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ON THE APPROXIMATION OF LOGARITHMS OF 
ALGEBRAIC NUMBERS 

BY K. MAHLER, F.R.S., The University, Manchester 
(Received 19 May 1952-Revised 15 September 1952) 

A new identity is given by means of which infinitely many algebraic functions approximating 
the logarithmic function In x are obtained. On substituting numerical algebraic values for the 
variable, a lower bound for the distance of its logarithm from variable algebraic numbers is found. 
As a further application, it is proved that the fractional part of the number ea is greater than a-40a 
for every sufficiently large positive integer a. 

After earlier and weaker results by Mordukhay-Boltowskoy (1923), Siegel (1929) and 
Popken (1929), I proved in 1931 (Mahler 1932) that In x, for rational x 40, + 1, is not a 
Liouville number and even not a U-number, and I determined a measure of transcendency 
for such logarithms. Up to now this measure has not been improved, although Fel'dman 
(195 i) recently proved a very general related inequality for the logarithms of arbitrary 
algebraic numbers. 

In this paper, I once more study the question of approximations to In x. The new work is 
based on a simple system of identities I found a year ago. These are of the form 

m 
,I Ahk(x) (lnx)k = Rh(X) (h - O, 1, ...,m), (A) 

k=O 

where the A's are polynomials of degree not greater than n with integral coefficients and of 
determinant c(x-1 )(m+ 1)n (c + 0) 

while the R's have at x =- 1 a zero of order at least (m+ 1) n. From the integral defining 
Rh(x) one easily derives upper bounds for I Ahk(x) I and | Rh(x) I. 

Let now 6+ 40, + 1, be an algebraic number which need not be a constant. On allowing 
m and n to vary, the identities (A) become infinitely many approximative algebraic equa- 
tions for ln 6 with algebraic coefficients. By means of these, it is proved in Chapter 2 that 
ln is not a U-number. In this way my old result has for the first time been extended to 
arbitrary algebraic numbers. Moreover, the new proof is much simpler than the old one. 
It is based on an idea due to Siegel (1929). It may be mentioned that the measure of 
transcendency now obtained does not contain any unknown numerical constants. 

In Chapter 3 this measure is further improved under the restrictive assumption that 
both 6 and the approximations to ln 6 are rational numbers. As an application, it is proved 
that 12a- eal I > 23-e2 

for all pairs of positive integers a and a1. 
In the last chapter, I finally apply the identities (A) to prove that 

ea - [ea] > a-40a, lnf- [lnf] >f-401nln f 

when both a and f are sufficiently large positive integers; here [x] denotes the integral 
part of x. 
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The formulae (A) may also be used to show that 

I ao+ale+... +amem I >e-m, 
when m is a positive integer tending to infinity, a0, al, ..., a, are m bounded integers not all 
zero, and c> 1 does not depend on the a's or on m. However, this result is very weak and it 
would therefore be of great interest to replace it by a better one. 

CHAPTER 1. THE APPROXIMATION FUNCTIONS 

1. Let m and n be two positive integers and x =0 and z two complex variables. We 
define xZ by xz = ezlnx, 

where In x stands for the principal value of the logarithm which is real when x is a positive 
number. We further denote by N [1, 2, ..., n] 

the least common multiple of 1, 2, ..., n, and put, for shortness, 
P-m! Nm(n!)ml-. 

Finally, let Q(z) be the polynomial 

Q(Z) - {z(z + 1) ... (z + n)}m-+. 
We study in this chapter the integrals 

P f zhxz+n 
Rh(x) = c Q(X ---- dz _(h = 0, 1, .. ., m), 

extended over the circle C in the complex z-plane of centre z 0 and arbitrary radius p 
greater than n, described in the positive direction. In the next two sections, Rh(x) will be 
evaluated in two different ways. The resulting identity will lead us to the approximation 
formulae needed in the following chapters. 

2. The rational function Q (z) - has at z = oo a zero of order (m + 1) (n + 1), and its poles 
are at points of absolute value not greater than n. The function possesses therefore a Laurent 
expansion co 

Q(z)- - E C 
K=(m+l)(n+l) 

convergent for I z I > n. The other factor, zhxz+n, of the integrand can be developed into the 
power series oo n K 

zhxz+n - Xn (l X) ZK+h 

wH=0 K! 

which converges for all z. Hence, on multiplying these two series and integrating the 
product series term by term, we obtain for Rh(x) the convergent development 

Rh (x) -Px (ln X)K-h-l 
Rh x (X) pX XK h I (h - 0, 1,..., m). 

K=(m+l)(n+l) (K- 01) . 
It shows that Rh(x) vanishes at x = 1 to the exact order 

(m+ -) (n+ L)-h-l (m+) n, 
because In x has at this point a zero of the first order. 



LOGARITHMS OF ALGEBRAIC NUMBERS 373 

3. By tlle residue theorem, Rh(x) may also be written as 
n 

Rh(x) - P r, 
A=-O 

where rA denotes the residue of the integrand 
zhxz+n 

Q(z) 
at the pole z = -A. This residue is evaluated as follows. 

Zh At z =-A, Q(z) has a zero of order m+1. Hence Sh(z) = Q(z) has at z =-A a pole of 

order not greater than m+ 1, and the other poles of this function lie at least at a distance 1 
from this point. Therefore Sh(z) can be developed into a Laurent series 

S^(z) =, y(Ah) (z+A)K 
K=-m-1 

convergent inside the circle of centre z -= -A and radius 1. On the other hand, 

z+n -= xn-A (ln x) +A 
XC=0 K! 

for all values of z. Hence, on multiplying these two series term by term, the residue rA is 
found to be equal to m (lnx) 

rA = x_xn-A (A,h) 
K==O K! 

m n (In X\K whence R(X) = P y(kh)l Xn- ( (h = O, 1 .. .,m) 
K-0 A-O K 

P n 
We therefore put Ak(x) = y() ^) Xn- (h, k 0= , ...,m), 

m 
and have Rh(X) = hk(X) (ln X)k (h = 0,1, ..., m) 

k=- 
identically in x. 

4. The functions Ahk(x) are polynomials in x, their terms of highest degree being 

/(o)1) Xn 

This term can be obtained more explicitly as follows. 
Write the Laurent series for So(z) = Q(z)-1 at z = 0 in the simpler form 

K-(Z)-1 YK 
K<-M-1 

Then, from Q(z) = {z(z + 1) ... (z + n)}m+1, 

Y-m-1 = (n!)-(m+l), 

and the coefficients y(h) of the more general function Sh(z) = hS(z) are given by 

h 0 if -m-1- K<<-m+h-2, I (0,h) J1I 
{yK h {YK-h if K)--m+h-1. 

46-2 
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It is therefore obvious that Ahk(x) is of smaller degree than n if h + k m - 1; that it is of 
exact degree n and has the highest term 

P 
(n!)-(m+ 1) Xn k! ' 

if h + k = m; and that its degree does not exceed n if h + k < m-1. 
5. The last remarks enable us to evaluate the determinant 

Aoo(x) Aol(x) ... Aom(X) 

D(x) Alo(x) All() ...( Alm(X) 

Amo(X) Aml(X) *.. Amm(X) 

If, to start with, the elements of D(x) are replaced by their highest terms 

k Y-k-1 X ' 

and the terms of lower degree omitted, we obtain a triangular determinant with elements 
0 below the diagonal h + k - m, hence equal to 

m PP k pm+l(n!) -(m+l)2 
qcII ^_.y(0, xn- -m + () 2 

k=?! Y k-1 1} 1! 2! m! x(ml) 

Therefore D(x) itself is of the form 
pm+ 1 (n!) -(m+1)2 

D (x) = T- .!2!-m! x(m+l)n +terms in lower powers of x. 

