Reprinted from Proceedings, Series A, 56, No. 1 and Indag. Math., 15, No. 1, 1953 KONINKL. NEDERL. AKADEMIE VAN WETENSCHAPPEN – AMSTERDAM MATHEMATICS ## K.)MAHLER ON THE APPROXIMATION OF π (Communicated by Prof. J. F. Koksma at the meeting of November 29, 1952) constants for the distance of π from a given rational or algebraic number. In my paper "On the approximation of logarithms of algebraic The aim of this paper is to determine an explicit lower bound free of unknown numbers", which is to appear in the Transactions of the Royal Society, the following result was proved: Lemma: Let x be a real or complex number different from 0 and 1; let $A_{bk}(x)$ $\log x$ denote the principal value of the natural logarithm of x; and let mand n be two positive integers such that (1) $m+1 \geqslant 2 |\log x|$. $$A_{hk}\left(x ight)$$ $\left(h,\,k=0,1,...,\,m ight)$ in x with rational integral coefficients, of degrees not greater than $n,\,and$ irrationality for π . (a) (c) with the following further properties: (a) The determinant $$D\left(x\right) = \|A_{bk}\left(x\right)\|$$ $(h, k = 0, 1, \dots, m)$ does not vanish. (b) The determinant There exist $(m+1)^2$ polynomials $$A_{hk}(x) << m! \ 2^{m-(3n/2)} (n+1)^{2m+1} (\sqrt[4]{32})^{(m+1) \ n} (1+x+\ldots+x^n).$$ $$The \ m+1 \ functions$$ $R_h(x) = \sum_{k=0}^m A_{hk}(x) (\log x)^k \qquad (h=0,1,...)$ $$R_h\left(x ight) = \sum\limits_{k=0}^m A_{hk}\left(x ight) (\log x)^k \qquad \qquad (h=0,1,\ldots,m)$$ satisfy the inequalities $\left|\,R_{\scriptscriptstyle h}\left(x\right)\right| \leqslant m!\; 2^{-(3n/2)} \, (e^{\sqrt{n}})^{m+1} \, e^{(2n+1) \, |\log x|} \left(\frac{\sqrt{8} \, |\log x|}{m+1}\right)^{(m+1) \, n}.$ Denote by y a further real or complex number, and put $S_h(x,y) = \sum_{k=0}^{m} A_{hk}(x) y^k, \quad T_h(x,y) = \sum_{k=1}^{m} A_{hk}(x) \frac{(\log x)^k - y^k}{\log x - y} \quad (h = 0,1,\ldots,m),$ so that $R_h(x) - S_h(x, y) = T_h(x, y) (\log z - y),$ (2)identically in x and y. This identity will enable us to find a measure of For this purpose, substitute in the last formulae the values 2. $$x=i, \ \log x=\pi\, rac{i}{2}, \ y= rac{p}{q}\, rac{i}{2}$$; here p and q may be any two positive integers for for x, log x, and y; here p and q may be any two positive integers for which p < 4q. Then (3) and $|\log x| < 2, \ |y| < 2,$ so that $\left| \frac{(\log x)^k - y^k}{\log x - y} \right| = \left| (\log x)^{k-1} + (\log x)^{k-2} y + \dots + (\log x) y^{k-2} + y^{k-1} \right| < 2^{k-1} k$ $\left| \sum_{j=1}^{m} \left| \frac{(\log x)^{k} - y^{k}}{\log x - y} \right| < \sum_{j=1}^{m} 2^{k-1} k \leqslant \sum_{j=1}^{m} 2^{k-1} m < 2^{m} m.$ Hence $\left|T_{h}\left(x,y ight) ight|<2^{m}m\cdot\max_{h,k=0,1,\ldots,m}\left|A_{hk}\left(x ight) ight|.$ (4) From now on assume that 3. m = 10 and $n \geqslant 50$. This choice of m satisfies the condition (1) of the lemma. The lemma may then be applied, and we find, first, that $\max_{h,k=0,1,\ldots,m} |A_{hk}(x)| \leqslant 10! \ 2^{10-(3n/2)} (n+1)^{21} \ 2^{(55/2)n} (1+|x|+\ldots+|x|^n) =$ $= 10! \ 2^{10} (n+1)^{22} \ 2^{26n}$ whence, by (4), $|T_{h}(x,y)| < 10.10! \ 2^{20} (n+1)^{22} \ 2^{26n}$. (5) Secondly, $(6) \quad \left| R_h(x) \right| \leqslant 10! \; 2^{-(3n/2)} \, e^{11} \, n^{11/2} \, e^{n\pi + (\pi/2)} \Big(\frac{\sqrt[]{2} \, \pi}{11} \Big)^{11n} = \; 10! \, e^{11 + (\pi/2)} \, n^{11/2} \Big(\frac{16\pi^{11} \, e^{\pi}}{11^{11}} \Big)^n.