
FAREY SECTIONS IN THE FIELDS OF GAUSS AND EISENSTEIN 

K. MAHLER 

In the study of the approximation of irrational numbers by rational ones, one 
is led to consider certain special sets of rational numbers, the so-called Farey 
sections. If N is any positive integer, then the iVth Farey section !QN consists of 
all different fractions x = a/b for which 

| a | ^ N, \b\£N. 

We allow a or & to vanish, but exclude the case that both are zero. In particular* 
SfrN contains the improper element 

§ - » (o^O), 

where the sign of a is immaterial. 
With -pjv, we associate a subdivision of the infinite real axis into a finite number 

of subsets, as follows. 
If a/b is any element of &N , where without loss of generality (a, b) = 1, then 

the generalized distance | x\ a/b | of an arbitrary real point x from a/b is defined 
by 

a 
X'b 

= | bx - a | = | b | a 
X~b 

Next SR (a/6) is the set of all real numbers x for which | x; a/b | ^ | x; a'/bf | for 
all al/bf 6 !QN , thus which are nearest to a/b with respect to its distance func
tion. There are thus as many sets SR(a/&) as there are different elements a/b 
Of §N. 

We can arrange the elements of S&N according to increasing size and may then 
speak of consecutive elements of S&N . 

The following theorems are all well known: 

A. If a'/b', a/b, a"/b", where bf è 0, b > 0, b" ^ 0, are consecutive elements 
of $&N y then 9î# is the interval 

a + a' < < a + a" m 

b~TV = X = b + b" ' 
on the other hand, SR (1/0) consists of the points satisfying 

x g -(AT+ 1) orx è (N + 1). 

B. If b > 0, b' > 0, then a/b and ar/V are consecutive elements of $N if and 
only if 

{!) ab' - a'b = =fl; 
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(2) the median (a + a')/(6 + b') is not in )̂_v . 

C. All terms of $#+i are either in $N or are medians of consecutive terms of $&N . 

D. / / a/b is in &N, and \a/b\ _S 1, then \ x\ a/b | _ä Ì/N for x G 9î(a/6). 

From D, one easily deduces Minkowski's theorem on two linear forms. 
I shall not speak here on this classical theory, but give you instead some 

information about a very similar theory in the fields k(i) of Gauss and fc(p) of 
Eisenstein. The results in Gauss's field are rather more difficult, so that I 
shall go more into detail in this pase. 

First I make some remarks on the history of the problem. In 1940 I obtained 
empirically all the results which I am going to discuss, and I also had a good 
guess as to how to obtain proofs. But other work kept me from occupation with 
this question, and I took it up again only in 1948 and 1949, being greatly helped 
by two of my Manchester colleagues, W. Ledermann and I. W. S. Cassels. These 
two finally obtained complete proofs'for all my guesses, and it was Cassels who 
put our paper into its final form.1 

Let, say, k(i) be the Gaussian field, and let N be a positive integer; we might 
assume, for simplicity, that N is the norm of an integral element of k(i), but 
shall not do so. Denote by && the set of all simplified different fractions a/b where 
a, b are integers in k(i) not both zero of norm not greater than N. We include in 
$&N the improper point 1/0 = <» and call &N the Farey section of order N; it 
consists thus of a finite number of points in the complex plane, including the 
point at infinity. 

Let now a/b be any element of fQN, so that (a, b) = 1, that is, a and b are 
relatively prime. We associate with the point a/b a distance function 

I«; a/5 | = \bz - o | = | b | - | * - a/b |, 

giving the distance of an arbitrary complex point z from a/b; in particular 

| z; 1/0 | = 1 for all z. 

We next define di(a, b) as the set of all complex points z for which 

a 
z\ Z''b' 

forali - G §ìV. 

Then &N and the corresponding system of sets 9î(a/6), where a/b Ç $ # , are 
invariant under the mappings 

z —> ikz, z —» ik/z, z —> 2 

of the complex plane. 
The points in the complex plane are not ordered; therefore in order to study 

the sets 5R(a/6) we must use different methods than in the real case, essentially 
1 Our joint paper will soon appear in the Transactions of the Royal Society. 
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a combination of elementary topology with simple arithmetical properties of the 
Gaussian field. 

To this end we must study the boundaries and inner points of the sets 9î(a/&) 
in detail. It is clear from the definition that no two such sets have inner 
points in common; they do, however, have possibly common boundary points, 
and apart from these cover the whole plane without overlapping. 

In every boundary point z of 9î(a/&), we must evidently be equidistant from 
•a/& and a second point af/V in §N : 

a 
*>b 

lZ;b' 

that is, 

| bz — a | = | b'z — a! |. 

