
On the continued fractions of quadratic and cubic irrationals. 

Memoria di Kuwr  1V[Attl~m~ (a Manchester).  

S u m m a r y . .  Let ~ be a quadratic or cubic irrational, and let p n be the n-th approximation 
qn 

of its regular continued fraction. I t  ist proved that the greatest prime factor" of qa 
tends to infinity ~vith n. 

A. number  of years  ago, I applied a method due to T~. SCHTNEIDER (l) tO 
prove the following resul t  (~): 

Let ~ be a real irrational algebraic number; let 

11 

where ao, a~ __~ 1, a~ ~ l, ... are integers, be. its continued fraction ; and 

let P0 P, P~ ... be its approximations. Then the greatest prime factor of q, 
qo' q~' % '  

(hence also that  of p , )  is unbounded. 
A method recent ly  given by F. J. DYsoN (~) allows us now to prove the 

following more special, but  s t ronger  resu l t :  
I f  ~ is a quadratic or cubic real irrational number, then the greatest prime 

factor of q,  (hence also that  of p , )  tends to infinity with n. 
This result  follows immedia te ly  f rom Theorem 3 of this paper,  viz. : 
I f  ~ is a real algebraic number of degree n, and i f  

has infinitely many solutions in fractions P- where the greatest prime factor 
q 

of q ~ 1 is bounded, then ~ ~ Y n. 
As the method of this paper  may possibly have other applications,  I have 

tried to give all details of the proof. 

(l) ~ J o u r n a l  f. d .  r. u .  ang. Mathemat ik  ~, 1 7 5  (1936) .  
(~) ¢, Akad.  v. Wetenseh.  te Amste rdam % Prec.  39~ 633-64:0, 729-737 {1936). 
(3) ,~ Acta  ) [a themat ica  % 79, 2"25-240 (19~:7). See also A. O. G E L F O N D ,  ¢ Ves tn ik  MGU % 

9, 3 (1948) and  Tm SGH:NEIDER, ~( Math. ~aehr .  % 2~ $88-295 (i949). 
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1. T h e  M a i n  L e m m a .  

[I] In order to stress the generali ty of the main lemma proved in this 
chapter,  all polynomials occurr ing are allowed to have their  coefficients in 
an arbitrary, but fixed, field K of characterist ic  zero. As usual, K[x] and K[x, y] 
denote then the rings of all polynomials in x, or in ~ and y, respectively, 
with coefficients in K. 

[2] Let r and s be two fixed positive integers such that 

r ~ 8 ,  

and let R(x, y) be a fixed polynomial i~ K[x, y] of the form 

(1) R('x, y) --- >2 Z RhaxPy~ -~]Z O. 
h>O tc~O 

r ' ~ i  

If we write 

(2) R('x, y ) " -  ~ ph(x)y ~, 
k=O 

then, from the definition, ph(x) is an element of K[x] of the form 

(3) Pk@)---- Y' R1~k ~ch (k----0, t, 2, , . . ,  s). 
h = 0  

hence is of degree not higher  than 

in x. 

[3] The polynomials 
(4) po(Z), p,(x), ..., ps(x) 

need not be all independent  (i.e. l inearly independent  over K), and some of 
them may be identically zero, The following algorism enables us to obtain an 
independent subsystem of the same rank. 

Denote by 
uo(x) -~ pko(X), where k~) ~ s, 

that polynomial pk(x) which is of largest index k o and does not vanish iden- 
t ically;  such a polynomial exists since R@, y)=~l~ 0. Denote, similarly, by 

ul(x ) ~_ pkl(,x,), where k i < ko, 

that polynomial ph(x) which is of largest index k. and is independent  of pko(X) ; by 

u~(x) --p~.~(x,), where k s < k~, 
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that  polynomial  p~(x) which is of largest  iHdex k~ and is independent  of p~,~(x) 
and pa,(w); and  cont inuing in the same way) finally by 

u~_~(x) ~_-p~_~(~c), where kt_t ~ k~_~, 

that  polynomial  pa(x) which is of largest index k~_~, is independen t  of 

p~o(X), p~,(oc), ..., p~_~(x), 

and has the proper ty  that  all polynomials  (4) are dependen~ on 

(5) 
Then  

(6) 
and 
(7) 

Uo(X) = p~o(X), u,(x)  - -  p~(x) ,  ..., u~_,(x) - - p k , ( ~ ) .  

l _~ l ~ s -t-1 

s ~ k o  ~ k~ ~ k~ .. ~ kt_l ~ O .  
Put  

then ux(w) is at most of degree rx; moreover,  

(9) 0 ~ r  0 < r~ < r~ ~ ... ~ r t - i  ~ r  
since r _~_ s. 

()~ ~ 0 ,  1,..., / - - 1 ) ;  

[4] To simplify formulae,  put  

k _ l - - s - + -  l, k ~ - - - - 1 .  
Then,  to every index 

k - - 0 ,  1, 2, . . . ,  s, 

there exists a un ique  integer  

x - - z ( k )  with 0 ~ z ~ l  
such that  
(10) k~ ~ k ~ k~_l. 

By the const ruct ion in [3], 

(11) Ph(~:) is dependent on Uo(X), u~(x~),..., u~._l(x) i f  k , ~ k ~ k ~ _ l .  