$ Thirdly, $D(x) \neq 0$. Hence the index $h_1 = h_0$ say, can be chosen such that $S_{h_0}(x,y) \neq 0$. Now $(2q)^m S_{h_0}(x,y)$ evidently is an integer in the Gaussian field K(i). Its absolute value is therefore not less than unity, whence, by the choice of m, $|S_{L}(x,y)| \geqslant 2^{-10} q^{-10}$. (7) Assume now that $n \ge 50$ can be selected so as to satisfy the inequality $10! e^{11 + (\pi/2)} n^{11/2} \left(\frac{16\pi^{11} e^{\pi}}{11^{11}} \right)^n \leqslant \frac{1}{2} 2^{-10} q^{-10}.$ (8) By (6) and (7), this inequality implies that $|R_{h}(x)| \leq \frac{1}{2} |S_{h}(x,y)|,$ $\frac{1}{2}|S_{h_0}(x,y)| \leq |T_{h_0}(x,y)| (\log x - y)|.$ It follows then from (5) and (7) that and so, by (2), respectively. Here $(9) \quad \left|\pi - \frac{p}{q}\right| = 2\left|\log x - y\right| \geqslant \left|\frac{S_{h_0}(x, y)}{T_{h_0}(x, y)}\right| \geqslant$ $\geqslant 2^{-10} q^{-10} \{10.10! \ 2^{20} (n+1)^{22} \ 2^{26n}\}^{-1}.$ The two inequalities (8) and (9) are equivalent to $\left(\frac{11^{11}}{16\pi^{11}e^{\pi}}\right)^n \geqslant 2^{11} \ 10! \ e^{11+(\pi/2)} \ n^{11/2} \ q^{10},$ (10) $$\left(\frac{10}{16\pi^{11}e^{\pi}}\right) \geqslant 2^{11} 10! e^{\pi + \sqrt{12} \pi} n^{11/2} q^{13},$$ and (11) $$\left|\pi - \frac{p}{q}\right| \geqslant \{10.10! \ 2^{30} (n+1)^{22} \ 2^{26n}\}^{-1} q^{-10},$$ $\frac{11^{11}}{16\pi^{11}\,e^{\pi}} > 10^{3.4181}\,, \qquad 2^{26} < 10^{7.8268},$ and also, on account of $n \geqslant 50$, $2^{11} 10! e^{11+(\pi/2)} < 10^{15.3306} < 10^{0.3067n}, \quad 10.10! 2^{30} < 10^{16.5907} < 10^{0.3319n}.$ Further, on denoting by Log N the decadic logarithm of N, $n^{11/2} = 10^{11/2} \, {}^{(\text{Log } n/n)n} \leqslant 10^{11/2} \, {}^{(\text{Log } 50/50)n} < 10^{0.1869n}$ and $(n+1)^{22} = 10^{22} \frac{(\log (n+1)/n)n}{n} \leqslant 10^{22} \frac{(\log 51/50)n}{n} < 10^{0.7514n}$ These numerical formulae show that the inequality (10) certainly holds if $10^{3.4181n} > 10^{0.3067n + 0.1869n} q^{10}$ i.e., if $10^{2.9245n} > q^{10},$ and they further give $10.10! \ 2^{30} (n+1)^{22} \ 2^{26n} < 10^{0.3319n+0.7514n+7,8268n} = 10^{8.9101n}.$ We thus have proved the following result: "Let p and q be two positive integers such that p < 4q, and let n be an integer for which $n \geqslant 50, \qquad 10^{2.9245n} > q^{10}.$ (12) Then $\left|\pi - \frac{p}{q}\right| > 10^{-8.9101n} q^{-10}$." (13) This result be further simplified. Define n as function of q by the inequalities $10^{2.9245(n-1)} \leqslant q^{10} < 10^{2.9245n}.$ $q^{10} \geqslant 10^{2.9245 \times 49} = 10^{143.3005}$. It suffices then to make the further assumption that This choice of n is permissible provided q is so large that $q \ge 2.14 \times 10^{14}$ (14) because then $$a^{10} > 10^{143.304}$$. Since $n \ge 50$ and therefore $n-1 \ge \frac{49}{50} n$, we have now $$q^{10}\geqslant 10^{2.9245\times0.98n}>10^{2.8661n},$$ hence, by (13), $\left|\pi - \frac{p}{q}\right| > q^{-(8.9101/2.8661) \times 10 - 10} > q^{-41.09} > q^{-42}.$ (15) The proof assumed, as we saw, that p < 4q and that (14) is satisfied. If (14) holds, but $p \geqslant 4q$, then trivially $\left|\pi - \frac{p}{q}\right| \geqslant 4 - \pi > q^{-42},$ and (15) remains true. It is now of greater interest that the remaining condition (14) can be replaced by a more natural one. property that Theorem 1: If p and $q \geqslant 2$ are positive integers, then $\left|\pi - \frac{p}{q}\right| > q^{-42}$. Proof: By what has already been shown, it suffices to verify that there are no pairs of positive integers p, q for which are no pairs of positive integers $$p, q$$ for which $2 \leqslant q < 2.14 imes 10^{14}, \quad \left|\pi - \frac{p}{}\right| \leqslant q^{-42}.