To obtain these lower terms, add to the first column of D(x) the second column times 
ln x, the third column times (ln x) 2, etc., finally, the last column times (ln x) m. By the identities 

m 
E Ahk(x) (ln x) k Rh(x) (h -:O, 0, 1, m), 

k=O 

the new first column consists then of the elements 

Ro(x), R1(x), ..., Rm(x), 
all of which, by [2], vanish at x = 1 to at least the order (m+ 1) n. Since the other elements 
of D(x) are regular at x =1, the determinant is then necessarily divisible by (x-1)(m+1)n. 
By the form of its highest term, D(x) must then be identical with 

Pm+l(n!) -(m+ 1)2 

D(x) - l ! 2! ... (x-)(m+)m! 

Hence, in particular, D(x) 40 if x=l, 
a result we shall frequently apply in later chapters. 

6. We next investigate the arithmetical form of the coefficients y(Ai)l in 

P n 
A fy\ 

1 V ,(A,hz) v-n-X Ahk(x) = ~. J-k- ^ 
kA=0 
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These coefficients were originally obtained from the Laurent expansion 

o00 

Sh(Z) = zhQ(z)-l = Y (A'h)(z+A). 
K==-m-1 

Now, for A = 0, 1, ..., n, Q(z)-1 can be written as 
A n-A 

Q(z)-1 = (z+A)-m-1 y {(z+A) }-m-1 {(Z+A) +V}-m-1, 
/~=1 v=l 

and so also as 
Q(z)- -- ( 1)A(m+l){/[!(n--A)!}-m-1 (z +-/[ 1-l n-1- 1 

)-m-l 

Further, by the definition of N as the least common multiple of 1,2, ..., n, the quotients 
N N -and -, where =l 1,2, ...,A and v = 1,2, .., n-A, 

are integers; there exist therefore integral coefficients a(' such that 
jA N -m-l n-A N --l +o 

-,u=l , < v=l V K=O 

Hence, from the product for Q (z) -1, 
Q(z)-I = (- A)A(m+l) {A!(n-A) !}-m-1 E a)i-(z+A)K-m-1. 

K=0 
On multiplying this series by 

zh {(z+A) A}h Z () (-A)h-K (z+A) 

it is evident that the coefficients y(h) can be written as 

YK ( 1) A{A!(n-h)!} m 1)( ) (-A)h-K oa(A)' N-K2 

where the summation extends over all pairs of integers K1, K2 satisfying 
0 K1 A, K2 0, K1 +K2 K= K+ +1, hence also K2< K m+l. 

In this formula {AI(-A)!}- -l (n !)- Am ) 

is a rational number the denominator of which divides (n!) m1. It follows therefore that 
(n!) m+ 1 NK+m+1 y(A,h) 

is a rational integer. In particular, all products 

(n.1ml Mm-k a+/h) (Nm -= 0,, 1, ,m k hk -1 0 1, .., 
are integers, hence even more all products 

(n!) m-+ Nm y(i) (h 
0 1,..., :)m\ -k- V= 0, 1J ...n 

Since, for k 0= O1, ..., m, k! is a divisor of m!, we obtain then the final result that all the 
(m + 1)2 polynomials 

nI n 
A^ - mNm(n!)m+l Y-A- x, -( O, , ... ,m) Ahk(X) k--.! m Y.0- A==O 

have rational integral coefficients. This property will prove of importance in the later applica- 
tions. 
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7. If p(x) ==PO Plx, P2x2 - --Pr Xr is a polynomial with arbitrary real or complex 

coefficients, then we write 

Ip(x) I -max (|p0, |i P1 , ", ) IPr ), 
and call [ p(x) I the height ofp(x). Our next aim is to find an estimate for the height of A x). 

This requires obtaining an upper bound for the Laurent coefficients y(' h) in 

when K = - -2, ..., -n-1. 
By Cauchy's theorem, 

00 

=zhQ (z)-1= h) (z + A) 
K==-m-1 

(A, h) - 1 zh dz 
2f~i3 C, Q (z) (z +A)K+I' 

where CA may be chosen as the circle of centre z -/A and radius 2, described in the positive 
direction. Since 0 < A < n and 0 < h < m, we have on this circle, 

lz|</A+I<n+l, hence zh I<(n+1)m, 
further 
because ++1 =-k-ko0 in Ahk(X). 

Next, I A / 
Q(z) = t (z+A)-,c ,U=li * 

I (Z+A)1-K- I 1, 

\ \m+-1 (zn -A 
+)m'{( ) (Z+A) m-+1 n (Z+A) +v i/-1 

so that for all points on CA, 
{1A 1m+lA n-A lm+, (2A)!Lm+1 ( 2+-21m, 

| -' (f[n 2J) (2) A^ - J) -g 2) 2+ (n-A).22n-2A 

_(2A)! (2n-2A)! (2rn)! n! 1 M14 

(2n)! n!n! A!(n-A)! 22A+(2-2A)+1 

or, what is the same, 

Put, for the moment, 

I Q(z) I {((2) (A) () n 2 2n ) 

qA (2A) (A)n (A l 0 1,..., n). 

<1 

u1 
Then qA = qn-xand qA+ 1 2A+1 

qA 2n- 2A=- i 

Therefore 

whence 

Further, since 

n-1 if < 2 

if />( @ 

qo>q > ..>qi,> and qn >qn-1 > ... > q 

min (q0, ql, ..., qn) (2qn]) ([in]) (= 2 n 

(A) <( ' (2A ) r ( 2 n ) 
and 
for all A = 0, 1, ..., n, we have 

n > t= 

q? > 
(ql[ n] )n n -- i -ffI ] n +1 

376 
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Hence, when z is on the contour CA, 
2n I2-2n-M+1 Q(z) I > +n! 2-2n-1 = ( 1+ l)-m-1 2-(m+l)(n+l)(n!)m+l. 

Therefore, from the integral, 

y(A )|< 
1 

27a(n+ l)m{(n+ l)-m-1 2-(m+l)(n+l)(n!)m+l}- =--: 2l(n+ 1l) (m+l)(n ) 

and so -(Ai) N m (n!)ml y(A)l <2m! Nm(n+ )2m+12(m+1)(n+1) 

whence, finally, 
I Ahk(x) I <m! Nm(n+ 1)2m+l 2(m+l)(n+l) (h, k O, 1, ..., m). 

In the notation of majorants, this may also be written as 

Ahk(x) < m! Nm(n+ 1)2m+l 2(m+l)(n+l)(1 +x+...+xn). 