Hence the boundary of 3?(a/&) consists of arcs of circles or lines, and evidently 
of only a finite number of these. 

A rather lengthy study of di(a/b) leads now to the following important result: 

A. 9? (a, b) is, in the closed complex plane, a simply connected region, and is even 
a star domain with respect to the point a/b if N è No. 

(This is probably true for all N, as the figures suggest and as we have proved 
for all regions SR(a/ò) inside the unit circle.) 

We call a/b the centre of $R(a/6). We further say that two regions SR (a/6) 
and 9?(a'/ö'), and their centres a/b and ar/br, are adjacent if 8î(a/6) and 5R(a'/&') 
have boundary points (but of course no inner points) in common. The following 
necessary and sufficient condition holds then: 

B. The reduced points a/b and a'/b1 in $&N are adjacent if and only if 

(1) aV - a'b = t or = i\l + i), 

(2) not all four medians (a + ika')/(b + ihbf) are in §_v . 

In addition, the following result holds : 

C. Every point of §_v+i is either an element of S&N or can be written as the median 
of two adjacent elements of S&N . 

We next obtain the following analogue to the real case: 

D. / / a/b lies in the interior of the unit circle and if z € 5R(a/&), then 

a 
*>b 

- | bz - a | £ ^ 
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where 
0 i /2 

K = 3 - 31/2 (" > DJ-

and £/ws is best possible. 

From this theorem, we obtain a very short and simple proof of the following 
well-known result of Minkowski (also proved by E. Hlawka) : 

E. Let a, ß; y, 8 be four complex numbers of determinant a8 — ßy = 1. Then 
there exist two Gaussian integers x, y not both zero satisfying 

\<xx + ßy\ < K, 

I yx + 8y I S K, 

and here K = 21/2/(3 — 31'2) is the best possible constant. 

It was the search for a simpler proof of this theorem which led me originally 
to a study of the Farey sections in k(i). 

We continue now with the study of the regions 9î(a/6). As already mentioned, 
their boundary is formed by arcs of circles or lines. At every boundary point of 
9î(a/&) the set touches at least one similar set 9î(a/f>). We call now a node any 
point injthe complex plane where at least three sets dt(a/b) meet. The result 
as follows can then be proved: 

F . At a node, either three or four regions dt(a/b) meet. If four regions meet, they 
subtend equal angles T/2. If only three regions meet, then they either subtend angles 
w/2, 37r/4, 37r/4, or they subtend angles 2w/3, 2TT/3, 27r/3. In the first two cases, the 
node is an element of k(i) and, in fact, a median of points in §_v ; in the last case, 
the node does not lie in k(i), but in the biquadratic field k(i, (—3)1/2). 

The general region 9î(a/&) is found to be a polygon bounded by a finite number 
of arcs of circles or lines. The number of these sides can be arbitrarily large, de
pending on N. 

What we have found for k(i) applies with very little change also for Farey 
sections in Eisenstein's field k(p) where 

- 1 + ( -3) 1 / a 

P 2 ' 

but the existence of six units Tp* leads to some simplification. Theorem A is 
unchanged. In Theorem B, the conditions are now 

(1) aV - a'b = =FP* or = =FP*(1 + p); 

(2) not all medians (a + epV)/(ò + epkb'), e = T l , are in $N . 
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Theorem C is unchanged. In Theorems D and E, K may be taken equal to 1. 
In Theorem F, all nodes lie in fc(p); either four or three regions come together, 
and the angles are in the first case 

7T 2îT 7T 2% 

3 ' ~ 3 ~ ' 3 ' ì r ' 

while in the second case they are 

2TT 2TT 2TT 

3 ' 3 ' 3 or 
7T Ö7T 

3 , _ 6 ~ 5 

Ö7T 

IT" 
The methods used by us are simple and general and there seems little doubt 

that analogous, although more complicated, results hold for all imaginary quad
ratic fields. I also think that a similar theory can be developed for the quaternion 
ring. 

Another possible generalization deals with the simultaneous approximations 
•of two real numbers x, y by means of fractions a/c, b/c of the same denominator. 
We may take, say, 

*>V\ 
a b 

= c max I 
(\ a\ I b\\ 

as the distance of (x, y) from (a/c, b/c). But the theory becomes then very diffi
cult, and the regions 9î(a/c, b/c) are possibly not simply connected. A much 
simpler theory arises if 

v i /2 a b 
c c "(HM-3y 

I conclude my lecture. You will agree that the generalization of Farey sections 
to complex fields leads to pretty figures and also to results of interest both in 
geometry and in the theory of numbers. Moreover there seems little doubt that 
there is scope for much further work, even in connection with Hermite's trouble
some problem of the famous approximations of several real numbers. 
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