$ $2\leqslant q<2.14 imes 10^{14}, \quad \left|\pi- rac{p}{q} ight|\leqslant q^{-42}.$ If such pairs of integers exist, they necessarily have the additional $\left|\pi-\frac{p}{a}\right|<\frac{1}{2a^2},$ because otherwise $\frac{1}{2\sigma^2} \leqslant \left|\pi - \frac{p}{q}\right| \leqslant q^{-42}, \quad q^{40} \leqslant 2, \quad q < 2,$ which is false. It follows then, by the theory of continued fractions, that p/q must be one of the convergents p_n/q_n of the continued fraction $\pi = b_0 + \frac{1}{|b_1|} + \frac{1}{|b_2|} + \dots = [b_0; b_1, b_2, \dots]$ for π ; here the incomplete denominators b_0, b_1, b_2, \ldots are positive integers. According to J. Wallis, the development begins as follows: $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84,$ $2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 1, \ldots$ A trivial computation shows that the convergent belonging to the incomplete denominator 13 is already greater than 2.14×10^{14} . The largest of the preceding incomplete denominators is 292. Hence, by the theory of continued fractions, we find that $$\left|\pi - \frac{p_n}{q_n}\right| > \frac{1}{q_n(q_{n+1} + q_n)} =$$ $$= \frac{1}{q_n\{(b_{n+1} + 1)q_n + q_{n-1}\}} > \frac{1}{(b_{n+1} + 2)q_n^2} \geqslant \frac{1}{294q_n^2} > q_n^{-42}$$ for every convergent the denominator of which lies in the range we are considering. There are therefore no pairs of integers p, q of the required The theorem required that $q \ge 2$. If one is satisfied with an estimate for $|\pi - (p/q)|$ valid when q is greater than some large value q_0 , then the exponent 42 can be replaced by 30. No new ideas being involved, the proof may be omitted. As a second application of the lemma in §1 we study now the approximation of π by arbitrary algebraic numbers. Let ω be a real or complex algebraic number of degree ν over the Let $$\omega$$ be a real or complex algebraic number of degree ν over the Gaussian field $K(i)$, and let $$f(z) = 0, \text{ where } f(z) = a_0 z^{\nu} + a_1 z^{\nu-1} + \ldots + a_{\nu}$$ and where further the coefficients $a_0 \neq 0, a_1, \ldots, a_r$ are integers in K(i), be an irreducible equation for ω over this field. Denote by $a = \max(|a_0|, |a_1|, \ldots, |a_{\nu}|)$ the height of this equation and by kind. This completes the proof. $$\omega_0 = \omega, \, \omega_1, \, \ldots, \, \omega_{\nu-1}$$ its roots. These roots are all different, and it is well known that (16) $$|\omega_j| \leqslant a+1 \qquad (j=0,1,\ldots,\nu-1).$$ f(z) = 0 may be assumed to have rational integral coefficients. For let F(z) = 0, where $F(z) = A_0 z^N + A_1 z^{N-1} + \dots + A_N$, and where $A_0 \neq 0, A_1, \ldots, A_N$ are rational integers, be an equation for In the case when ω is a real algebraic number, the defining equation ω irreducible over the rational field. It suffices to show that this equation is also irreducible over K(i), hence that F(z) differs from f(z) only by a constant factor different from zero. Let the assertion be false. Then F(z) can be written as $$F(z) = \{A(z) + iB(z)\} \{C(z) + iD(z)\}$$ where A(z), B(z), C(z), and D(z) are polynomials with rational coefficients such that neither A(z) + iB(z) nor C(z) + iD(z) is a constant. Since F(z)is a real polynomial, also $F(z) = \{A(z) - iB(z)\} \{C(z) - iD(z)\}\$ and therefore, on multiplying the two equations, $F(z)^2 = \{A(z)^2 + B(z)^2\} \{C(z)^2 + D(z)^2\}.