8. We conclude this chapter by determining an upper bound for R^(x). In the integral 
for this function, P dz 

R(x) =2TIJ Q (z) 
C was assumed to be a circle in the z-plane of centre z = 0 and arbitrary radius p>n, 
described in the positive direction. In order to simplify the final result, we assume, from 
now on, that x 1 and m+ I 2 1 I 

m+1>2 [lnx], 
(m+l) n and we fix p by p (mlnx ) ' 

so that pS2n>n and p-n >p. 
On the contour C, zh [,pm, xz+n i e(pfn)llnx 

since 0 h <m. Further, on this contour, 

Q(z) Zn.(1?1 (+ -) p(m-1)(n+1){(1!2) (1 )..()} 

Since )( p)...(-p) -{( +p )(l+ 2 )...( n) 

and ( I+- 1)(+ -2)...( +p-)<exp( lpA)<exp(jP n) 

= exp < exp( 
Q(z) admits on C the lower bound 

|Q(z) | p(m+l)(n+l)exp -((m+) (n--)). 

It is therefore obvious from the integral that 

R(X) I - 2p m e(+n)llnl n (m+l)(n+ l) exp (- (m + ) (n + ))) 
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Here exp (-_n(m+l) (n+1)) = e-(n+l)lnx,' 

whence 

Rh(x) j<Ppm+l e(p+n)llnxlp-(m+l)(n+1)e(n+1)llnxl _ pe(2n+l)llnxl epIlnxlp-(m+1)2. 

On replacing now P and p by their expressions in m, n and x, we obtain the following upper 
bound for Rh(x): 

Ra(x) I<m!t Nm(n!)m+l e(2n+l)llnxl e(m+l)n ( -(mx +) n 

that is, I Rh() I m! Nm(n!)m+1 e(2n+1)lInxI (e x 1 (rn+-1)n 

9. The two inequalities 

Ahk(X) < lm! Nm(n+ 1)2m+l 2(m+1)(n+l)(1 +X- +...+Xn) 

and Rh(x) l <m! Nm(n!)m+l e(2n+l)llnxl n(e ln x)(m+), 
' /z x(M7+1) ' 

proved in the last section, can be put into a more convenient form, if we make use of the 
elementary inequality* n n n! ~en nne-n 
and of the inequality of Rossert 

N= -[1,2,..., n]<23n 

both of which hold for all positive integers. 
The inequality for I Ahk(x) takes then the form 

Ahk(X) <_ 2! 2mn(2 + 
3 

)2m+1 2(m+1)(n+l)(l -X-- ... -Xn) 

which may also be written as 

Ahk(X) <m! 2m-n(n-+ 1)2m+1 (,32)<m+-l)n (1 +x+ ... + x). 

Similarly, the upper bound for Rh(x) becomes 

Rh(X) I < m! 22mn(e,/n) m+ln(m+l)ne-(m+l)n (2n1+l)1lnxI (e_I )m+ 
and this may be put in the form 

I Rh(x) |m! 2-2n (e^/n)m+le(2+ l)lln (8e21I lnx I(m+In 
' 

/2\ / I \ v / 
^ 77m+1 I 

10. The main results of this chapter may now be formulated as follows. 

THEOREM 1. Let x be a real or complex number differentfrom 0 and 1; let ln x be the principal value 
of the logarithm; and let m and n be two positive integers of which the first one satisfies the inequality 

m+12 1lnx [. 
* The sequence al, a2, a3, ... defined by 

an= n! -(n+-) en (n= 1, 2, 3, ...) 
is easily seen to be decreasing; therefore an < a1 = e. 

t In his paper (1941) Rosser gives the result that (In N)/n assumes its maximum at n = 113 and that this 
maximum is less than 1-0389. On the other hand, 2 In 2 is greater than 1-0397. 
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Then there exist (m + 1)2 polynomials 

Ahk(X) (h, k - O, 1,..., m) 
in x of degree not greater than n, with the following properties: 

(a) The determinant Ahk( h, , I AhkX Ih, k-O, 1,..., m 
does not vanish. 

(b) Every polynomial Ahk(x) has integral coefficients such that 

Ahk(X) <m! 2m-in(n+ 1)2m+l (,32)(m+l)n (1 +x+ +...Xn). 
(c) The m + 1 functions 

m 
Rh(x) - Ahk(X) (lnx)k (h = 0, 1, ... ,m) 

k=0 
satisfy the inequalities 

Rh (x) |m! 2 n(e n)m+l e(2n+l)llnxl (IS llnx 1)(m+1)n 1'2^/1 +1 I 

CHAPTER 2. THE LOGARITHMS OF ALGEBRAIC NUMBERS 

11. The next investigations make use of the following lemma: 
THEOREM 2. Let f(x) - fo +fl x +... +f xO, where f, > 0, 

be an irreducible polynomial with integral coefficients, and let 

6, 1,) *)**' b-1 

be the roots of the equation f(x) = O. If 

g(x) -go+g1x+.. +gCx? 
is a polynomial with integral coefficients for which g(6) = 0, then 

I g(6) >{(0+ 1) 3 if lf(x)I x -1}-1. 
Proof. The hypothesis g(6) + 0 implies that also 

g(6) + 0, ..., g(6-1) +0, 
hence that the product y ---fog(6) g({1) ... g(6o-1) 
does not vanish. This product is symmetrical in 4,, ...,_ and of degree # in each of 
these roots. It is therefore a rational integer, whence 

Since, for I = 1, 2, ..., 0- 1, 
I g(6l) l < lg(x) (I+ g[+...+)lg )<ig(x) i+ (1+g), 

y admits the upper bound 

IyI [<forIg(6) JIg(x)[15-1(hI(.1--Il)) 
Now, in the equation for the 6's, 

fo +fix+ ... +x =O, 

the coefficients are in absolute value not greater than 

.f(x) 
fV 

VOL. 245. A. 47 
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Therefore, by a result of Siegel*, 

(1+ 1)0T(1 + 1)<-(+1)33 lf-(x) I 
1=1 fJ 

0-1 and so even more IT (1 ( 1 1) < (0+ 1) 3 f(x) . 

Hence 1jy < flg(~) | g(x) 0-1 ((+1) 3S f) , 
whence the assertion. 

12. Let 6 be a real or complex algebraic number different from 0 and 1, and let 

f(x) fo +flix +... +fo x, where f0 > 0, 
be an irreducible polynomial with integral coefficients of which 6 is a zero. Denote by 

q =ln6 
the principal value of the logarithm of 6 as defined in ? 1. We consider a linear form 

r ao + +al +.. + a,,i/I 
in the +- 1 powers 1, y, 2, ...5, 7 of I with integral coefficients a, al, ..., a not all zero. 
Our aim is to obtain a lower bound for r in terms of 6, the degree #, and the height 

a max (| ao , |al, '", . a, l[) 
of r. 

As in the first chapter, let m and n be two positive integers; they will be fixed later, but 
we assume from now on that m , m+1>2 

The m-f,-- 1 linear forms in 1, q, 2, ..., i m derived from r: 

r ao+alq+a2]2+ .. +a, qa, 
rr ] --a +a0 ] -.- a]2.. +a,_ 1//--a, q~+ 1 

r/m-#//_ ao r/m-ao 6 + at /m-t+ 
1 +_...+ aCm, 

are linearly independent because the matrix Q of their coefficients contains a non-zero 
minor of order m --u+ 1. For let v be the largest number for which a, + 0; then the minor 
of Q which has ay as its upper left-hand corner element is triangular and no elements in its 
main diagonal vanish. 

