ON THE GENERATING TFUNGTION OF THE
INTEGERS WITH A MISSING DIGIT
By K. MAHLER

Let n be a positive integer such that no digit in its
decimal representation is equal to zero, and let N be the
set of all such integers n. It is well known that the
series

=31I/n
’ neN /
converges. ~ Whether its value ¢is a transcendental

number, or whether it can be expressed by means of
elementary transcendental functions, is, however, a
difficult question. In this note, I shall dicuss the related
series
S(R)= sz
neN
with which ¢is connected by the relation

o= le—(fldz.

0
I shall prove thatif z is an algebraic number such that
o< |z|<,
then f (z) is a transcendental number; and a similar result
holds for infinitely many similar functions.

1. The problem. Let ¢>2 be a fixed positive
integer. Every non-negative integer z can be written in a
unique way as a ¢-adic sum

n= h0+}l1 q+...+llr q"= (llo, /l, ooy h,,),
where hy, k..., h, are integers o, 1,..., q—1, and where,
in particular, #,-£ 0. For n = o0, we write 0 = (0). Let
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k be a fixed one of the integers o, 1,..., ¢—1, and let
N(k) be the set of all those integers n > o whose digits £,
are all different from £,

n= (}Zo, [l” ...9h,) > 0, o < }Zp < q—I, hp:i:k (P = 0, I, ...,7‘).
We shall study here the properties of the generating
function

Si(z) =

neN (k)
of N(k).
2. The functional equation for f,(z). It is clear
that f,(z) is majorized by the series 14+2+2°+...=(1—2) !
and so converges absolutely for [z| < 1.

There exists a functional equation between f,(z) and
/1(z%) which takes different forms for = o and for £ =-o.

I. k=o0. If n=(hy, hy ..., k) belongs to N(o),
then the following two cases arise :

(¢)) r=o0,n=hy, so that n is one of theintegers
2,000y g—1.
(it) r>1, so that n can be written as n = hy+qn’
where 1 <hy < g—1, 0" = (ky, hy,e.y ) e N(O).
Therefore

fo(z) = Z ([ Zho+ Z z"°+‘"" )
so that B e
z2—2°
Jol&) = T (1+/o(2%). (D

II. k=1,2,...,,9—1. If nbelongs to N(k), then
we can write o
n= (hoy hys ..., h,) = hy-+-qn’
where %, is one of the integers o, 1, 2,..., k—1, k+1,...,
q—1, and where

= (hyy by ... k) € N(E).
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It is now clear that

qg—1

Je() = = 3 ghte
ho=0 n’eN(k)
ho#k

whence

1-27
) = (3272 ) A ()
The functional equations (I) and (II) may be com-
bined into the one equation '

Fi= (5 =2) (ethie) (k= 0,1, g-1), (1)

where ¢, =1if k=0, and ¢,=o0 if k=1,2,...,¢—1.
In the simplest case ¢ = 2, we have

Jo(z) = El &, SoR) = 2+2/o(2%),
filz) =1 ; Si(z) = £i(2).

3. The analytic behaviour of f,(z). Itis clear from
the definition that

Solz) =z+224.. 42+,
S =142+ 244 k=1, ...,q-1),
whence, for |z [ < 1,
lim f,(2%) = 1—¢, (k=o,1,...,q—1). (2)
We further deduce from the functional equations (I)
and (LI) that

Z— z" z2—2924—-27"
f(z) I_z _z I— zq +

2—2120-2 z"” Lz
t Y 1z et (IHART),  (3)

and

A= (2 -2) (-

x (- “i =) ), k=12, . g=1).  (4)
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THEOREM 1. If the special case ¢ = 2, k = 1 is excluded,
then f,(2) is regular inside the unit circle and has this circle as
its natural boundary.

Proor. Let« and x» be two non-negative integers;
put
2mix
g=e7 .
Assume that « is prime to ¢ so that ¢ is a primitive ¢'-th
root of unity. It is obvious that for A >1 none of the
polynomials
qv--l__ q? I
Zl_zq»—zl , :_;y_l——qu"_‘ (v=1,2, .., A)
in z vanishes if z =¢. On the other hand, if the case
g =2, k=1 is excluded, then evidently '

lim f,(r) =+ (5)
as 7 tends to 1 along the real intervalo<r< 1. But
then, by 2'= 1, from (3), (4), and (5), also

linll Jr(67) = .

Now the points 6 are everywhere dense on the unit circle,
and the assertion follows at once.