(If x - - 0 ,  then this means  that  Ph(W) is identically zero). Moreover, there are 
e lements  a~x of K such that  

(12) pk~w) --~ ~ ~u~(x)  (k ~ O, t, ..., s) 

identical ly in x. In  particular~ whun 

k - -  k~_l (x ~ 1, 2, ..., 1), 
then  
(13) ~ _ 1 ~ 0  if 0 ~ ) . ~ x - - 2 ,  ---1 if ) . ~ - - 1 .  
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[5] By (2) and (12), R(x, y) can be writ ten as 

s ×(k}--t 
R(x,  y ) - - Y ,  Y~ ~k~u~(x)y ~, 

or 
l--1 

(14) R(x,  y ) =  ~A u g x ) v g y )  
~.=:0 

where vi(y) is the polynomial in y defined by 

k~ 

(15) v i ( y ) - -  E al~y ~ 
k~O 

(), - -  0, 1, ..., l -- 1). 

By coustruction, the polynomials (5) are independent.  We  can now add 
the fact that also the polynomials 

(16) Vo(y), v,(y), ..., vz_~(y) 

are independent.  For  vgy) is of the form 

v~.(y) ~ ykT. _jr. terms in lower powers of y, 

and all exponents k~, are different. 

[6] Denote by U@) and 17~) the two Wlco~sKI determinants  

t d~ugx,) ,,l=0, ; V(y)----- d~vi(y) (17) U(x)-" ~ .  1 ..... l-1 dy  ~ ~,i=0,1,...,z-l' 

where the differential  coefficients are defined in a purely  formal way. 
A wel l -known theorem states that the WRO~SKI determi~tant of a finite set 
of independent polynomials in one variable is not identically zero: this theo- 
rem remains true even when the constants field K is an arbi trary field of 
characterist ic zero (but not, if it is of positive Characteristic). Therefore 

(18) U(a~) --Ix O, V(y) =_I~- O. 

[7] Upper  bounds for the degrees of U(x) and V(y) in x and y, respecti .  
rely,  are obtained as follows. 

The determinant  U(x) may be wri t ten as a sum of l! terms 

÷ dt°uo(x) d~lu,(x) d~- ,u~_i (x)  

where the summation extends over all permutat ions  i0~ i t , . . . ,  iz-~ of 
0, 1~..., l - - 1 .  By the definition of u~.(a~) the general terra of this sum is of 
degree not greater than 

(to - -  io) + (r, - -  i~) ÷ ... + (,r~_~ - -  iz- ,) ,  
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hence at most o[ degree 

~-i l ( l -  1) 
(19) u --~ Z rz 

~.=o 2 
because 

i o + i ~ +  + i ~ _ , - - 0 + l + . . . + ( l ~ l ) ~ l ( 1 - - 1 )  
*'' 2 

We deduce that also U(x) is at most of degree u in x. In the same way, we can 
sh0w that V(y) is at most of degree 

~-1 l ( l -  1) 
(20) v = kx 

).=0 2 
in y. 

[8] The two bounds u and v contain the integers kx and r~ defined in [3]. 
Now, by (8), 

and so we obtain the basic inequali ty 

(21) u + v < 1 l(1 - -  1) + s 
r s - -  2 ' 

where these integers no longer occur on the r ight-hand side. 

[9] From now on, let 

(22) ~o, ~,~..., ~,, and ~o, ~ t , - . ' ,  ~- 

be two systems each of n +  1 numbers  in K, where n is a positive integer, 
and where no two numbers  of the same system are equal. Let  fur ther  

0o, 0 i , . . . ,  O. 
be n + i real numbers  satisfying 

(23) 0 ,< Or ~ 1 (f = 0, 1, ..., n), 

and assume that R(x, y) satisfies s imultaneously the equations 

(24) 3~+~B(x'3x~3y J y) ~ = ~ / =  0 v = . ~ ]  if i ~ O , j ~ O ,  r i+i<Or 's  f = 0 ,  1, ..., n. 

[10] The two Wnol~s]~I determinants  U(z) and V(y) can be factorized in 
the forms, 

(25) U(x)-- U*(~c) H (x - ~r)u], V(y)--  V*(y) H ( y -  ~r)% 
f--O f=O 

where the exponents uf and vf are certain non-negat ive integers, and where 
U*(x) and V*(y) do not vanish at any one of the points w----~r or y - - -~ r ,  
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respectively. Since U(x) ist ast most of degree u in x, 
of degree v in y, the two inequalit ies 

~t ~t 

(26) E u r ~ u, ~ v r ~_v 
f=o f=o 

hold. 

and V(y) is at most 

[11] Denote by W(x, y) the fut'ther determinant  

~ ~+-~R(~c, y) ~.j=o,1 ..... (27) W(x, y) == ~xt$y ~ ~=( 

We deduce, from (14), that 

~+JR(x, y) ~1 d~Ugx) d~i/\(x) 
~x~y ~ ~.=o dx ~ dy~ ' 

hence, by the multiplication rule for determinants,  

(28) W(x, y) = U(~c) V(y) 
identically in ~v and y. 

[12] Let f be one of the indices O, 1, 2, ..., n, and let P(x, y) be any 
element in K[x, y]. If  z is a fa r ther  variable, then the expression, 

P(~r  + xz', ~r + yz"), = P<< z >> say, 

can be writ ten as a power series in z since, by TAYLOR' s formula, 

(29) P,,z>>'-- ~ Z z w / 
~:0 ~=0 ~i f i  ~ x g y J  " 

Y=- ~q f 

This series does not vanish identically in z unless P(x, y) is identically zero 
as function of x and y. 

Hence there is a unique non-negat ive number  0 such that P<< z~ is 
divisible by z ~s°, ba t  not by z ~s°' for 0 ' > 0 ;  if P(x, y)~-O, then 0 may be 
taken to mean + o o .  We write for shortness, 

DrP(~, y) = O. 