$ $$F(z)^2 = \{A(z)^2 + B(z)^2\} \{C(z)^2 + D(z)^2\}.$$ Since unique factorization holds for polynomials in one variable over the rational field, this formula implies that $$F(z) = c \left\{ A(z)^2 + B(z)^2 \right\}$$ where $c \neq 0$ is a rational constant. Put now $z = \omega$. Then F(z) and therefore $A(z)^2 + B(z)^2$ vanish, hence also both A(z) and B(z). This means that A(z) and B(z) are divisible by $z - \omega$, thus F(z) by $(z - \omega)^2$. This is impossible because F(z) is irreducible, so that it cannot have multiple linear factors. 9. Substitute now $$x=i, \quad \log x = \pi \, rac{i}{2} \, , \quad y = \omega \, rac{i}{2}$$ (2) $R_h(z) - S_h(x, y) = T_h(x, y) (\log x - y)$ of § 1, and assume further that for x, $\log x$, and y in the identity $$|\omega| < 4, \ m \geqslant 3.$$ One proves just as in § 2 and § 3 that (17) $$|R_h(x)| \leq m! \ 2^{-(3n/2)} \left(e^{\sqrt{n}} \right)^{m+1} e^{n\pi + (\pi/2)} \left(\frac{\sqrt{2}\pi}{m+1} \right)^{(m+1)n}$$ and $$|T_h(x,y)| < 2^m \, m \cdot m! \, 2^{m-(3n/2)} \, (n+1)^{2m+2} \, (\sqrt[3]{32})^{(m+1)n}$$ On the other hand, the then given lower bound for $S_{h_0}(x, y)$ is no longer valid and must be replaced by a more involved expression. 10. Since the determinent D(x) does not vanish, there is again an index h, h such that index $h = h_0$ such that $$S_{h_0}\left(x,y ight)=S_{h_0}\left(i,\omega\; rac{i}{2} ight) eq0.$$ This means that also the $\nu-1$ numbers none of its other roots ω_i . $$S_{h_0}\left(i,\,\omega_1\frac{i}{2}\right), \quad S_{h_0}\left(i,\,\omega_2\frac{i}{2}\right), \ldots, \quad S_{h_0}\left(i,\,\omega_{\nu-1}\frac{i}{2}\right)$$ obtained from $S_{h_0}(i, \omega i/2)$ on replacing ω by its conjugates $\omega_1, \omega_2, \ldots, \omega_{r-1}$ with respect to K(i) do not vanish. For let z be a variable. The expression $S_{h_0}(i, zi/2)$ is a polynomial in z with coefficients in K(i) which does not vanish at $z = \omega$. Therefore the polynomial cannot be divisible by the irreducible polynomial f(z) of which ω is a root, and so it admits It follows then that the product $$\sigma = \prod_{j=0}^{v-1} S_{h_0} \Big(i,\, \omega_j rac{i}{2}\Big)$$ does not vanish. This product is a symmetric polynomial in $\omega, \omega_1, \dots, \omega_{r-1}$ which is in each ω_i of degree m; moreover, the coefficients of this polynomial are elements of K(i), and their common denominator is a divisor of $2^{m\nu}$. Therefore σ itself lies in the Gaussian field, and its denominator is in absolute value not greater than $$2^{mv} |a_0|^m \leqslant 2^{mv} a^m$$. Since σ is not zero, the inequality $$2^{mv}a^m|\sigma| \geqslant 1$$, holds, and we find that (19) $$|S_{h_0}(x,y)| \geqslant \left\{ 2^{m\nu} a^m \prod_{j=1}^{\nu-1} \left| S_{h_0}\left(i, \omega_j \frac{i}{2}\right) \right| \right\}^{-1}.$$ By definition. 11. $$S_{h_0}ig(i,\omega_j rac{i}{2}ig)=\sum\limits_{j=0}^m A_{h_0k}\left(i ight)ig(\omega_j rac{i}{2}ig)^k.$$ Here, by (16), $$|\omega_j| \leqslant a+1,$$ so that $$\sum\limits_{k=0}^{m} \left| \omega_j rac{i}{2} ight|^k \leqslant \sum\limits_{k=0}^{m} \left(rac{a+1}{2} ight)^k \leqslant (m+1) \left(rac{a+1}{2} ight)^m \leqslant (m+1) \ a^m$$ $\left|S_{h_0}\left(i,\omega_j\frac{i}{2}\right)\right| \leq (m+1) a^m \max_{h,h=0,1,\dots,n} \left|A_{hk}(i)\right|,$ since $a \geqslant 1$. Therefore whence, by the lemma in 1.), $$\left|S_{h_{ullet}}\!\left(i,\omega_{j}\, rac{i}{2} ight) ight|\leqslant a^{m}\,(m+1)!\,\,2^{m-(3n/2)}(n+1)^{2m+2}(\sqrt[l]{32})^{(m+1)n}.