CoROLLARY. Except for the case g =2, k=1, f,(2) is
a transcendental function of z.

4. The arithmetic behaviour of f,(z). Some
twenty years ago, I proved a result in which the follow-
ing theorem is contained as a special case [Mathematische

Annalen, 101 (1929), 332-366].

THEOREM 2. Let ¢ > 2 be a fixed integer, and let
F()= ) az
=0

be a power series with the following properties :
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(1) All a, are rational numbers.

(il) F(z) converges in a neighbourhood of z = o.
(iil) F(z) is not an algebraic funclion of z.

(iv) F(z) satisfies a functional equation of the form

a(2)F(2)+b(2)
PR = i Fdey
where a(z), b(z), ¢(2), d(z) are polynomials with rational co-
efficients such that A(z) = a(z) d(z2)—b(z) ¢(z) does not vanish
identically in z.  Then if 2 is an algebraic number satisfying
o<|zl<1, ARY)%+0 (v=o0,1,2,.),
F(z) is a transcendental number, but not a Liouville number.

If we apply this theorem to F(z) = f,(z), then

ae) =1, b(e) = = =5, o(2) =0, d() = =5,

a(e) =1, () = e() =, d(e) = 1=5"~2,

according as to whether k=oor1<kgg—1. We
therefore obtain the following result.

THEOREM 3. Let the case q = 2, k == 1 be excluded. If
z is an algebraic number which satisfies the inequality

o< |z|<1 Jork=o,
and the in« qualities

1—z? -
I'*zq""l_qub 1'—'}:0("317 2,...)f07 I<k<q—l3

then f,(z) is a transcendental numbe-, but not a Liouville number.
Furthermore

Siu(0) =1—¢, (k=o,1,..,q9-1),

and if k=1, 2, ..., g-1, o<|z|<1 and there is a
v=1, 2, .., such that

o< |z|<1,
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R L
I z — kqv—l =0
I___zqv—-l < - %

then f,(z2) = o.

5. The zeros of f,(z). The polynomials

)
¢k(z).=ll_zz -zt (k=1,2y...,q—1)
satisfy the functional equations
¢u(1/2) =27V, (). (6)

Let us assume that ¢,(z) has #(k) zeros of absolu‘e value
less than 1, and v(k) zeros of absolute value equal to 1.
From
bg-1(2) = 142+ 274 F2972 (q arbitrary),

$g-nl2(2) = (124 +2979F) (14+294DF) (g odd),

it is clear that
wlk)=o0if k=¢q—1,0r if k= (¢-1)/2.

Further from (6),

v(k) = v(g—k—1). (7)

THEOREM 4. Let 1 <k q—2 and k==(q—1)/2. Then
(k) >o.

Proor. The polynomial ¢,(z) is of exact degree
g—1; it suffices therefore to prove that v(k) < ¢—1. For
the product of the zeros of ¢,(z) is evidently equal to
F+1: hence if at least one zero is of abso'ute value
different from 1, then there is also at least one zero of
absolute value less than 1.

Since k= (¢—1)/2, it suffices to prove this inequality
for v(k) if

F=1,2, .., [(g-2)/2].
We first note that ¢,/z) has no multiple zeros on the unit
circle. For at such zeros,
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1-2f—2" 42t =0, g2 ket~ (k+1)2 =0,

therefore
(9—Fk)2? = 2+ -k,

whence, by |z| =1,

q—k <k+1, k>(g—1)/2
contrary to hypothesis.

Denote by

{=¢" where o< a< 2,

a zero, hence a simple zero, of
$4(2) = 142+ .42 12k

on the unit circle. Since

qg—1
2

2 P hR)="Tm -2 T,
z?__z z
necessarily
sin qe/2 — cos g—2k—1 wei sin g—2k—1 ,
sin «[2 2 2
and so
. g—2k—1
Sin q_—Q_lC___ a = 0.
2
Hence
_ onw
a=
q—2k—1’

where n is one of the integers 1, 2, ..., —2k—1 < ¢—1I.
From this the assertion v(£) < g—1 follows at once.

Let us combine the last results. We have found :
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THEOREM 5. Ifk=gq—1,0r k= (9—1)[2, then f,(2)
has no zeros inside the unit circle. If k = o, then fy(z) has the
algebraic zero z = 0, and all ils possible other zeros are trans-
cendental. In all other cases, the zeros of f,(2) are algebraic
n-mbers, and there are an infinity of them inside the unit circle.

In a similar way, the generating function of integers
with more than one missing digit, or with a missing
sequence of digits can be investigated.
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