By (29), the number  0 has the property that 

~+~P(x,~y~ y)~--:~J 

Y=~ f 

vanishes for all pairs of  integers i, j sat is fying 
i i 

i ~ 0 ,  j ~ 0 ,  = + -  <~0, 
r 8 

but is different from z ro for at least one pa i r  of  integers i, j with 
i i 

i ~ O ,  j ~ O ,  - 4  . . . .  O. 
r s 

(The second assertion has no meaning if (-)~-4--oo). 
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From the definition of DrP(x , y), 
diately : 

(30) D z II t~.(x, y) 
), .-:- 0 

and 

the following relations follow immc- 

l--1 

~.=0 

l l--! 1 (31) D r ~ P~(x, y) ~_ rain DrP~(x , y) 
)~=0 ),=0, 1, ..., l--1 

if Po(x, y), P~(x, y),... ,  P~_~(x. y) is any finite set of elements of K[x, y]. 
From the connection with partial derivatives, it is further clear that 

(32) D r I a~+jP(x' Y) max (0, DrP(x , i 

[13] The n + 1 expressions 

(33) DrR(x, y) = 0 r 

can be estimated in the following way. 
First, by (25), we have 

DrU(x) = uj ,  DrV(y ) = v r 
r 8 

( f - - 0 ,  1,...,  n) 

( f = O ,  1,..., n) 

whence, by (28) and (30), we obtain the values, 

(34) DtW(x,  y) = ur + vt  ( f - -  O, 1, ... n). 
r 8 

Secondly, we find lower bounds for the expressions (33), as f.ollows. 
From its definition as a determinant,  W(x, y) may be writ ten as a sum of l! 
terms 

+ ~°+°R( x, y) ~il+lR(~, y) ~-i+(~-l)R(x, y) 
W(x, y ) =  ~ - -  ~x~o~y o ~ l~y~ "'" ~x~_~y z-1 ' 

(0 

where the summation extends over all permutations i 0. i t ,  ..., i~_~ of 
0, 1 .... , l - - 1 .  But, by (32) and (33), 

D ~ + ~ R ( x ,  y)~ ( i~. ~) 
r / .  ~ ~ m a x  O, Or r s 

the general  rules (31) and (32) imply therefore that 

(35) DrW(x' Y ) ~  (~t =mmfi0max 0, Or r ' 

where the min imum extends again ever all permutations to, i~,..., it-~ 
of 0, 1,...,  l - - 1 .  

Anne~Zi di Matemat~ca. Serie IV, Tome XXX. 20 
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and  

~ext 

max (0, Or iXr ~) ~ max ( - -  iZr, Of iXr ~)--" max (0' Ot--s}--r)~t ix 

t-1 i~ l ( l -  1 )  
E 

~.=0 r 2r ' 

and so (35) implies the simpler inequality 

(36) DtW(x, , y ) ~  Y, max O, O t -  ( f - - 0 ,  1, n). 
~.=o ~r "'" ' 

Comparing now the results (34) and (36) for DfW(x,  y), we obtain 

Y. max O, O f - -  ~ uf .k .  v f  + l ( 1 - - 1 )  
~ = o  - -  r s 2r ( f - -0 ,  1,..., n). 

Finally, on adding these inequalities over f - -O,  1,..., n, and making use 
of (21) and (26), we obtain the basic inequality, 

(37) ~ ,-1 ( ~) / ( / - -1)(~ 1) / ( / - -1)  
f=o ~=o y' max 0, O r -  ~ l 2 -l- s + (n -~- 1) 2r 

[14] In order to simplify this inequality, put 

1 
Z ~ - - ,  

8 
(38) 

and 
(39) 
Then 

Xr ~ rain (Or, X), A r - -  rain ([Ors]) + 1,. l) 

A r - -  1 ~ Xrs  ~ A r 
so that 

~.=0E max 0, O r -  s]--- z=Eo or -- = Af 20 r 

the left-hand side of (37) is therefore not less than 
n 

(4O) i ~ o x t ( 2 o r -  xt). 

We also need a simple estimate for the right-hand side of (37). 
purpose, denote by 8 a real number satisfying 

(41) 0 ~ 8 ~ 1, 

and assume that r and s have the lower bounds given by 

5n 5~.  
(42) r_> ~ s, s > ~ __ 5. 

( f - -  0, 1, ..., n). 

Af~- 1 ) ~ 8  
-- 2 Xr(2Or-- Xr) ; 

To this 
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Therefore, by (6), 

l < - l < _ s +  l, 

and 1 (1 
2 - - X  s + n - - - -  

1 6 1 5 
0 < X < - 1 ÷ 5 < - 5 '  2 - - X  4 '  

l - - 1 ~  5(1 ~ _ s ) 5 ( ~  38) 
r ] 4\s + -  <-4 + 3 - - - 8 .  

Because now the right-hand side of (37) can be written in the form 

it is at most equal to 

(43) ~ ( ~ x  - -  x~)(1 + 8). 2 

[15] On substituting the lower and upper bounds (40) and (43) in (37), we 
obtain the very much simpler inequality, 

n 

(44) E Xf(2Ot - -  Xr) <- (2X - -  X'-)(I + 8). 
f=o 

From this, an even simpler inequality may be obtained which contains only 
the numbers Of, but not the numbers Xf.  

For if, first, 
X ~ O f ,  then X f - ' O r ,  

and so 
(45) 
because 

from 0 < X <- 6/5. 
Let, secondly, 

xr(2o,-- x,) : o/~ o?(2x -- x % 

0 < 2 X - - X 2 =  1 - -  (1 - -  X)~ _< I 

X < O r ,  thus X r - - X .  