By the first chapter, the m + 1 linear forms 

Rh(6) AhO(6) +Ahl(6) q + ... -- +Ahm(6) 7m (h -= ,1, ..., m) 
in 1, q, I2, ..., qm are likewise independent because their determinant is not zero. It is then 
possible to select ,u of these forms, the forms 

RhI(6), Rh2(6), ..., Rh(6), 
say, where 1 < h<h2 <... <h < m, 
such that the m + 1 linear forms 

r, ra, ..., r m-o, HRl(6), R^ (6)i ... ' Rh, (6). 

Compare the proof of Hilfssatz I in Siegel's paper (I921I). 

380 
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are also independent. Hence, if A(x) denotes the determinant 

a0 a1 a2 ... ... ... al ... ... 0 
0 ao a ...... a ... 0 
* * * * * ? 

A(x) 0 0 0 ... ao al ... ... ... al, 

Ahlo(x) Ahl (X) Ah2(X) ... ... ... ... ... ... Ahm(X) 

AhlO(X) Ah,xl(X) Ah2.(X) ... ... ... ... Ahtm(X) 

then A(6) is the determinant of these linear forms, and therefore 

A() + o. 
13. The first m-b 4-+1 rows ofA(x) consist of integers, while the last ,u rows are formed by 

polynomials in x at most of degree n and with integral coefficients. Hence A(x) is itself a 
polynomial in x of degree not greater than ,in with integral coefficients. An upper bound for 
these coefficients is obtained by the following estimation. 

By theorem 1, 
Ahk(x) <A(1 +x- ... +xn), where A - m! 2m-n(n+ 1)2m+l (V/32)(m+1)n. 

Therefore, the product of any ,c of the polynomials Ahk(x) is majorized by 
A/(1 + x+ ... + xn)/. 

Here (1 +x + ... + xn)i can be written as 

(1 +x + ... + xn)t = jo+j X + *.* +j nX, 
where thej's are integers and positive. On putting x = 1, we see that 

JO+Jl + .. +J,n = (n+ 1), 
and so (1 +x+... +x) (n+ 1) (1 +x+... + xn). 

Now A(x) consists of (m +1)! terms, each of which is clearly majorized by the expression 
am-t+lA(l +x+ ... +xn)/. 

Hence A(x) < (m+ 1)! am-+ lA(n+ 1) (1 +x+ +xin), 
or, say, A(x) <Alam-1+l(1 +x+ ... +X,n), 
where A1 (m+ 1)! A(n+ 1) = (m+ 1) (m!)i+1 2(m-in)It(n+ 1)2(m+1)/4 (J32)(m+1l)/. 

Injust the same way, we can majorize the cofactors of the elements of A(x). In particular, 
denote by I0(x), P1l(x), ... , (X), F(x), ..., x) 
the cofactors of the m + 1 successive elements of the first column of A(x). A similar calculation 
to the last leads to 

(i(x) <A2am-#(l +x+ ... +xn) (i = O, 1, ...,m-,), 
where, for shortness, 

A2 = (m!) /+1 2(m-'n) (n + 1)2(m+1)/ (,/32)(m+ 1)/n, 

and also to TF/(x) < A3am-+ l(1 x+ ... +x(- 1) ) (j = 1 2 ...,), 
where A3 (m!)t 2(m-ln)(/-1)(n+ 1)2(m+ )(/#-l) (32)(m+1)t-1)n. 

47-2 
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The determinant A(x) can be expressed in terms of these cofactors. Multiply the second, 
third, ..., (m-- l)st column of A(x) by q, 2, ... 2 ym, respectively, and add to the first column. 
The new first column is then 

r, rr, ..., rim-/, Rhl(x), R^h2(X), ..., R,(X), 

and therefore, identically in x, 

i=- j=1 

14. Put now x - in the last identity and write 

f= -(x) -= max (Ifo 1, If ,i " ., If 1). 
Then, first, from theorem 2, 

I A(1 ) >{(q+ l)-1n 3Onff/n(Alam-/+l)-l}-l, 

orA I A( n I or |() A41 a-(m--,t+ 1)(0-1) 

where 

A4 = (0 1)/n 31#'nf'n(m- 1)- 1 (rm!)(/+ l)(-1) 2(m--n)/-l)(l- + 1)2(m+l)/(- 1) (J32)(m+1)/(O-1)n. 

Secondly, | )i() I ?A2am-IJ(1 + 1 + ... + I i ,n), 
I Tj(6) I<A3am-/1+l( +L g +...+|- 1-(/,-ln). 

Here 

because the equation 

j+ 1ll f+ 1, 

fo+fg+... +fo60 - 0 

/I fA n ? fn \ 
for 6 may be written as f - - ( -.-- +... + ), 
and so either I [< 1 or 

I g <I f h <l f(I f l-l+ 1 g-2+...) =f , whence 1 <-f+ 

A similar proof holds for the lower bound. Therefore, sincef+ 1 < 2f, 

1+ |n + f..._]_l n<1+(_+1) +... + (f)/ 1)tn (f+l+ l-- 1 2,fn+n 

and, in the same way, 1 + -- + 2...+ | I-l)2(A -1)n+lf(1t-1)n. 

Hence the inequalities for (Di(6) and Tj(6) take the simpler form, 

I (Di(6) I < 2/n+ lf/nA2am-it, 

|I() j (2(-l)n+lf(/-l)nA3am-,+l. 

Thirdly, the logarithm = In was defined as the principal value, so that by the bounds 
for 6, I < {(ln I I)2+7r2} <{(ln (f+ 1))2+ 72}1. 

Since In (f+ 1) <f, this means that 

I | I <{f2+ 72}i +3<4f 
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Since i+(n 10 

?] admits the further bound given by 

(in (f+ 1))( + ((ln (f+ 1)) (1+ (l 2) < O In (f+ 1). 

The first of these two estimations implies, in particular, that 
m-/b m-, f +3m-/,+l1 (f_{_ 3) 
] | |< (f+_3) __ -+ < 2 2(f+_3)m-< 22(m-#)+lfm-lt 

i=0 i=0 f+2 

becausef+ 3 < 2(f+ 2). Therefore, by the bound for (>i(6), 

l i-i(6) iA5 am- 
i=O 

where, for shortness, we have put 

A5 22m+ni(n-2)+2fm+t(n--1) A 

that is, As (m!) m+1 2m(+2)-j(in+A2)+2fm+t(n-l)(n+ 1)2(m+1)j (J32)(m+l)n. 

Next, by theorem 1, 
' /(, | W \(m+1)n I Rh(6) < m! 2 -n (e /n) m+l e12n+n (V+(8) 1)(m+n' 

The two estimates for jy imply then that 

i Rh(6) I -m! 2-_n(e,/n)m+l e4f(2n+l)( 10n (-) ) 

hence that : Rhj () TFj () < A6 am-"+ 1, 
j-1 

with the abbreviation 

A6 = / . m! 2-ln(e ,n) m+ 1 e4(2n+ l) O8 nf+ 1 ) m+ 1) 2( 2(* 1m2) n+ 2 ]f(*- n 1) nAf . 

