Lye
N, =@Q4+1?"
polynomials.

[20] For any two non-negative integers ¢ and j put

2P, 9)

PN, y) = 713ty

go that
Pbi(p, y)= % X (]:)(I;) Py —ty*,

h=0 k=0
;‘i‘;(i

and in particular

Pui, @)= 3 % (h>("’) Prach+h—i7,

=0 k>0 \¢/\]J
;+;<1
We see therefore that

PI(x, x) is of degree r+s in .

Upper bounds for |P%P@x, y)| and |P%P(x, x)| are obtained in the
following way:

Since
(h)g § (@)=2h$2*, (k)g § (k.)zzks?,
ZAR S J J
it is at once clear that
[PEH, )| < 2r+A.

We further find that all coefficients of P“P(x, ®) are of absolute value not
greater than

2

gr+s4 ¥ B 1 gzr-mA.!_(l -+ !’.+1) 78,

§20 k=0 2 r s
;+§<1

as follows from Lemma 2. Next for all positive integers r and s,

< 27‘-«—1’ §<< 2:—-1’
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and if we assume from now on that

r=2 and s=2/|,

we have

1+}+1£a
2 8

Hence

[P, @) | < 2 ed g 2272,

We find therefore the inequalities
[P, 2| < s 4+94 (=0, j=0)
for all polynomials Plx, %) in S(4).

[21] Divide now each polynomial P%7(x, x) by f(x). By Lemma 1, we
obfain -the formula

aomax(o, 74 8—n--1) P“’j’(m, x) = Q“’J’(m)f(w) + R“’j’(w),

where both polynomials @*%?(x) and R'Y(x) have integral coefficients, Q"/(x)
is of degree r+ s —mn, and R%7(x) is of degree n — 1, while

W = ; 9 I_f@_] ;max{@,r—l 8—p--1) WI_

Assume from now on that

r+s>=n—1=11,

and put

8|flx)| = a, 80 that a >8> 2.
We find then that

(B | <y 4red |2 [F@ | ™+ = L ar+ed
for every element Pz, y) of S(4) and for all integers =0, j = 0.

[22] From now on put

@:]/1;26 whel’90<e<§.

Then consider, for every element P, y) of S(4), the set of all remainder
polynomials

B4y where =0, j =0, ;—*—% < 6.
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By Lemma 2, there are at most

2
1(@ -+ ! + —1-) rs
2 s
such polynomials. Here

2 ——
r r r 8

is not greater than

1—e
n H
provided
(-1—+1)(2®+1+})£3.
r s r s/” n

But, by hypothesis, =2 and s=2, and further ® <<1 from the definition

of ©; hence
2@+—1—+1s2+1-+—1~=3.
r 8 2 2

The last inequality is therefore certainly satisfied if we make from now on
the additional assumption that

1, 1_=¢
r 8~ 3mn

Under this condition, we are then considering at most

(1 —eyrs
2n

such remainder polynomials R‘“7(x). Each such polynomial has n coefficients
as it is of degree n-— 1, and each coefficient has at most

2. %oc"“L"A 4+ 1 << 274
possibilities. The total system of remainder polynomials
Bui@) whore i=0, j=0, ‘+l<@
has therefore at most

1—¢

"@A+1) %, =N, say,

% tfrs (r-}-8) 1=
(2“1'—!-3 A_) n <o 2

possibilities.
[23] Determine now the integer 4 by the condition that
1—g
24 +3>a"V T =24 +1;

Annoli di Matematica, Serie IV, Tomo XXX. 21
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there is just one integer 4 of this kind. Then

1—¢ 1—s 1—¢ s
N2 a(“"’*‘s) Trs(?A + 1)—2"‘3 OCW+8)_2— (
§_> e = 4 =1,
! (24 + 1) (2A+1)2's
that is
N,>N,.

Hence amongst the at least N, polynomials in S(4) there are two different
ones,

Pi(x, y) and Py, y) say,
for which the corresponding sets of polynomials R%”@) and R®’
the identities

(x) satisfy

R = REw) it i=0, j=0, j—,+ % < 6.
Put
S(“"; y) = Pl(m’ y) . Pu(m, ?J)

Then S(x, y)==0, and this polynomial is of the form
S@, y)= 2 I Spxy*
h=0 k=0
bk
with integral coefficients satisfying

1—e
e {r-+s) -

[ S, y) | = max (| §a]) <24 <«

By applying the proof in [20] to S(x, y) instead of Pz, y), we get

i- 1—e r-}-8

3*+iS(w, y) r+s>~e~s < T P j=0,1,2, ...