Then, from the special form (1) of R(x~, y), necessarily 

Or<-- 1 

since otherwise R(w, y) would vanish identically. Therefore 

x A 2 o r - -  x j  = x ( 2 o r - -  x )  = o d ( 2 x  - -  x ' o  + x 12o,(1 - -  or) + (1 - -  o ? ) x  ~, 

whence 
(46) Xr(20 r - -  Xr) > Op(2X - -  X2). 

The inequalities (44), (45), (46) together imply that 

O~(2X -- X 2) <- ~. Xr(2O r -  Xr) <- (2X - -  X'2)(1 + 8), 
f=o f -o  

that is, 

(47) ~ o ?  <- 1 + 8. 
f=O 

( f - -0 ,  1, ..., n), 
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Our iuvestigation has thus let to the following resu l t :  
Tf[EORE~I i. - Let K be an arbitrary field o f  characteristic zero; let ~ be 

a real number sat is fy ing 
0 ~ 6 ~ 1 ;  

and let r and  s be two positive integers for which 
5n 5 

r ~ s ,  s ~ ,  

n being an arbiirary positive integer. Denote further by R(x~ y) a poly lwmial  
of  the form 

R(w, y)- -  ~ E R~h~,hy ~--[=_0 
h>O k=-4) 
h k 
~ - t - ~  _<1 

with  coefficients in  K ; let 

~.o, ~ , . . . ,  ~n and  ~o, ~ , . . . ,  ~1, 

be two systems of  n 4 -1  elements of  K each such that each system has only 
dilTerent elements; and  let °~o, ~ , . . . ,  ~,, be n ~-1 non-negative real numbers. 

Then if, .for f = O, 1, ..., n, the relations 

~+~R(x, y) ~=~'-" 0 
~x~Y~ Y=~r 

hold for all indices i, j wi th  

i ~ O ,  j~_O,  i + J  < D r  ' 
r 8 

necessarily 

f=o  

For, by the definition of DrR(x , y ) =  O r in [13], it is clear that 

O r > ~  f (f-~O, 1,..., n), 

and so the assertion is contained in (47). 

2. C o n s t r u c t i o n  o f  t h e  A p r o x l m a t i o n  P o l y n o m i a l .  

[1.6] In this and the next chapter, we consider polynomials F(~, y, ~,...) 
in one or more variables, and in most cases with integral coefficients. Such 
a polynomial is said to be of degree n ~ 0 in a~ if it can be written in the form 

F(x,  y, z, ...) --= ao(y, z, . . . )~ -1- a~(y, z, ...)x "-1 + ... -t- a~(y, z, ...), 

where ao(y, z, ...), as(y , z, ..8, ..., aN(y, z, ...) are polynomials in y, z, ... alone. 
The polynomial is said to be of exact degree n ~ 0  if the highest Coeffi- 
cient ao(y, z, ...) does not vanish identically in y, z . . . . .  Every polynomial of 
negative degree is identically zero. 

By ]F~x, y, z,..81 we denote the maximum of the absolute values of all 
the numerical  coefficients of F(w, y, z, ...). 
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[17]  L E I ~ M A  1. - L e t  

f (x )  = aox ~ + a,w ~-1 + ... +a,~ and  g(x) - -  be w" + b,x '~-1 + ... + b"* 

be two polynomials  wi th  integral coefficients. Then there exis t  two further  
po lynomia l s  

q(x) - -  COX"*-'* + c,x, "*-~-1 + ... + c,,_~ and r(x~) --- dox n-~ + d~x, '*-~ +.. . .  + d,,_~ 

wi th  integral coefficients such that 

a0max (0, "*-'+ t) g(x) - -  f (x)q(x) ~- r(x), I r(~c)] ~ l 2 [ ~  }m~ (o, ~ - ,  ~t) i g(x) l " 

Proof :  If  m_~ n - - l ,  then the assertion is satisfied with 

max(O m - - n + l ) - - O ,  q(a~)--O, 

Let  therefore from now on 

m >~ n, so that s - -  max (0, m - -  n q-- 1) ~> 1, 

r(x)  - -  g(x).  

s - -  1 = max (0, m - -  n) >~ 0 ; 

we assume that the assertion has already been proved for all polynomials g(x) 
of degree less than m. 

Wri te  a h - - 0  if k > n ,  and put  

g*(x) - -  a og(X) - -  box"*-~f(~c) = 

(aob~ - -  a,bo)x "*-I + (aob~ - -  a.~bo)x "*-2 + ... -t- (aob"* - -  ambo). 

Then g*(~) is of degree m -  1 and has integral coefficients satisfying 

I g*(~) t -< 21 f (x)I  I g(~) L • 
By the induction hypothesis, there exist two polynomials q*(x) of degree m - -  n - -1  
and r(w) of degree n - - 1 ,  both with integral coefficients and such that 

a:-~*(~)  - -  f(x)q*(~) + r(x), I r(x) [ <_ ]2 i f(x) I l'-~iU*('~) J --< t 2 [ 7 ~  I~ t g(~) I" 
The first formula implies that 

a~og(x) - -  f(x)q(x) + r(x) where q(x) ~- box '~-" .4- q*(x). 

Since q(~,) is of degree m - - n  and has integral coefficients, this proves the 
assertion. 