In explicit form, 

A6 = . .m! 2-In(e n)m+l e4f(2n+1) ( O l))( 

x 2(- 1)n+l 1(-l)n(m!)/t 2(m-tn)(/-l)(n + 1) 2(m+ 1)(#-l) (132)(m+ 1)(I-1)n 

or, after some simplification, 

A6 = #(m!)#+1 2m(-l)-in(#+2)+l (e ^n) m+1 e4f(2n+l)f(t-l)n 

X (I--1)2(m+l)(t-l)5ln(f--+1))(m+l)n 
m+1 

The equation A(6) r = riij,(6) + 2 R^ (6) Tj(6) 
i=O j=l1 

leads therefore finally to the inequality 
A-1la-(m-~+l)(0-1)<?Aam- I r j +A6am-~+l, 

that is, 1 i A4A5a(m-t+'l)O-l I r I +A4A6a(m-/+l)O. 
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Here, after some simplification, 

A4 A5 = (f+ l)n 3M0/fm+#(2n- 1)(m + 1)0-1 (m!)(/y+ i)0 (n + l)2(m+l)#1 

X 2(m- n)#0+?/(n-2)+2(m+l) (,/32)(m+1)/on 

and A4A6 ,u(9+ l)/n 3#VOf(2I-l)n(m M+l) -1 (m!)('+l)? (n+ 1)2(m+1)(a- 1) 

x (e n)m+l e4f(2n+) 2(m-in)A0+/~jn-m-n+l M(2-i+ 5 in (+ m1)n 

15. Assume from now on that 

m+ 1 >50f>50, n>301n(m+1). 
Then, first, by in (f+ 1)<f, 

1 ~ <10 iln(f+ l) < if< -(m ++l) 
and so the condition m + 1 > 2 1ln j 
from theorem 1 is automatically satisfied. Secondly, 

n>30ln (m+ 1) >301n 50> 100 

and also n > 30 lnf. 

Thirdly, if t assumes all positive values, then (ln t)/t assumes its maximum at t - e, and 
thereforet 1 

t Ae 

Since #> 1, I5 > 1, we obtain then the following estimates: 
1 ln/i 1 1 1 

{#,}/K0(m+ 1)n < e / (m+ l) n < ee 5000 

1 1 1 1 
{ ( + 1)un 3/on}#o(m+ 1) n < {6#Oznj}/I0(m+ 1)n = 6m+ 1 650, 

1. 1 2 lnf 2 1nf f 1+1 1 
{fm+rm(2n -)}/o(m+l)n<fn m+1 e n f m+1 < e30 e25 

1 2 1 1 
{f (2t- 1) n}lt0(m+ 1) n <f m+ 1 < ee 25, 

1 ln(nm+1) 1 1 
{(m/?- 1)l}t/0(m+ l)n< e(m+l)n < e50X30 _ el500 

1 1 21n(m+1) 1 
{(m!)(u+l)j}a0(m+D)n<{(mm)(1+1)0j}#0(m+1)n<e n <en15 

1 21n(n+l 1) 2 In 101 

{(n- )2(m+l)PI}Ol(m+l)" _ e n <e 100 

1 21n 101 

{(n+ 1)2(m+l)(/O-l)}/O(m+l)n<-e 100 

1 l+ln11n 1 In 100 
{(e /n) m+ l}/(ml)n<en+2 e <e,O+ 100 

1 12fn 6 
{e4f(2n + 1)}in(m+ l)n < e(m+ l)n < e25 

1 1 3 3 
{2 m-n)/,?+<(n-2)+2( m+ 1)}/(m+l)n<< {2mi+2(m+ i)}+(m+ l)n <2n A< o00 

1 1 1 1 
{2tm-in) !? +tzn- m-n+ 1}/(m+ 1)n < {2mto}O(m+ 1)n < 2n < 2100. 
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These estimates imply that 
1 14 1 1 1 21n 101 3 

A4A < (650e30 25ee1500el5e 100 21o00/32)/0(m+l)n 
and 

1 1 1 1 1 21nl01 1 ln 100 6 1 /2- 5 in (f+ _l) (m+l)n 
A4A6 <(eS5000e 650 e25e el00 e15 e 100 el00 100 e25 2100 /32)4/(m+ l)n - 

A simple numerical calculation gives then 

A4 A5 < el 998i(m?+ 1), A4 A6 < e2-247o(m+l) ( 
) 

n 
(+ 

1)m+ 

and, afortiori, A4A5<e2aO(m+l)n, A4A6< /() e l 
(+) 

385 

Here, in the second formula, -25 < e, 2< ei. 

This formula implies therefore that 
1 (e3#0+ 1 n (f+ 1))(m+l1)n A4A6 m+l ) 