$$ Therefore, from (19), $$(20) |S_{h_0}(x,y)| \geqslant \{2^{mv} a^m (a^m (m+1)! 2^{m-(3n/2)} (n+1)^{2m+2} (\sqrt[3]{32})^{(m+1)n})^{v-1}\}^{-1}.$$ From now on we proceed in a similar way as in 4.). Let again $m \geqslant 3$ and n be chosen such that (a) $$|R_{h_0}(x)| \leqslant \frac{1}{2} |S_{h_0}(x,y)|;$$ then from the identity (2), $|S_{h_a}(x,y)| \leqslant 2|T_{h_a}(x,y)| (\log x - y)|,$ (b) $$|S_{h_0}(x,y)| \leqslant 2|T_{h_0}(x,y)| \log x - y)|$$ so that a lower bound for is obtained. $2|\log x - y| = |\pi - \omega|$ $\leq \frac{1}{2} \left\{ 2^{mr} a^m \left(a^m (m+1)! \ 2^{m-(3n/2)} (n+1)^{2m+2} \left(\sqrt[3]{32} \right)^{(m+1)n} \right)^{r-1} \right\}^{-1},$ By (17) and (20), the condition (a) is certainly satisfied if $$m \,! \, 2^{-(3n/2)} \, (e\sqrt{n})^{m+1} \, e^{n\pi + (\pi/2)} \Big(\frac{\sqrt{2} \, \pi}{m+1} \Big)^{(m+1)n} \leqslant$$ or, what is the same, if (21) $$(4(m+1))^{(m+1)m}$$ $$(21) \ \left(\frac{4 (m+1)}{2^{5\nu/2} \pi}\right)^{(m+1)m} \geqslant$$ (21) $$\left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^{(m+1)m} \geqslant (m+1)!^{\nu}$$ $$(21) \left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^{n} \geqslant (m+1)!^{\nu}$$ $$\geqslant \frac{(m+1)!^{p}}{m+1} 2^{q}$$ $$\geqslant \frac{(m+1)!^{\nu}}{m+1} 2^{(2\nu-1)m-(3n\nu/2)+1} e^{m+n\pi+(\pi/2)+1} (\sqrt[4]{n} (n+1)^{2(\nu-1)})^{m+1} a^{m\nu}.$$ $$\geqslant \frac{(m+1)!^p}{m+1} 2^p$$ Under this hypothesis. Under this hypothesis, we find from (b), by (18) and (20), that $$\geqslant \frac{(m+1)!}{m+1} 2^{0}$$ $|\pi - \omega| > \{2^{mr} a^m (a^m (m+1)! 2^{m-(3n/2)} (n+1)^{2m+2} (\sqrt[4]{32})^{(m+1)n})^{\nu-1}\}^{-1} \times$ $\times \{2^m \ m \cdot m! \ 2^{m-(3n/2)} \ (n+1)^{2m+2} \ (\sqrt[3]{32})^{(m+1)n}\}^{-1}.$ whence, after some trivial simplification, $$(22) \quad |\pi - \omega| > \left\{ \frac{m}{m+1} (m+1)!^{\nu} 2^{(2\nu+1)m-(3n\nu/2)} (n+1)^{2(m+1)\nu} (\sqrt[3]{32})^{(m+1)n\nu} a^{m\nu} \right\}^{-1}.$$ In order to put (21) and (22) into a more convenient form, we now apply the well-known inequality $$(m+1)! \leqslant e\sqrt{m+1} (m+1)^{m+1} e^{-(m+1)}.$$ It follows that (21) is satisfied if It follows that (21) is satisfied i $$(4(m+1))(m+1)n$$ It follows that (21) is satisfied if $$(4(m+1))^{(m+1)n}$$ $$\left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^{(m+1)n} \geqslant e^{\nu}(m)$$ $\left(\frac{4(m+1)}{2^{5v/2}\pi}\right)^{(m+1)n} \geqslant e^{v}(m+1)^{(v/2)-1}(m+1)^{(m+1)v}e^{-(m+1)v} \ 2^{2(m+1)v-2v-(m+1)-(3nv/2)+2} \times e^{-(m+1)v}$ and so even more if $$(4(m+1))^{(m+1)n}$$ and so even more if $$(4(m+1))^{(m+1)n}$$ and so even more if $$\int \left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^{(m+1)n}$$ $$(23) \begin{cases} \left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^{(m+1)n} \geqslant \frac{4e^{\pi/2}(m+1)^{(\nu/2)-1}(e/4)^{\nu}}{(n+1)^{(m+1)/2}} \cdot \frac{(e/2)^{m+1}(4/e)^{(m+1)\nu}}{(n+1)^{m+1}} \cdot (e^{\pi} \cdot 2^{-(3\nu)/2})^{n} \times \\ \times (m+1)^{(m+1)\nu} (n+1)^{2(m+1)\nu} 2^{m\nu} \end{cases}$$ (23) $$\begin{cases} \left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^{(m+1)n} \end{cases}$$ (23) $$\left\{ \left(\frac{4(m+1)}{2^{5\nu/2}\pi} \right)^{(m+1)n} \right.