[18]  LEMI~IA 2. - Let  r and  s be two positive integers, and  let 0 be a posi- 
tive number. Denote by N(0) the number of solutions in integers h, k of the 
inequali t ies  

h k 
h ~ O ,  k ~ O ,  - + - < 0 .  

r 8 
(1) 

Then l)2 _lo~rs_~N(O)~ O+-+s rs. 
2 r 
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Proof : For every pair of integers h, k satisfying (1), let Qak be the square 
of all real points (x, y) for which 

and denote by 
h ~ x ~ h + l ,  k ~ y ~ k - + - l ,  

Q(O) "- [.J Qh~ 

the join of all these squares. Every point (x, y) of Q(O) belongs to a pair of 
integers h, k satisfying (1), a~d so 

0¢+__y h+l+k+l ~o_bl bl 
r 8 r 8 r 8 

hence Q(O) is contained in the triangle 

of area 

On the other hand, the triangle 

w ~ 0 ,  

of area 

1 

r 8 r 8 

7 1÷ s rs. +r 

y~O, ~-÷Y-<o 
r 8 

10~rs 
2 

is clearly contained in Q(O). Since Q(O) is of .area 

N(O). 1, 
this proves the assertion. 

[19] In what follows, 

f(x~) ~ aoX" + nix, "-~ -I- ....+- a ,  , where ao :~= 0, 

is a fixed polynomial of exact degree n~_  2 in x with integral coefficients; 
we assume that the equation 

f(~) = 0 

has no multiple roots, but allow f(x) to be reducible in the rational field. 
We denote by ~ > 0 a fixed constant, and by r and s two positive integers 

o,n which further  on certain inequality conditions will be imposed. We further 
denote by A a positive integer to be chosen later, and consider the set, S(A) 
say, of all polynomials 

P(x, y ) =  Y, y~ p ~ h y ~  
k~O tg~O 
~-h _ k k < l  
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with integral coefficients Phk satisfying 

i P(w, Y) I--" max l Phk I ~  A. 

Each coefficient Phk of P(~c, y) has 2A + 1 possible values; moreover, 

Lemma 2, P(x, y) has at least 

fore at least 

polynomials. 

by 
1 

rs coefficients. The set S(A) contains there- 

__ 1)-~ ~ h r, (2A + 

[20] For any two non-negative integers i and j put 

~+~P(x, y) 
P~,J)(x, y) ~ il  j l  ~ y ~  ' 

so that  

and in particular 

h k ~ 1 ~+ 

P(~,J~(x, x ) - - Z  E (h)(j) 
h_>O k~0 i PhkXh+a--~--J" 
h k 

We see therefore that 

P",~)(w, $) /s of degree r + s  in ~. 

Upper bounds 
following way : 

Since 

for ]Pc~,J'(x, Y) I and ]P(~,J)(w, w)] are obtained in the 

it is at once clear that 

I P",J'(x, y) l ~ 2~+'A. 

We further find that all coefficients of Pc~,~)(x, x) are of absolute value not 
greater than 

2"+'A l~ ~. l ~ 2 " + ' A .  1 + - +  rs, 
h k 

as follows" from Lemma 2. Next for all positive integers r and s, 

r ~ 2 r-i ,  s ~ 2 a-~ 
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and if we assume from now on that 

r _ > 2  and s~>2 . . . .  , 

we have 

Hence 

1 1 
1 -~-- -+-- ~ 2. 

$" 8 

I P(',.~)(x, ~c) I ~ 2r+"A • 1 2~2,._,2~_~ 
2 

We find therefore the inequalities 

1 4,.+~ A 1 P",~'(x, x) t_<~ 

for all polynomials P(x, y) in S(A). 

( i ~ 0 ,  j ~  0) 

[21] Divide now each polynomial P(*,¢~(x, x) by f(x). By Lemma 1, we 
o b t a i n  the formula 

ao m~':(°, ~8-"+l)P",J)(x, x).-= Q",J'(x)f(x) + R¢l,J'(w), 

where both polynomials Q(~,~(~c) and R",J~(x) have integral coefficients, Q(~,J)(x) 
is of degree r - k  s - - n ,  and R",J)(w) is of degree n -  1, while 

] R",J'(~) ] _< 1 2 I f(~) I t m~(°'~-IS-'+')]P",J,(x, m) l. 

Assume from now on that 

and put 

We find then that 

f + s ~ n - - l ~ l  

81 f(x) l = ~, 

l, 

1 4r+s  . Ir÷s I R u'J)(x)[ ~ A I 2If(x)[ 

so that a ~ 8 > 2 .  

1 r 4 - s  - = ~  A 

for every element  P(a~, y) of S(A) and for all integers i ~ 0, j ~ 0. 

[22] From now on put 

0 - -  1 - - 2 ~  where 0 < ~ < ~ .  
n 

Then consider, for every element P(~v, y) of S(A), the set of all remainder  
polynomials 

R ¢', J'(x) where i ~ 0, j ~ 0, / -I-- 1-" < O. 
r 8 
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By Lemma 2, there are at most 

such polynomials. Here 

is not greater than 

provided 

r s  

n 

+ 2 0 + r  n 

But, by hypothesis, r ~  2 and s>_. 2, and further 0 ~ 1 from the definition 
of 0;  hence 

2 0 + 1 + 1  1 1 
r s ' < 2 + 2 + 2  ~--3' 

The last inequality is therefore certainly satisfied if we make from now on 
the additional assumption that 

1 + 1 ~  

Under this condition, we are then considering at most 

( 1  - -  ~)rs 
2n 

such remainder polynomials R",J'(x,). Each such polynomial has n coefficients 
as it is of degree n - - 1 ,  and each coefficient has at most 

i :¢r+,A 2:¢r+~ A 2.~  + 1 ~  

possibilities. The total system of remainder polynomials 

R~,¢(~c) where i ~ 0, j ~ 0, / +3--" < 0 
r 8 

has therefore at most 

(2~"+~A) "'-~-~' < ~(2A + 1) -~-~', --/V~ say, 
possibilities. 