{
i Towiayl| < 2

It is further clear from the definition of S(x, y) that the derivatives

a*S(x, y)
i1 ou’ oy

are divisible by f(x).

S, 4x) = where =20, =0, ;—4. ﬁ <0,

H
=y

[24] By hypothesis, the n roots of the equation f(x)=0,

Ci} Cz}'", C” say,
are all different; by [23], they satisfy the equations

Sij(;‘;f)::o it =0, j=0, ;+’§<@, f=1 2, .., n
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Let £ % be two numbers different from ¢, §,,..., {.. Let further 6, be a
positive number and & a number satisfying

0<d=<1,
and assume that
Bu 5
rz'%s, 825.

Then, by Theorem 1, the additional equations

9+ S, )

'3y’ o=t HZO for >0, j=0, z;+j<®o

s
cannot hold unless

no* 4 ;<< 1 + 9,
that is,

@§£1+8~——%®2=1+8-—n1—7&2€:2$+5.

Take for & the value
&

8=,

"

Since n= 2 and 0 < ¢ <}, this is permitted and implies that
: 9 p p

o<ag-‘;, % +4- 5 < 3Be.

The inequality assumptions for » and s take then the from

2
rzép—s, 825—%
3e B
and imply that
s=2256 r=2t6=20
3.1 3.1
2 2
and
r -.0-2-6 g 1, t_ef3 Ly _ef 3 1) _ e
FESTETTNINTE T ulons B <n(5-2-6+5><3n’
2

so that the conditions for r and s in [20], {21}, and [22], are satisfied.
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Wo therefore have obtained the following resulf:
TavoreM 2, - Let
fx) =" 4+ 08" " + oo 4+ Ay, where a, 3= 0,
be a polynomial of exact degree n = 2, with inlegral coefficients and such thai
the equation f(x) =0 has no multiple root; put
o=28 %7[

Let ¢ be a real nuwmber in the interval

1
D<e<s,

let v and s be two positive integers salisfying

bw? 5n
723—,3, §=—,
3 €

and let

o112
n

Then there exists o polynomial
S(w, Y) = X X Shkw"y“ EIEO
h=9 k=0
LS

with integral coefficients, with the following properties :

YIS, y) rts .
[ L 3 o .
a) 7Ty <o for i,7j=01, 2, ..;
A+iSx, 4) _ _ . ) i i a .
b) m}w:yzz—o for [ =0,3=0, j=0, ;+§<O,
e) If € and m are two numbers such that f(8) =0, f(n)5=0, and if
IS, ) . . . i %
170wty w:&,y:n—‘o for i=0, j=0, ;+§<@o)
then

0, < V3e.

3. Conclusion of the Proof.

[25] From now on { will denote one fixed real root of f(x), the polynomial
defined in Theorem 2. We assume that there exists a real number

n>Vn
and an infinite sequence X of rational numbers

P_P P Py
¢ ¢’ @ g
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with the following properties:

a) The numeralors p. and the denominalors q. are inlegers, and the de-
nominators g, are wnot less than 2 and tend fo infinity with r.
b) Each denominator q. is divisible at most by a given finiles et of prime

numbers P,, Py, ..., Ps.

c)

Jg..’: - g‘ < Qr_y' (r=1, 2, 3,..)

[26] The last hypothesis can be replaced by a simpler one. Denote by o
a small positive number to be chosen later, and select an integer ¢ satisfying
the inequality

(1) g = 1.

Ifg is any element of X, then the denominator ¢ may be written as

2 q = PPP§... PP
where ¢,, g,, ..., g, are non-negative integers. There are then { uniquely deter-
mined non-negative integers a,, a,,.., a, satisfying

a.—1 o
3 ¢ v <Pr<gv =1, 2., B
so that

i oo—1 t

o t z
q'l.’:], < Hl Pg’l' —-— q S qT:I
=

e,
%
Therefore

é (G, — 1) <<= éla}m
=1 T
whence by (1),

i
21a¢<<9+t = (1 4 9.

Since £, o, ¢ are fixed, and since the a’s are non-negaftive integers, this in-
equality implies that the system of infegers

(@, Oy, ey @)

has only a finite number of possibilities.
Now every infinite subsequence of I has the three properties a), b), ¢),
just as 2 itself has. Hence, without loss of generality, we may assume, from

now on, that the system ot integers (a,, @,, .., @, isf ixed for all elements 4

of 3.
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[27] We consider now the polynomial

Sz, J)"‘ 2 M Smm" k

(R
given by Theorem 2, and study its derivatives

IS (w, y)
Su(%, J) ﬂm'—@&:’ ayj

for.