$$ whence (25) (23) $$\left\{ \left(\frac{4(m+1)}{2^{5\nu/2}\pi} \right)^{(m+1)n} \right\}$$ (23) $$\left(\frac{4(m+1)}{2^{5\nu/2}\pi}\right)^{(m+1)\eta}$$ $$\geq e^{\nu} (m+1)^{(\nu/2)-1} (m+1)^{(m+1)\nu} e^{-(m+1)\nu} 2^{2(m+1)\nu-2\nu-(m+1)-(3n\nu/2)+2}$$ $$\times e^{(m+1)+n\pi+(\pi/2)} \left(\frac{1/n}{(n+1)^2} (n+1)^{2\nu} \right)^{m+1} a^{m\nu},$$ Therefore, assuming that (23) holds, by (22) s satisfied if $$+1$$) $^{(\nu/2)}-1$ $(m+1)$ $$\leqslant e\sqrt{m+1}$$ sfied if In order further to simplify (23) and (24), assume from now on that $m+1 \geqslant 20 \cdot 2^{5/2(\nu-1)}, \qquad n \geqslant (m+1) \log (m+1).$ So far $m \ge 3$ and n are restricted solely by the condition (23). envenient form, we $$e^{-(m+1)}$$. $\times (m+1)^{(m+1)\nu} (n+1)^{2(m+1)\nu} a^{m\nu}$ $\times (n+1)^{2(m+1)\nu} (\sqrt{32})^{(m+1)n\nu} a^{m\nu}$ $\times (\sqrt{32})^{(m+1)n\nu} a^{m\nu}$. Since $\frac{5}{2} \log 2 > 1$, by the first of these conditions, $m+1 \ge 20 e^{\nu-1} \ge 20 (1 + (\nu-1)) = 20 \nu > 3.$ $$m+1 \geqslant 20 e \qquad \geqslant 20 (1+(v-1)) = 20 v > 3.$$ The second condition implies then that $n \geqslant 20\nu \log (20\nu)$. Now 20 log 20 > 59, 20 log 40 > 73, and so $$n \ge 60\nu$$, both when v = 1 and when $v \geqslant 2$. $$A_{f 0} = (m+1)^{ u/n}\,(n+1)^{2 u/n}.$$ Since $n\geqslant 60 u \geq 60$, $$n+1\leqslant rac{61}{60}\,n,\,\, \left(rac{61}{60} ight)^{2 u/n}\leqslant \left(rac{61}{60} ight)^{1/30},\,\,\,A_{m 0}\leqslant \left(rac{61}{60} ight)^{1/30}\,(m+1)^{ u/n}\,n^{2 u/n},\,\,\,=B_{m 0}\,\,{ m say}.$$ Next $$rac{\partial \log B_0}{\partial n} = - rac{v}{n^2}\log\left(m+1 ight) - rac{2v}{n^2}\left(\log n - 1 ight)$$ is negative because $\log n \geqslant \log 60 > 1$. Therefore B_0 is not decreased on replacing n by $(m + 1) \log (m + 1)$, and we find that $$A_0 \leqslant \left(\frac{61}{60}\right)^{1/30} \exp\left\{\frac{\nu \log (m+1) + 2\nu \left(\log (m+1) + \log \log (m+1)\right)}{(m+1)\log (m+1)}\right\}$$ or $$A_0 \leqslant \left(\frac{61}{60}\right)^{1/30} \exp\left\{\frac{3\nu}{m+1} + \frac{2\nu}{m+1} \frac{\log \log (m+1)}{\log (m+1)}\right\}.$$ Here $$\frac{\log \log (m+1)}{\log (m+1)}$$ decreases with increasing m because $\log (m+1) \geqslant$ $$\geqslant \log (m+1)$$ $\geqslant \log 20 > e$; hence $$\frac{\log\log{(m+1)}}{\log{(m+1)}} \leqslant \frac{\log\log{20}}{\log{20}} < \frac{1}{2},$$ whence finally, $$A_0 \leqslant \left(\frac{61}{60}\right)^{1/30} \exp\left(\frac{3\,\nu + \nu}{20\,\nu}\right) = \left(\frac{61}{60}\right)^{1/30} e^{1/5} < \frac{5}{4}.$$ We next discuss certain factors that occur on the right-hand sides of (23) and (24). In $$A_1 = rac{4\,e^{\pi/2}\,(m+1)^{(u/2)-1}\,(e/4)^ u}{(n+1)^{(m+1)/2}},$$ evidently evidently $\log(m+1) > e$, m+1 > (m+1) $\log(m+1) > e(m+1)$, $m+1 \ge 20\nu$, $(e/4)^{\nu} < 1$, whence $$A_1 < rac{4 \, e^{\pi/2} \, (m+1)^{(u/2)-1} \cdot 1}{\{e(m+1)\}^{10 u}} < 4 \, e^{(\pi/2)-10} \, (m+1)^{-9 u} < 1.$$ Next let let $$A_2 = rac{(e/2)^{m+1} \, (4/e)^{(m+1)^p}}{(n+1)^{m+1}}.$$ $A_2 < \left\{ \frac{(e/2)^1 \, (4/e)^{\nu}}{e(m+1)} \right\}^{m+1} \leqslant \left\{ \frac{(e/2)^{\nu} \, (4/e)^{\nu}}{e \cdot 20 \cdot 2^{5(\nu-1)/2}} \right\}^{(m+1)} = \left(\frac{2^{5/2}}{20 \, e \cdot 2^{3\nu/2}} \right)^{m+1} < 1.$ $A_3 = (e^\pi \!\cdot 2^{-(3\nu/2)})^{1/(m+1)}.$ $A_3 \leqslant (e^{\pi} \cdot 2^{-(3/2)})^{1/20} < \frac{6}{5}$ Then by the last inequalities and by (25), Let further Since $v \geqslant 1$ and $m+1 \geqslant 20$, of the result in 12.). Consider finally the expression Here $v \geqslant 1, \ \left(\frac{e}{4}\right)^{v} 2^{-1} < 1, \ m+1 < e^{m+1}, \ n \geqslant (m+1) \log (m+1),$ so that $A_4 < e^{(m+1)\,\nu/2} \left(\tfrac{4}{\epsilon} \right)^{(m+1)\nu} \, 2^{(m+1)\nu - (3/2)\,(m+1)\nu \log\,(m+1)} \; = \left(\tfrac{8\,e^{-1/2}}{(m+1)(3/2)\log 2} \right)^{(m+1)\nu} \, .