[23] Determine now the integer A by the condition that 

2A + 3 > ( ~ + , ) t ~  2A + 1 ; 

.4nnali di Matematica, Serie  IV ,  Tomo X X X .  21 



162 K. MAHbER: On the continued fractions of quadratic and cubic irrationals 

there is just one integer A of this kind. Then 

that is 

N~ a (~+*) ~7-~(2A + 1) -V-~s 

(2A + 1) ~ 

- -  ~>1 ,  
r(2A + 1)~ 

Hence amongst the at least N l polynomials in S(A) there are two different 
011eS~ 

P,(x, y) and P~(x, y) say, 

for which the corresponding sets of polynomials R~'~)(w) and R~'¢)(x) satisfy 
the identities 

R~'~)(x)~-Rl~'s)(~c) if i > 0 ,  j ~ 0 ,  / - + ~ < 0 .  
r 8 

Put  
S(~,, y) = P,(~c, y) - -  P~(~, y). 

Then S(x, y)-]=_O, and this polynomial is of the form 

S(x, y ) =  E ~ Sh~ ay  ~ 
h~O k~O 

h_+~<t 
9" 8 

with integral coefficients satisfying 

(r+s) ~ 3  
t v)  i = m a x  (1 J ) - <  < . 

By applying the proof in [20] to S(x, y) instead of P(x, y), we get 

~ ] - ~ b ~  < z .~ ~ < ~"+sa "+s'-7- - -  a ~ for i j ---- 0, 1, 2, .... 

It is further clear from the definition of S(w, y) that the derivatives 

- -  3 '+JS(x' ~)l i j 
S°(x) - -  it jr ~ ~yJ I~=v' where i ~> 0, j ~ 0, r + s < O, 

are divisible by f(x). 

[24] By hypothesis, the n roots of the equation f ( x ) =  O, 

~,, ~. , . . . ,  ~ say, 

are all different; by [23], they satisfy the equations 

" - +  < 0 ,  f - - 1 .  2, n. S,~(~t)=0 if i > 0 ,  j > 0 ,  i j 
- -  r 8 ""~ 
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Let {, ~7 be two numbers different  from ~ ,  ~2,-.', ~ .  Let fur ther  O+ be a 
positive number  and ~ a nu,uber satisfying 

and assume that 

0<$~i, 

5n 5 
r ~ s ,  s>_~.  

Then, by Theorem 1, the additional equations 

~+~S(x, y) = 0  for i>__0, j__>0, r s 
~x~y ~ y=~ 

cannot hold unless 

nO ~ -I- 0~0 <~ 1 ÷ 8, 

that is, 
1 - -  2~ 

0~°~1 ÷ ~ - - n O  ~ - -  1 + ~  -- n - -  

Take for ~ the value 

n 

1 
Since n ~  2 and 0 < ~ <~, this is permitted and implies that 

0 < ~ ,  2 ~ ÷ ~ < 3 ~ .  

The inequali ty assumptions for r and s take then the from 

and imply that 

5n~ s > 5n 

5.2 5.4 
- ~ >  6, r ~ , ~ . 6  

s>--'3. ~.~ 

and 
5 .2 .6  1 1 ~ / 3 

r- l -  s ~ r ~ - - - - T  n > n - -  r- -I--  n 5n-s 
3 . ~  

- -  80 

so that the conditions for r and s in [20], [21], and [22], are satisfied. 
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We therefore have obtained the following result :  
T~EORE~ 2. - Let 

f(x) - -  aox '~ -4- a~x, n-~ + ... 4- a,~ , where a o =t= O, 

be a polynomial of  exact degree n ~ 2, with integral coefficients and such that 
the equation f ( x ) ~  0 has no multiple root; put  

= 81 f(x)I. 
Let ~ be a real number in the inlerval 

1 
0 < ~ < 2 ,  

let r and s be two positive integers satisfying 

5n ~ 5n 

and let 

e) = l / 1  - 2~. 
V n 

Then there exists a polynomial 

S(x, y ) =  Y~ ~ Shkx~y ~ --[-0 
h > 0  k > 0  

With integral coefficients, with the following properties: 

' ~+~S(x, y) t ~-~-~- 
a) ~ ~ - i ~  r < a ~ for i, j = O, 1, 2,... ; 

- -  = - + - < ~ ;  b) ii j i-~-~y~ 0 for f(;) O, i ~ O, j ~ O, i 
r 8 

c) I f  ~ and ~ are two numbers such that f(~)=i=0, f(~):4=0, and 

iljI~,x,'~y~~+JS(x' y) ~=~, y=~-- 0 for i ~ O, j > O, ri 4- i s< Oo ' 

then 

i f  

Oo < V3~. 

3. C o n c l u s i o n  o f  t h e  P r o o f .  

[25] From now on ~ wil l  denote one fixed real root of f(x), the polynomial 
defined in Theorem 2. We assume that there exists a real number  

~>  Vn 
and an infinite sequence ~ of rational numbers  

/) __/)t  1)2 /)3 
q q , '  q '  q.~'"" 
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with the fol lowing p roper t i e s :  
a) The numerators p~ and  the denominators q~ are integers, and  the de. 

nominators qr are not less tha,~ 2 and tend to infinity with r. 
b) Each denominator q~. is divisible at most by a given finites et of pr ime 

numbers P~, P~, ..., Pt .  

c) ~ -- ~ < q~-~ (r = 1, 2, 3, ...). 

[26] The  last hypothesis  can be replaced by a s impler  one. Denote by 
a small  positive number  to be chosen later, and select an integer  ~ satisfying 
the inequal i ty  
(1) q~ ~ t. 