Since both a and ,u are positive integers, we find then that 

A4A5a(m-~+l) 0-Il <e2/(m+ 1)n a(m+l)b 

~~~~and ~~~1 /A (-+l I(e3 0 +1n (f+ 1))(m+ 
) 

a(m+1)n and A4-r 
^ 1AA6 a(m-t+1)O< ( lm+ 1l). 

2\ m+1 / 

Now it was proved in the last section that 

1 <A4A5a(m-/+1)-1I r I +A4A6a(m-m+l)4, 

so that, by the formulae just proved, we have 
1 /e3/O+11n (f+ 1) (m+l) an 1 < e2/zo(m+ l)n a(m+ l)0 I r ++ l [ T a(m+ l)1 

If here the second term on the right-hand side does not exceed 1, the first term necessarily 
does so, and a lower bound for r follows at once. We therefore finally choose m by 

m+1 - max ([e4o+1 In (f+ 1)] +-, 50f) 

and afterwards n by n = max (30 1n(m+), -n] +1) 

This choice is permitted because the former restrictions on m and n are evidently satisfied. 
From it, e31+l ln (f+ 1) 

m+l> e40+l In (f l),- + < e-m <i 
m+1 

ln a and n > , e> a. 

Hence 
1 /e3q+ ( In (f-+l) (m+l)n 1 /e3+1 In(f-) +l1 ( _ )(m l)m 1 - am + e a(m+l)< (_fI)o2 <e_ 2 \ m+1 -2 e4UO+ln (f+ 1 ) 2 en 2' 

and the second term is in fact less than . Therefore, as already said, we find the following 
lower bound for r: r> I (e2i2(m+ ) n a(m+ )- rl I] (2~(+1) r+10- 
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Our discussion has thus led to this general result: 
THEOREM 3. Let 6 be a real or complex algebraic number differentfrom 0 and 1, and let 

fo+flx+...+f0x-0 (fo>0) 
be an irreducible equation with integral coefficients for 6; write 

f - max (Ifo , |fi 1, , Iff 1). 
Denote by - = In 
the principal value of the logarithm of 6, and by 

r ao + a +... + , 
where a -- max (f ao l, I al 1, ..., aI ) >1, 
a polynomial in q with integral coefficients not all zero. Put 

m = max ([e4/0+1 In (f-+ 1)], 50f- 1), 

and n - max 30 In (m+ 1), a]+ 1). 

Then r I> >(e2/~na)(m+1)0 

and therefore q is transcendental. 
Remark. The hypothesis that I -- log 6 is the principal value of the logarithm is not essential 

in this theorem, and a similar result can be proved for each other value. 
16. Theorem 3 establishes a lower bound for r uniformly in the four parametersf, 95, a 

and ,u. On specializing these, we obtain results that are of interest in themselves. 
Assume, first, that 6 and y, hence alsof and 0, are fixed, but that ,i is so large that 

e4I+I> o50f e40 +1>In (f+ 1)' 
and that, with this choice of, , a satisfies the inequality 

a> (m+ 1)30?. 
Then m 1 - [e4'o+ In (f-+ 1)] + 1 <e4/~+l In (f+ 1) + 1 

and n 4la]+1<lna+I 

and the bound for r implies that 
> 1> l(e2ta3) -{e4A+,ln(f+ 1)+ 1} 0 

In terms of my old classification of transcendental numbers*, I ln cannot then be 
a U-number, but is either an S-number or a T-number, and furthermore 

%(~) < 3(e4j0+1 In (f+ 1) +1) . 
There is no difficulty in improving this inequality slightly to 

,(q) - O(e?'#O) as #->oo; 
here 0 may be any constant greater than -(ln 32). 

* See my paper (1932, ?1). 
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The inequality thus proved for w,(u,) generalizes an old result of mine (1932, Satz 5) 
which had, until now, only been proved for the logarithms of rational numbers. 

17. The estimate for r given in theorem 3 is reasonably sharp when a tends to infinity 
while .,f and ,u are fixed; it is very much less good when these last three parameters are also 
allowed to increase indefinitely. 

For assume, as a second application, that both ,u and 0 are unbounded, but thatf and a 
remain fixed. Then, finally, 

m+1 - [e40+1 ln (f+ 1)+1], n 301n(m+l) 

and therefore r I > -(e601/ln [e4+11n(f+ 1)+ 1] a) -[e4a +1 ln(f+ 1)+ ] 

whence | r > e-?(202 e4). 

For constant 0, this inequality is contained in one by Fel'dman (I95I) that is very much 
sharper. 

As a third application, assume that onlyf increases while the other three parameters are 
fixed. Then the theorem leads to r > n 

18. As a final application, let ~ and ' be two real algebraic numbers satisfying the 
inequalities 6>1, C>O. 

By Lindemann's theorem, -u - evc + 0 

for any two positive integers u and v. We shall improve this inequality by replacing it by 
a lower bound for - 

in terms of u and v. 
If, first, ue-- <I or u e-v >2 

then - ev| I >~ ev>6u or j| -e >e ?6>euv 

respectively, hence in either case, 

|u - ev I > I max (u, ev). 

Assume therefore, secondly, that [ <4u e- < 2. 

Then min (eu, ev) > 1 max (u, ev), 

and we deduce from the mean value theorem of the differential calculus that 

u - v~> min (eu, evg) > max (eu, ev). 

Let, as before, 6 be a root of the irreducible equation 

fo+flx+...+fx =0 (fA>0) 
and put -ln6, f- max (If0o , fi 1, ...) If 1). 
Denote further by g0+gix+ ?-+gxI = 0 (g>0) 

an irreducible equation for g with integral coefficients, and write 

g =max (|go, gl 1, , g. 1) 4 
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The number -v then satisfies the equation 
U 

gomv+g1uv1-l x+... +g uexV = O. 

By the result proved in ? 16, there exist two positive numbers cI and c2 independent of u 
and v, such that 

Igov3 +gl u0-+ ...'" +g3uetl3 l >I cl{max (u, v)}- C2; 

this follows on identifying ,u a0, al, ... a 

with o, goVr, gI uv-lf, ..., g,u 

respectively, because then 

a - max a( a, l a, ' a1, j) <g{max (u, v)}1. 

Denote by ~,, ...,-1 the conjugates of g, hence byv, u, ..., , the conjugates 

of 
v 

E. Then, identically in x, 
U 

gOlV-W-g1 g1 l X-- . * . -+-' g?@ HPX -- g (8X V!) (UX- Vgt) ... (UX-- V!_l1), 

and the inequality for V may be written as 

g^ ( - v) ( - vl) ... (u- _- 1) I >. Imax( V) }-2 

Here every linear factor uq -vl, ..., u^ -v_1 

is of absolute value not larger than 63 max (u, v), where 3> 0 does not depend on u and v. 
The last inequality implies therefore that 

u -v I| > 2c4{max (u, V)}-5, 

where C4 > 0 and c5 > 0 likewise are independent of u and v, whence 

1 6- eCV I> 4 max (~6, evl) {max (u, V)}-5. 

It follows that there exists to every positive number e a positive number y y(c) in- 
dependent of u and v such that for all positive integral values of these variables, 

1 u -evI > y{max (u, ev)}1-6. 
From this inequality we deduce at once that the lower bound 

M(6, e) = inf I --eCl 
u,v=- ,2,3,... 

is attained and is positive. It is further clear that for any t there are at most a finite number 
of pairs of positive integers u, v such that 

-u evC lIt. 

Finally, when t tends to infinity, the number N(t) of integral pairs u, v satisfying this in- 
equality has the property that N(t) ((lnt)2) N(t) -- O((lnt) 2). 
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CHAPTER 3. THE LOGARITHMS OF RATIONAL NUMBERS 

19. In this chapter the estimations that led to theorem 3 are repeated, this time, however, 
under the restrictive assumption that 6 is a rational number and that only rational approxi- 