$ Since now $\frac{3}{2} \log 2 > 1$ and $m+1 \ge 20$, we find that $A_4 < \left(\frac{2e^{-1/2}}{5}\right)^{(m+1)\nu} < 1.$ The inequalities for the A's lead easily to a great simplification The right-hand side of (23) can be written as $A_1 A_2 A_3^{(m+1)n} A_0^{(m+1)n} a^{m\nu}$ and so, by what has just been proved, is less than $1 \cdot 1 \cdot \left(\frac{6}{5}\right)^{(m+1)n} \left(\frac{5}{4}\right)^{(m+1)n} \, a^{(m+1)\nu} = \left(\frac{3}{2}\right)^{(m+1)n} \, a^{(m+1)\nu}.$ Similarly the right-hand side of (24) has the value and is therefore smaller than $\left(\frac{5}{4}\cdot 2^{(5/2)\nu}\right)^{(m+1)n} a^{(m+1)\nu}.$ We have therefore the following result: "Let m and n satisfy the inequalities (25) and let further $\left(\frac{4(m+1)}{25\nu/2}\right)^n \geqslant \left(\frac{3}{2}\right)^n a^{\nu}.$ (26) Then $|\pi - \omega| > \left\{ \left(\frac{5}{4} \cdot 2^{(5/2)\nu} \right)^n a^{\nu} \right\}^{-(m+1)}$. (27) The proof assumed that $|\omega| < 4$, but we may now dispense with this condition. For if $|\omega| \geqslant 4$, then trivially, $A_{1}A_{0}^{(m+1)n} 2^{(5/2)(m+1)n\nu} a^{m\nu}$ $\left|\pi-\omega\right|\geqslant 4-\pi> rac{1}{5}>\left\{\left(rac{5}{4}\cdot2^{(5/2) u} ight)^{n}a^{ u} ight\}^{-(m+1)}.$ $20 \times 2^{(5/2)} \times (\nu-1) < m + 1 \le 20 \cdot 2^{(5/2)} \times (\nu-1) + 1.$ The first inequality (25) is satisfied if (28) This choice of m means that for then $m = [20 \cdot 2^{(5/2)} (v-1)].$ $\frac{2}{2} \times \frac{4(m+1)}{25(n+1)} \geqslant \frac{2}{2} \times \frac{4 \times 20}{25(n+1)} = \frac{20\sqrt{2}}{2} > e.$ $e^n \geqslant a^{\nu}$, i.e., $n \geqslant \nu \log a$. Let then from now on n be defined by the formula, $n = \lceil \max ((m+1) \log (m+1), \nu \log a) \rceil + 1,$ (29) so that both inequalities (25) and (26) hold, hence also the inquality (27) for $|\pi - \omega|$. It is now convenient to distinguish two cases. If, firstly, $a < (m+1)^{(m+1)/\nu}$ then $$(m+1)\log{(m+1)} > \nu \log{a},$$ $n = [(m+1)\log(m+1)] + 1 \leq (m+1)\log(m+1) + 1.$ $\frac{5}{2} \; 2^{(5/2)^p} = \frac{1}{1/8} \; 20 \cdot 2^{(5/2)(\nu-1)} < \frac{m+1}{1/8} < \frac{m+1}{e} \, ,$ whence $$\left(\frac{5}{4} \ 2^{(5/2) \mathfrak{r}}\right)^n a^{\mathfrak{r}} < \left(\frac{m+1}{e}\right)^{(m+1) \log (m+1) + 1} (m+1)^{m+1} = \frac{m+1}{e} \ e^{(m+1) \left\{\log (m+1)\right\}^2}.$$ Let, secondly, $$a\geqslant (m+1)^{(m+1)/ u},$$ so that $(m+1)\log(m+1) \leqslant \nu \log a$. $$(m+1)\log (m+1)\leqslant v\log a.$$ Now hence $$\left(rac{5}{4} \ 2^{(5/2)^{m{p}}} ight)^n a^{m{r}} < \left(rac{m+1}{e} ight)^{m{r} \log a + 1} a^{m{r}} = rac{m+1}{e} \, a^{m{r} \log (m+1)}.$$ The following result has therefore been obtained: Theorem 2: Let ω be a real or complex algebraic number. Denote by R the rational field K if ω is real, and the Gaussian imaginary field K(i) if ω is non-real. Further denote by v the degree of ω over R, by $a_0 z^{\nu} + a_1 z^{\nu-1} + ... + a_{\nu} = 0$ $(a_0 \neq 0)$ $n = \lceil v \log a \rceil + 1 \leqslant v \log a + 1,$ $a = \max(|a_0|, |a_1|, \ldots, |a_v|)$ this field, and by the height of this equation. Put Then (30) by any larger number. less good lower estimate. If, however, is not greater than Then and therefore the irreducible equation and therefore, for large n, is of the order integral variable such that $u \geqslant \pi/a$. Define a second positive integer v by 2) When $m = [20 \cdot 2^{(5/2)(\nu-1)}], \quad \tilde{a} = \max(a, (m+1)^{(m+1)/\nu}).