If -p is any e lement  of 21, then  the denomina tor  q may be wri t ten as 
q 

(2) q = p~p~, . . ,  p~t 

where  g~, g~, ..., g~ are non-nega t ive  integers.  There  are then t un iquely  deter- 
mined  non-nega t ive  integers  a~, a~, . . . ,  a~ satisfying 

a ,  r -- i a ,  r 

(3) q ~ < P ~  .~_ qV (z - -  1, 2) ..., t), 

so that  

Therefore  

whence  by (1), 

t a , r - - I  t a ,  r 

q~=l ~ < I I  p a r - - q ~ q ~ = t  

21 ( a ~ - - l ) < ~  E a~, 

t 

S ince t, ~, qo are fixed, and since the a ' s  are non-nega t ive  integers,  this in- 
equal i ty  implies that  the system of integers 

(a t ,  ~ , . . . ,  a t ) 

has only a finite number  of possibilities. 
Now every infini te subsequence of ~2 has the three propert ies a), b), c), 

jus t  as Z itself has. Hence,  wi thout  loss of generali ty,  we may assume, from 

now on, that  the system ot integers (a~, a S, ... as) isf ixed for all e lements  ' q 

of 21. 
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[27] We consider now the polynomial 

S(x, y ) =  Y, ~ Shabby ~ 
h~O k>O 
h k 
-+-<I 

given by Theorem 2, and study its derivatives 

~t+~S(x, yJ 
S~j(~, y) - -  i I j ! ~ ~y~ 

for  

_ P' where  p and are 
q 

can write 

p :  

~=~, Y= ~ 

(i~_O, j ~ O )  

two elements of Z which will be selected later. We 

' =V,j 
where  U~j and V(t are integers, and where V u ~ 0. 

Denote now by V the least common multiple of the products 

fla~ a, where h ~ 0, k ~ O, h --t- _k ~ 1. 
r 8 

Since 

s,[P P')= z z 
h k <  1 

all denominators V~ may be put equal to V. An upper bound for V is now 
obtained as follows. 

By [26], q and q' may be wri t ten  as 

q - -  P ~ ' P ~ "  ... P f ' ,  q ' - - -  ~ID"'IDg"~2 ... Ptg' 

where  the g's are non-negat ive  integers satisfying 

a , r - - 1  a,  r a , r - -1  g: ,  7 a,  r 

q ¢ < p ~ _ q ¥ ,  q, ~ < p T . < q , T  

r.~hgl-}-kgtl r,hhgs-Fkg1~ .,~hgt,~k r~ 
q h q , ~  ---- 1"1 -F 2 . . .  z- t 

Then 

and here  
h~,. r ka~ a, v 

Let us now assume that q, q', r, and s, are connected by 

(g) 0 I 
[ 8 1 g ~ l  

r = L ~g-qJ" 

(~ = 1, 2, ..., t). 

(': --" I, 2, ..., t). 



t~. MAttLER: On the continued fractions of quadratic and cubic irrationals 167 

Since h and k assume only values for which 

we have then 

whence 

h k 
- + - < 1 ,  
r 8 

h<r( l - -k)~sl°gq ' (1--~)  
log q \ 

qaq'a .~ eO--k) l og  q'+k log qt _ _  q,$o 

The least common multiple V has, however, at most the prime factors P~, 
P , ,  ..., Pt;  it therefore satisfies the inequality 

$ a, v 
t" a~ s ~ - -  t 

F~ II (qhq'a)T~q' ~=1~ ~ q,(l+~)~, since ~ a~ < (1  +~)~.  

We have so found an upper bound for V, hence also for the denomi- 

nator I~j of the rational number &.[P-,jkq,-- P')', . This bound immediately implies 
: L  

that either 
p l  

(5) So.( p, ~ ) - - 0 ,  or t & j ( P , P ~ ) I ~ l g >  q'-(t+~)'. 

[28] We must obtain also an upper bound for I/n[&j(a P#)I'\I , . This 
: 1 . / i  

as follows. 
By hypothesis, ~ satisfies the equation f(x)= 0; we have put 

is done 

= s I fCx) I- 

Since f(w) has integral coefficients, it is easily seen that 

We apply now the upper bound 
r-i-8 

given in Theorem 2; then 

h ~ 0  k ~ 0  
h k ~+g<l 
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Further 
~+~ 

• /a\ a+~ 

h>o_ ~>o__ ~ = o  - -  1 - -  1 
h + k  
7 ;<~ 4 4 

so that 

(:V,_I (:).+,_1 
4 8 4 8 

t s,~(~, ~)1 < 4'-"-'~ (~+~)['+''. 
Next, by the theorem, 

8~j(~, ~) = o ~f ~_>o, k_>o, - h + k < o .  
r 8 

Therefore, by TAYLOR'S formula, 

S(x, y ) =  ~ ~ S~j(~, ~ ) ( x -  ~)~(y- - ~)~, 
t~O j~O 

since 

s , j (~,  v) - o i f  i- + J- > L 
r 8 

On replacing the summation indices i, j by h, k, and differentiating repeat- 
edly, this gives 