(=0, j=0)

where £ and 29; are two elements of X, which will be selected later. We

can write

P P U, Uy
S
U(q q ) Vz.f

where U, and V;, are integers, and where V ;> 0.

Denote now by V the least common multiple of the products

h

g"q¢*, where =0, k=0, ;+§<1'

P /
sifg o)=2 2 sE
q Q P;LZOkk:zo (AW IAVS

Since

PP

all denominators Vj; may be put equal to V. An upper bound for V is now

obtained as follows.
By [26], ¢ and ¢’ may be written as

g=P{P§.. P}, o= P{P§..

where the g's are non-negative integers satisfying

a1 a, a,—1 9

g ¢ <Pr<qv, ¢ ¢ <Pr<g>

Then
gt =
and here

ha,r Im,r

P < g v g e = (ghg™)?

Let us now assume that g, ¢/, », and s, are connected by

loggj
@ T [ log QJ

hon-+Hkg'y phgs g hyg k!
P191+ !]1P292+ o Ptﬂﬁ‘k :

=12 .., ).
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Since & and k assume only values for which

Frs<b

we have then

k<r(1 — If)gsl-———ogq (1 - @),
s log ¢ s
whence

qhq'ﬁ - els—kjlogg-klog ¢ wem Q’S.

The least common multiple V has, however, at most the prime factors P,,
P,, .., P;; it therefore satisfies the inequality

i oo,

e 8y —

t i t
V=T ("ghe<q =" <q+7,  since 3 a. < (1 + o).
=] ]
We have so found an upper bound for V, hence also for the denomi-
nator V; of the rational number Si;(g,
that either

®) S,-j(g, 37) =0, or

(_?) This bound immediately implies

(2P L mitiops
S”(q’ q’)iz v 4 ’

(28] We must obtain also an upper bound for Si,-(g, g)' This is done

as follows.
By hypothesis, { satisfies the equation f(x)=0; we have put

a=28|f(x)].
Since f(x) has integral coefficients, it is easily seen that
24
o =8, |l i

We apply now the upper bound
42
'S'i(w; Y) ) <o
given in Theorem 2; then
48
[SyG, D <a: B 3 |gp+,
h=0 k=0

kR k
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Further
(a)v +1 . (a)6+1 1
I3 f“ z“ (?)h-”: i :
=0 k0 h=0 k=0\4 @ ) - 1
'$+f,—“<1 : :
o\ g6+
<4) - (‘1> —! 4(oz r+s
= pa— 4) ’
18 i—3
80 tha,t
1
| Si;;E, §)] < 41_.,._3“<1.{A_€_)(r+s,.

Next, by the theorem,

8,6 D=0 it i=0,k=0,"1% <0

Therefore, by TAYLOR's formula,
S, y) = 2 2 8y, O — Oy -,
20 >0
ositict
since

Sii(w, ) =0 if ;+§21.

On replacing the summation indices %, j by h, k, and differentiating repeat-
edly, this gives
\ h\(k
S, =2, 2 Su 0 (5| e - 0w — 00
h=i k=g (FAW)
(LRSS
Let us now assume that

i=0, j=0, ;+§<@0 <0,

and use Lemma 2 aud the inequalities in [20]. By these,

()=

2 X

hzi =
B o<1

and the sum

has not more than

1/, 1 1y ~
—(1 +—+~) 78 < Qs < QT+t
2 r 8
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terms. We obtain therefore the inequality

1
I Su(x’ y)l £4(~r~aa<l+;>"+')>< 2i‘+l——i > 2r+sk
where
A== max (jo—C""|y—{*).
=i, k>
o=t iias

Replace now h —4 by p and k —j by o; then

A< max (je—{pply—CP).
p=20, 620

- £,
8 @°<r+s<1

[29] In the last formulae we now put

4

D P
P == :—”
g ¥7¢

L
=Sk~
™
s

where r, s, g, and ¢/, satisfy the relation (4). Since
P N "
"”"g‘< p~, ;'”/"“C]< p,
;q P 1
we obfain
A=< max {(gig”) .
=0, o0 -
e-@°<§+§<1
The conditions

p=0, 6=0, @--@°<-f;+§< 1

imply that either
P> r(—~ Qo“g), 0=<0<(8—0)s,
or that
=0, O®—0)s<a<s.
In the first case,