$ $\left|\pi-\omega\right| > \left(\frac{m+1}{\epsilon}\right)^{-(m+1)} \tilde{a}^{-(m+1)\nu\log{(m+1)}}.$ Remarks: 1) We note that the theorem remains true if \tilde{a} is replaced $a < (m+1)^{(m+1)/\nu}$ the estimate (30) is not as good as that by N. I. Fel'dman (Izvestiya Akad. Nauk SSSR, ser. mat. 15, 1951, 53-74), viz. $|\pi - \omega| > \exp\{-\gamma_1 \nu (1 + \nu \log \nu + \log a) \log (2 + \nu \log \nu + \log a)\},$ where γ_1 , just as γ_2 in the next line, is a positive absolute constant. Fel'dman's inequality implies that for all sufficiently large positive integers n, while my result yields a much $\pi^n - [\pi^n] > \exp\{-\gamma_2 n^2 (\log n)^2\}$ $(m+1) \nu \log (m+1),$ $(20 \cdot 2^{(5/2)(\nu-1)} + 1) \nu \log (20 \cdot 2^{(5/2)(\nu-1)} + 1)$ $O(2^{(5/2)\nu} v^2)$ for $|\sin ua|$ when a is a fixed positive algebraic number and u is a positive $-\frac{\pi}{2} < u \, a - v \, \pi \leqslant \frac{\pi}{2}$. $\frac{a}{2\pi}u\leqslant \frac{a}{\pi}\,u\,-\tfrac{1}{2}\leqslant v<\frac{a}{\pi}\,u\,+\tfrac{1}{2}<\frac{2a}{\pi}\,u,$ $\max \left(u,v\right) \leqslant \max \left(u,\frac{2a}{\pi }\,u\right) < \left(\frac{2a}{\pi }+1\right) u.$ Let, say, α have the degree ν over the rational field, and let it satisfy $A_0 z^{\nu} + A_1 z^{\nu-1} + \ldots + A_{\nu} = 0 \qquad (A_0 \neq 0)$ As an application of Theorem 2, let us determine a lower bound $a \ge (m+1)^{(m+1)/\nu}$ then Theorem 2 is much stronger, and it furthermore gives a lower bound for $|\pi - \omega|$ free of unknown constants. The exponent of 1/a, $A = \max(|A_0|, |A_1|, \ldots, |A_r|) \geqslant 1.$ Then the rational multiple of a, $\omega = \frac{u}{a} \alpha$ is a root of the equation $$A_2 v^p z^p +$$ with rational integral coefficients of height $A_0 v^{\nu} z^{\nu} + A_1 u v^{\nu-1} z^{\nu-1} + \ldots + A_n u^{\nu} = 0$ $a = \max\left(\left|A_{\mathbf{0}} v^{\mathbf{v}}\right|, \left|A_{\mathbf{1}} u v^{\mathbf{v}-1}\right|, \ldots, \left|A_{\mathbf{v}} u^{\mathbf{v}}\right|\right) \leqslant A \left(\max\left(u, v\right)\right)^{\mathbf{v}} < \left(\frac{2\alpha}{\pi} + 1\right)^{\mathbf{v}} A u^{\mathbf{v}}.$ Let again so that of height $m = [20 \cdot 2^{(5/2)(v-1)}], \quad \tilde{a} = \max(a, (m+1)^{(m+1)/v}),$ $\tilde{a} \leqslant \max\left(\left(\frac{2a}{\pi} + 1\right)^{\nu} A u^{\nu}, (m+1)^{(m+1)/\nu}\right), = a^* \text{ say,}$ whence, by Theorem 2, $|\pi - \omega| > \left(\frac{m+1}{e}\right)^{-(m+1)} a^{*-(m+1)\nu \log (m+1)}.$ On the other hand, $|\sin t| \geqslant \frac{2}{\pi} |t|$ if $|t| \leqslant \frac{\pi}{2}$, $|\sin u \alpha| = |\sin (u \alpha - v \pi)| \geqslant \frac{2}{\pi} v |\pi - \omega|,$ hence and we find, finally, that $|\sin u \, a| > \frac{a}{\pi^2} u \left(\frac{m+1}{e}\right)^{-(m+1)} a^{*-(m+1)\nu \log (m+1)}.$ In the special case when a = 1, Theorem 1 gives a stronger result, viz. $|\sin u| > \frac{1}{\pi^2} u^{-41}$. This inequality has been proved for $u \geqslant \pi$, i.e. for $u \geqslant 4$, but it is easily verified that it holds also for $1 \leq u \leq 3$. By way of example, the power series $\sum_{n=0}^{\infty} \frac{z^n}{\sin n a}$ has the radius of convergence 1, and the Dirichlet series $\sum_{s=0}^{\infty} \frac{u^{-s}}{\sin u \, a}$ converges when the real part of s is greater than $(m+1)\nu$ log (m+1). I wish to thank Mr C. G. LEKKERKERKER for his careful checking of the numerical work of this paper, and for pointing out a minor error. Mathematics Department, October 20, 1952. Manchester University.