mations of ln 6 are considered. 

Let 6 be the rational number - f 
11' 

wheref andf, are two positive integers such that 

f>fl >1, 
so that f>2, 1<6<f, 0<ln.<lnf. 
Denote by a = a> 0, a1 > 0, ..., am 0 a system of m-+ 1 integers and put 

Ao 0 , Ak=(ln6)k- k (k =-,2,...,m). a 

Further, write A = max (I Al I, l, 2 [,, m| Am); 
our next aim is to determine a lower bound for A. 

20. The identities m 

Rh(6) - 2 Ahk(6) (ln )k (h =0, 1, ..., m) 
k=O 

lead immediately to the relations 
1 m m 

I Ahk(6) ak Rh(6) - Ahk(6) Ak (h O, 1, .... m). a= k=o 
m 

Here the sums bh = IfP Ahk() ak (h 0, 1, ..., m) 
k-O 

assume integral values, and since D(6) =t 0, 
at least one of them is different from zero. There is then an index h such that 

bh +0 and therefore Ibh > 1, 

and so, with this choice of h, 

(af)-l<|IRh()I+mA max ( Ahk(6) 1). (1) 
k=0,1..., m 

Denote now by a, fl, y three positive constants to be selected later; in particular, let 
a>2. 

From now on, we assume that m = [a lnf] (2) 
and n > max [flln (m+ 1), yln (n+ 1), 2]. (3) 

The condition for m implies that 

m+ 1 > 2 lnf> 2 ln 6, 
so that theorem 1 may be applied; hence 

I Ahk(~) l m! 2m-In(n+ 1)2m+l (V/32)(m+l)n (1 ++ ...+n) 

and | Rh(6) I| m!, 2-n(e n) m+1 e(2n +1)1nl(^ 8 n (m l)n 
' 

/?\^/ I , V /^ m+48-2 
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Here, from the inequality in ? 9, 
(m+1)! (m-1)m+l e-m 

m ! ( ) < ( ) m+1 '/(mM+-1) 
Further 1 ++ ... + < (n+ 1) n 

and fn =fn fn2 <fn +l.f2n+1 
We find therefore that 

A (M+1)m+ le 2m-in(n+'1)2m+2 (J32)(m+1)nn' 

whence 
fnm max (I Ak() )< /( 1) ( {(m+ +1) (n+1)2}?m+l/(32)(m+l)nfn; 

k=O, I m...,1 m m+) /(8e n (m? ) 

and that |Rh () i?< <'(m+1) 2-in(e m+ 2n 1 

2-In e / ,/(8) ln f (m+ 1)n whence fln l R^ () 1 < /(m + 1) {(m + 1) In}m+l - ) f2n+ 1 

21. These inequalities can be further simplified. First, since m> 1 and n> 2, 

2-ine 2-3e 1 
<'(m+1% </2 < 

Secondly, let K(M) m ) x(m) : 
~(m + 1) 

The logarithmic derivative 

dln K(m) 1 1 In 2 m+2 0068 ... 
dm m 2(m+l) e 2mn(m+ 1) 

is positive for m < 2 and negative for m > 3, because it is a decreasing function of m and 

dln Kr(m) < - 5 3 < 0. 
dm m=3 24 10 

Hence, when m runs over the positive integers, K(m) attains its maximum either at m 2 
or at m = 3, whence 

K(m)r<max(, <,-3)<1 for m =r 1,2,3,.... 

It is then clear, by n >2, that we always have 

2-inm 2)m 1 
/(m+l)W 2 

The inequalities above imply therefore that 

2f m max (l Ahk(6) ) <{(rm+ 1) (n+ 1)2}m+l (/32)(m+l)nfn 
k=0,1,..., m 

and 2fn R () I < {(m + 1 ) /n}m+l (8) nf() f2n+1, 

and so (1) takes the simple form 

- -<{(m + 1) In}ml +(8) l nf /2n+l + Af{(m + 1) (n + 1) 2}m+l (a/32)(m+1 ) 
(4) 
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22. The hypothesis (2) implies that 
m+1 V(8) lnf< 8 

m+l >lnf, f<e ' m(8)n 

Next, we assumed as part of (3) that n> 2; let us now make the stronger hypothesis that 
n > 6. Then 

In(m+ ) ln(nl)+ (n2+1 Inf 2++ 1+ 1 
{(m-i-1) V/n}m+lf2n+l)(e n 2 2^y)(m+l)n 

ln(m+1) 21n(n+l)+ lnf 1 1 2 
and {(m+1) (n+1)2}m+lfn (e n n m+l)(m+1)n<(ea sf y)(m+l)n, 

and therefore (4) gives the relation 
13__ + 1 

2 e6x f 2y+7/8 (m+l)n 1 1 2 

2<(e6o~ PYN-8)\ +A(ea yf,/32)(m+l)n. (5) 

We shall now try to fix n as a function of a and m such that 

+4 +- 2y/8g(m+l)n ( - <-, (A) 1a1 

hence, by (5), that also A> {(e f /32)(m+ 1) a}-1. (B) 
If (A) is to hold, we must have 

13+1+ 1 
> e6 l 2y 8. 

It is now easily seen that this inequality can be satisfied by taking 
a = 10, ,=3. 

For this choice implies that 

m+l>101n2>6-9, hence m+l>7, 
and n>31ln7>5*8, hence n>6, 
as required. Also y may now be chosen as 

6 
' ln7' 

because -n(n ) is a decreasing function of n>6, and so n 

n>-1-7ln(n+l) if n>6. 

13 1 1 

Therefore e y e557... < e- < 1, 

1+1+2 
as asserted, and also ea ft ^y/32 = e28148 -<e3. 

We deduce therefore from (A) and (B) that, if 
eM(m+l)n a, (a) 

then A> (e3(m+1)na)-1. (b) 
48-3 
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23. The inequality (a) is equivalent to 

21na 
m+l 

This condition, and the earlier conditions (3) for n, are all satisfied if n is fixed by the equation 

nz= max([3ln(m +l)]+l, 2[ln +) 

Hence the following result has been obtained: 

THEOREM 4. Let f and f be two integers such thatf> fi > 1 and let 

m - [lOlnf]. 

If a is a positive integer, if al, a2, ..., am are non-negative integers, and if further 

n-max [31n(m+l)]+ll, + a +l), 

k-l,2,...,m\ \ a / 

It is not difficult to deduce from this theorem a less precise but simpler one involving only 
the rational approximations to ln (f/fi). Denote by al/a, where a > 1 and a1 I 0, a rational 
approximation to ln(f/f1) satisfying the inequality 

a<21lnf; 

it is obvious that this condition is satisfied as soon as al/a is sufficiently near to In (f/fl.) We 
use the fact that in (n k (lnf- ) ( K ( 

fl/ n, f. 'no ) (-/)i 
the second factor on the right-hand side is in absolute value not greater than 

k-1 
I (lnf)k-K-I (2 nf)K (lnf)k-1 (l+2+22+...+2k-1) <2k(lnf)k-1. 

K=O 

Hence, for k - 1, 2, ..., m, 

f\k ja \k f al 
\(ln/1_) <2m(]nnf)m-1 Iln-- 

Apply now the last theorem with the fractions 

al a2 am 

a a a 

al am-' a2am-2 am 
replaced by aI a I m 

am am am 

and the denominator a replaced by the denominator am, respectively. It is obvious that the 
theorem remains true if the value of n is increased. We therefore obtain the following result. 
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THEOREM 5. Letf and fl, a and al, be four integers satisfying the inequalities 

f>fl 1 a, a'l, al>, a<21nf, 

and let m= [10lnf], n= max([3 n (m+l)]+, [21na]+l). 

T'hen nf a >{2m(lnf)m- e3(m+1)nam}-l. 

24. As an application of the last theorem, let us study the expression 
(= fa-fl eal1, 

which may also be written as (D) fa |1- e-a 1, 

where, for shortness, 

Suppose, first, 

Then 

and therefore 1 1-e- 

whence 

Assume, secondly, that 

A ln f al 
fl a 

IA2>2-5, hence |aAl>-. 

1 2a+1 I 2a 1 l 2a + 1 - 1 2a 
e 1 + 2a 2a 2a+ ' 

e1 2a l1 2a 1 aA |>ll-e-laX|l _1 2a 1 -- -aA| e- ai e > 1-2a+ 1 2a+l' 1 

D2+1 if A I>I 

1 <22 hence that aA < <1. 

It is then not possible that al > 2 lnf, a 
because this inequality implies that 

|AA| = Infal >2n-lnf= In (ffl )ln2>>2a 2. 

So, by theorem 5, we have necessarily 

| A I >i, where , = {2m(lnf/)m - e3(m+1)n am}-. 

Further, by the mean-value theorem of the differential calculus, 
1--e-aA - aAe-a, 

where T lies between 0 and A, so that 

e-are-laAI>e-i> . 

Therefore, finally, 0D =fa aA e-ar> ?faa if [ A <2a- 

25. Let, in particular, 
f=-2, f l =l, -)- 12a--ea, A ln2- al. 
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We shall determine the minimum M M(2, e) of (D when a and a1 run over all pairs of 