S~(x,, y ) - - E  ~ Sa~(~, ~)(h./(~l@--~)a-~(y__~)~-j. 
h>_i k ~ j  \ "~ ] \ Y ]  

o<_-h+_~<~ 
8 

Let us now assume that 

i ~ O ,  j ~ O ,  i +  j r s < Oo < O, 

and use Lemma 2 and the inequalities in [20]. By these, 

and the sum 

has not more than 

h k <  ( 
Y~ Y~ 

h k 

1 i f  + r + s  r s ~ 2 r s ~ 2  ~+'-~ 
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terms. We obtain therefore  the inequal i ty  

where  

Is,,(~,, y)i ~4'-'-'~,('+~)'"+'~x ~'+'- '  x 2,+,~ 

k =  max  ( I x - - ~ i  a - t l y - ~ l a - ~ )  • 
It~>i, k ~ j  

t" $ 

Replace now h - - i  by ~ and k - - j  by ~; then 

k ~  max  ( l ~ - - ~ t ~ l y - - ~ l ~ ) .  
p (7 o -  oo<~+~-<t 

[29] In  the last formulae  we now put  

p l  . -P  y=~, 

where  r, s, q, and qf, satisfy the relat ion (4). Since 

we obtain 

The condit ions 

imply that  ei ther 

or that  

In  the first ease, 

and in the second case, 

Now 

), ~ max  {(qeq':)-% 
p~O, a~:O 

O--Oo<~+~<l 

~___0, ~__0,  O - - O o ~ - + - z  1 
r 8 

( °) > r  0 - - 0 o - - ~ ,  O ~ ( O - - O o ) s ,  

~ ~ 0, (O - -  Oo)s ~ a < s. 

q~q,~ ~ q,,~O-Oo). 

= [s leg q'] 
r t l ~ - g q ]  < - s -  

log q' 
log q ' 

P 
q 

p l 
, q , ~ Y ' ,  

An~c~]~ di Matematie~. Sor ie  I V ,  Tome X X X .  "22 
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hence  
r 

qr~q'S,  q ' q ' > l ,  

and we find therefore  that  in both cases 

qpq+ ~ q~(O-e.,~, 

whence  
). ~ q-r(O-Oo)~. 

We subst i tute  this value in the inequal i ty  

•Ot,' 

and so obtain the inequal i ty  

s[P P' i j 
for i ~ O ,  j ~ O ,  r + s  < O ° "  

[30] We now combine the last results  with the assumpt ions  
Theorem 2. 

By the theorem, if 

1 l / 1  m 2e (7) o < , < ~ ,  O = V  . . . . . . .  , Oo=2V~ 
n 

then  at least one of the numbers  

( P')+ s ~ j P ,  , where  i ~ O ,  j ~ O ,  

is dif ferent  f rom zero, provided 

5n ~ 5n (8) r ~ - ~  s, s ~ --., 

r 8 

Let  us then assume that (7) and (8) ho ld ;  we shall immediate ly  
by choosing s, q, and q' suitably. 

Select i and j such that  

i ~ O ,  j ~ O ,  ~ + 3  < 0 ,  
r 8 

and that S [p P') ~ q ,  ~, =4= 0, hence that by (5) ~nd (6), 

q'-(x+~)~ ~ ~J , ~ ~ 

made in 

satisfy (8) 
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Since r > s and r + s > 1, evidently 

and so the last inequali ty implies that 

(9) 

0o) 

4 
q'-l~+o), <" (2a):*q-*(O-Vo)~. 

Denote, from now on, by s the integer defined by 

5 n <  s < 5n 
- -  - - -  - { -  1 ; 

then the second condition (8) is satisfied. Assume fur ther  that 

(1U 

Since 

we have then 

3 
2 

5 ~  ~ log q > . 
log q - -  2s 

~ 5 ~  2 ~ - ~5--2-' > 1, 

and so the second condition (8) also holds. 
~ e x t  

1 
2s 2.~ 

hence 

whence 

< 1, 

2s 2 ~-' 2s ~ 
i 2~n8 ] ~ 1 + 2 5 n 8 _ 2 ~  ~ < 1 + ~ ,  

Therefore 

s log q' < s log q' 
r log q - -  _/log q' 

i ) (  
__ l1 1 log q - 

s log q' ~ 1 

( _ 1 25n3 ] < 1 + e. 

q'-" > q-(~+:-)~: 

2e~ -~ 
5n 5n 2 / 

and so the inequali ty (9) implies that 

q-~+~)tl+~)~ < (2~):~q-~-~o)e~, 
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or more simply 
4 

q~ < (2~) 7, 
(t2) 

We  put now 

where  c = (0 --  0o) ~ - -  (1 + o)(1 + ~) - -  

= ( V  l - n 2 ~  2V~)1~-(1  + ~)(1 + ~). 

Then, as s tends to zero through positive values, evidently 

lim c =  ~ 1 > 0 .  
n 

We can thus find a sufficiently small positive number  ~ for which 

c > O .  

Having made this choice, take q so large that 

q~ ~ (2a) 7, 

and then select q' so as to satisfy (11). Then (12) gives a contradiction. 

[31] The hypothesis  in [25] is therefore not allowed, and the following 
theorem has been proved:  

T~EORE~ 3. - I f  ~ is a real algebraic number of degree n ~ 2 ; i f  P , 
P~,... ,  P, is a finite set of different primes; and i f  the inequality 

has infinitely many solutions in rational numbers P- where p and q ~ 1 are 
q 

relatively prime integers, and where q is divisible by no prime different from 
P, ,  P~,.. . ,  Pt: then ~ V - n .  

This theorem allows of an interesting application. Let 

11 ,1_1+ 
= a. + I-;~ + l  a, " "  

where a0, a I ~ 1, a~ > 1,... are integers, be the regular  continued fraction 

for ~, and let P_E, for n - - O ,  1, 2, ..., be the n - th  approximation of this con- 
qn  

t inned fraction. It is well known that then 

P ~ - -  ~ < q~-~. 

Since Vn < 2 for n = 2 and n ~ 3, we conclude immediately that the greatest 
prime factor of q.  (and of course also that of p,~) tends to infinity with 
increasing n, i f  ~ is a real quadratic or cubic irrational number. 