Ll 1
"= q“@*&’*'(q sq') :
and in the second case,
qpq'a = q’s(@—@)o)‘
Now

<sigd

ool g] e
log g

log q

Annali di Maiematica. Serie IV, Tome XXX, 22
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hence
_r
q"éfl", q sq,217
and we find therefore that in both cases

qu’o > qT(@—-@o),
whence
A < g"O—00p,

We substitute this value in the inequality

S,.f(‘-’ , 3)} < 2417 )40
q q

and so obfain the inequality

©)

(1; JZ ) << 2 (1 + )(r_'-s)q-f(@-'@o)u for 1> 0, j2 0, ; +*'§ < @o .

[30] We now combine the last results with the assumptions made in
Theorem 2.
By the theorem, if

@ O<e< ,8 l/iiﬁ, 8, —2Ve

then at least one of the numbers

:S‘,j(z g,), where ¢=0, j =0, ;+‘§<@o

is different from zero, provided

bn? 5n
(8) TZ*;g‘s—S, 8§ = ?.

Let us then assume that (7) and (8) hold; we shall immediately satisfy (8)
by choosing s, ¢, and ¢ suitably.
Select ¢ and j such that

i=0, j=0, }‘+JE<@o
and that s,.‘,(g , ;i,):;zo, hence that by (5) and (6),

q—0-os < ‘S_j(l_f’, 1_9_') <2a<’"‘ )‘””q — (OBl
"\g g
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17

Since r > s and r 4 s > 1, evidently
1 ' l
2a(l+ _5)(”‘3) < 2?0&(; + ;whm = (2&:);*;

and so the last inequality implies that
4
9 g~ < (za);rq—-fr(@——-@o)p.

Denote, from now on, by s the integer defined by

1o —5?58 <§?+1;

then the second condition (8) is satisfied. Assume further that

logg _ 5n?
(11) @ = A

1\2
3 3¢ _ 3 3(@)

2T BT ey T

Since

we have then

—_— logq, 10gq,__.1 8?}’&_’2 i—%s(?.,_.d.aj_ >_5E3
T_Slogq “\logqg s <23 T bn) T 8e \2 25%2) 3¢
and so the second condition (8) also holds.
Next
1
Ze - 2'9 <1
B8 _ 9p2 2 ?
25n 2e 95.9% 2(_12_)
hence
T 2¢7 14¢
25%5) =lt g _—ge<'t"
whence
, ’ I3 - —4
slogg _ slogg =(1- Llog ql> ‘< (1 _ ?_i)
rlog ¢ (log q 1) sloggq 5n bn?
s —= —-llog ¢
logg s
26'3 —3
Therefore

q’—s > q—(1+s)r?,
and so the inequality (9) implies that

4
gttt < (2a)¢ g-e-eaw,
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or more simply
¢¢ < Qa):, where ¢=(0 —0)p — (1 + o)l + &)=
(12) 12 -
:( - --—2\/6);1. — (1 + o)1 +¢).

‘We put now

G = €&,

Then, as ¢ tends to zero through positive values, evidently
lim ¢ =" —
lim ¢ = 1>0,

We can thus find a sufficiently small positive number ¢ for which
¢> 0.

Having made this choice, take ¢ so large that

4
9° = (2a)s,
and then select ¢ so as fo satisfy (11). Then (12) gives a contradiction.

[31] The hypothesis in [25] is therefore not allowed, and the following
theorem has been proved:

THEOREM 3. - If { is a real algebraic number of degree n =>2; if P,
P,,.., Py is a finite set of different primes; and if the inequality

p gi -
prilgp— < (]
it
has infinitely many solutions in rational numbers P where pand q=1 are

relatively prime integers, and where q is divisible by no prime different from
P, P, .., Py: then p<<Vn.
This theorem allows of an interesting application. Let
1, 1]

Cza’e'*“"%_“’*“

a, [a’2+m,

where a,, @, =1, a,=1,.. are integers, be the regular continued fraction
for §, and let 1—7-'3, for n=0, 1, 2, ..., be the n-th approximation of this con-

1
tinned fraction. It is well known that then

Since Vi < 2 for =2 and n =3, we conclude immediately that the greatest
prime factor of qn (and of course also that of p,) fends fo infinity with
increasing n, if { is a real quadratic or cubic irrational number.