positive integers. 

Since 23-e2 f = 0-6109 ..., = a say, 
this minimum cannot be greater than a. So it only remains to decide whether I> can assume 
values less than a for positive integers a, a1. 

If, first, 2a 

then 2D> 2a + 1' 

and therefore >I) > a 

as is easily proved by complete induction on a. 
Let, secondly, 

AI <2 
so that (D)> 2a-laA. 
Here, by theorem 5, 

m=-[101n21 6, [ 3l2 6 n(m+l)]+l = 6, 
and therefore 

Further 

n = max (6, [2 In a] + 1), 

n= [21na]+l1<21na+l if a>13, i.e. if [21na]>5. 

9q{26(ln 2)5e3x7(2nal)a6}-l = 26(n 2)5e21a48}-1. 

Since 26(ln 2)5 < e3, 
q> satisfies then the inequality 

(>2a-le-24a-47, -(a) say, if a>13. 

Here 0(a) is an increasing function of a if 

dlnS(a) ln2-47>0, da a 
thus certainly if a > 512. Since 

3(512) = 2511 e-24512-47 - 288e-24> 1 > , 

we find therefore that ()> a if a>- 512. 

It follows that any possible solution of 

belongs to a value of a less than 512; moreover, 

|I A ln2- al< a 2a2 

Therefore, by the theory of continued fractions, alla is one of the finite set of convergents 
a 1i 2 7 9 61 192 253 
a 7 1 3' 10' 13' 88' 277' 365 
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of the continued fraction 

ln2= +- 1+ 1+ 1i 1+ + - 1 +... 

for In 2. The table 
21 -el = 0-718...>a, 
23 -e2l =a, 

1210 -e7l > 72>a, 

1213 -e9l > 88>a, 
|288 -e61 > 9 x 1023> , 

2277 _ e192 > 8 x 1086>c, 
12365-e253 j > 9 x 10112>a, 

shows then that the minimum of (D is attained for a = 3, al = 2 and that 
2a- eal I -> I 23-e2 1 

for all pairs of positive integers a, al, with equality only in this obvious case. 
I am greatly indebted to Mr D. F. Ferguson, M.A., for determining by the same method 

the following extreme values: 
3a - eal 31 31-eI 281 ..., 

I4a-eal |> 4-el - 1281 ... 
5a- eal [ [51-e1 el 2-281 ... 

[I6a- eal |61-e2 = 1-389 ..., 

j7aeal > 71e2 0-389 ..., 

| 20a--eal > |201-e3 = 0085 ..., 
90a-eai | 902-e9 - 3083 .... 

CHAPTER 4. THE LOGARITHMS OF INTEGERS 

26. Letfbe a very large positive integer and a an arbitrary integer. On puttingf = 1 
and a = 1 in theorem 5, the following result is obtained:* 

If m=[10Inf] and n= [31n(m+1)] +1, 

then I lnf-al I >{2m(lnf)m-1 e3(m+l)n}-l. 

In this inequality, 2m(lnf)m-1 < (2nf)m?ellnf(lnlnf+ln 2) 

[and e3(m+ 1)n i e3(10 lnf+ 1){3ln(10lnf+ 1)+ l 

Therefore, for sufficiently largef, 

I lnf-al I >f-cnlnf, 

where c may be any constant greater than 10+90 = 00. In the present chapter, we shall 
improve on this estimate by a slight change in the computations of the last chapter. 

* The condition al < 2 lnf of the theorem may evidently be disregarded. 
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27. For this purpose, denote byfa very large positive integer, by a> 2 and two positive 

constants to be selected at once, by m and n the integers 
m [a lnf], n- [/ln (m+1)] +1, 

and by al, a2, ..., am arbitrary integers; further put 
A - max (l (lnf)k ak ). 

k=1,2,...,m 

The definitions of m and n imply that 

n>yln(n+l), n1S 

for any two given positive constants y and &, provided onlyf is already large enough. 
Therefore a trivial change in the estimations in ? 21 and ? 22 leads immediately to the 

inequality 2?++1+ 
e a A 2y /8 (m+1)n 1 1 2 

2<( a +A (ea fl y/32)(m+1)n. 

It is then clear that A> (ex ftl Y/32)-+ 1)n 

2+8 1 1 
provided that c>_ e a f 2 >/8. 

Choose now a =10, /= 1. 
A trivial calculation shows that 

2+1 11 
a> e fl/8, (ex flJ32) 4 < e29, 

2?++18 1 1+1+2 and so also >e a + 2,/8, (e0 Y,/32)0/t<e29, 
if only y> 0 is sufficiently large and 8> 0 is sufficiently small, as shall be assumed from 
now on. Since m n n /?ln1nf m,- a lnj, n , inlnf, 
asf tends to infinity, we have thus the following result: 

THEOREM 6. Letf be a sufficiently large positive integer. If m - [10 lnf], and if al, a2, ..., am 
are m arbitrary integers, then 

max ([ (lnf)k-ak ) >-291nlnf. 
k=l,2,..., m 

28. With a slight change of notation, denote now by a the integer nearest to lnf, and put 
-A lnf -a, 

so that -2</A< +- 2 

and therefore max (Iln, a) < lnf+ = + 2 nf. 
T n (lnf) k - ak Then (lnf)k-a (lnf) k-l+a(lnf)k-2+ ... +ak l1 k{max (lnf, a)}k-1, whence, for -a2, ..., 

whence, for k == 1, 2,..., m, 

(l/nf)k a max(nfa)}l nfm 
Inf- a 

< 
m{max (In/f, a)}M ~< m I +2 lnf (Inf)m. 
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Since m= [llnf], tl+2}I2) <1exp( )[ e- 

Hence m{ I 2 Ilf (lnf)m< 0llnf. e5 (lnf)101f< (lnf)lllnf 

as soon asf is sufficiently large. We find then that 

(lnf)k-ak < (lnf) 11 lnf 
_ f11 lnlnf (k Il, 2,..., m), 

and therefore I| nf-a f >-l lnlnf max ((lnf)k-ak ). 
k=1,2,..., m 

On the other hand, max (I (lnf)k-ak ]) >/-291nlnf 
k-1,2,..., m 

by theorem 6 applied with ak = ak for k = 1, 2, ..., m. We combine these two inequalities 
and note that the resulting formula remains true even when the integer a is not the one 
nearest to lnf. Hence we find: 

THEOREM 7. Iff is a sufficiently large positive integer and if a is an arbitrary integer, then 

]lnf--af>f-4Olnlnf. 

The exponent 40 ln lnf tends to infinity very slowly; the theorem is thus not excessively 
weak, the more so since one can easily show that 

I lnf- a < 

for an infinite increasing sequence of positive integersf and suitable integers a. 

29. By means of the last result it is possible to determine a lower bound for the fractional 
parts of the powers of e. 

Denote by a a large positive integer and byf the integer nearest to ea; therefore 

ea l <f<ea+ _ 

By the mean value theorem of differential calculus, 

ea f 

a-lnf e, 

where a is a certain number between a and lnf, hence ex a number between ea and f. 
Therefore ea ea a 

whence | ea-f I> >ea I a -nf 1, 

and so theorem 7 implies that 

I eaf | > lea-40 lnnlf _ lea e-40nf ln lnf. 

Here f<ea+?, lnf<a+ln (1 +e-a) <a+Ie-a, 

and Inlnf In a+ ln (1 2+ e- < n a + e-a 
\ 2a 2 ia 
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1 I Hence lnflnlnf (a + -e- ) (lna+-~e-a - a lna+ ln (ea) e-a e-2a 

(in \ } 2a / 4a 

and finally eaf-40nlnf > e-40alIn a 

as soon as a and thereforef are sufficiently large. Similarly as in the last section we may 
drop the condition thatf is the integer nearest to ea. The result is therefore as follows. 

THEOREM 8. If a is a sufficiently large positive integer and iff is an arbitrary integer, then 

I ea f > -40a 

This estimate is rather weak, but it does not seem easy to obtain any substantial im- 
provement. 

I am in great debt to my colleague, Mr G. E. H. Reuter, who read through this manu- 
script with great care and discovered several minor mistakes in the original version, and 
also to the referees. 
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