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MATHEMATICS

ON THE APPROXIMATION OF =

BY

K. V,)MAHLER

(Communicated by Prof. J. F. Koxsma at the meeting of November 29, 1952)

The aim of this paper is to determine an explicit lower bound free of unknown
constants for the distance of z from a given rational or algebraic number.

L. In my paper “On the approximation of logarithms of algebraic
numbers”, which is to appear in the Transactions of the Royal Somety,
the following result was proved:

Lemma : Let @ be a real or complex number different from 0 and 1; let
log x denote the principal value of the natural logarithm of x; and let m
and n be two positive integers such that
(1) m + 1= 2]logx|.

There exist (m + 1)2 polynomials
Ay (%) (h, k=0,1,..., m)

v x with rational integral coefficients, of degrees not greater than n, and
with the following further properties:

(a) The determinant
D (/L) = “Ahlc (x) “
does not vanish.
(b) Ay (x) << m) 2m=GuD (g 1)L (YI2)mD0 (] 4o g,

(e) The m + 1 functions
R, (x) = ’goAhk (x) (log x)* (h=0,1,...,m)

satisfy the inequalities
| R, ()] < m! 2- (3n/2) el/n m+1 @ n+1)uogx|<V§|10g”|)(m+1)"
'h m-+1

Denote by y a further real or complex number, and put

Sp(@,y) = 5 A @)y, Ty(w,y) = 5 Ay (2) SEX=0 401, m),
k=0 =1 log x—y

so that
(2) By (x) — 8, (w,y) =T, (,y) (log z— y),

identically in « and y. This identity will enable us to find a measure of
irrationality for .
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2. For this purpose, substitute in the last formulae the values

. ? p e
w=i, loge =m5, y="r73

for x, log z, and y; here p and ¢ may be any two positive integers for
which

(3) p < 4q.
Then
llog x| < 2, |y| <2,
so that
B
_afgx‘;—yyk' = |(loga)=* + (loga)*y + ... + (log ) y* = +y* 7| < 271 K
and
(log ) k—?/k — — o
Hence
(4) |7, (%, 9)] <2"m - max |Ay (@)

hk=0.1,...,m

3. From now on assume that
m = 10 and n > 50.

This choice of m satisfies the condition (1) of the lemma. The lemma
may then be applied, and we find, first, that

max | Ay ()] < 101 210760 (4 1)2 26920 (1 | 4- ... +]2]") =
hE=0,1,...m 101200 (1) 2200,
whence, by (4),
(5) | T, (x,y)| < 10.101 220 (n 4 1) 2267,

Secondly,

—(3n, ni+ (7, :2. Hn nf2 16711 em\"
(6) !Rh(x){< 101 2—Bu/2) p11 p11/2 pna -+ /2)(1/1171) — 1011+ /_)n11/2< izlll )
Thirdly, D(x) + 0. Hence the index A, = k, say, can be chosen such
that S, (x, y) + 0. Now (2¢)" S, (¥, y) evidently is an integer in the
Gaussian field K(i). Its absolute value is therefore not less than unity,
whence, by the choice of m,

(7) |Sh, (@ y)| = 27107

4. Assume now that n > 50 can be selected so as to satisfy the
inequality
(8) 101 @11+ (2 p11/2 (lﬁnll en>n < 12710 g0,

1111
By (6) and (7), this inequality implies that
| B, (@)| < § 18 (@95



and so, by (2),

S, ()| < |75, () (log 2 — ).
It follows then from (5) and (7) that
(9)

éha ) y) I
Ty, (e, y) |~
2 2—10 q——lo { 10.10! 220 (n + 1)22 226n}—1.

T

The two inequalities (8) and (9) are equivalent to

111t
(10) ( )” > 211 10 (1H D i1z g0,

1671l e™

and
(11)

respectively. Here

7 — %1 = {10,101 259 (3 4 1) 2200}~ =10,

1111 .
Tomiion > 103.4181 R 226 < 107.8268,
and also, on account of n > 50,
211 10! ell+(n/2) < 1015.3306 < 100.306771, 10‘101 230 < 1016.5907 < 100‘33]97;.
Further, on denoting by Log N the decadic logarithm of N,
nll/z — 1011/2 (Log n/n)n < 1011/2 (Log 50/50)n < 1()0-1869n
and
22 1()22 (Log (n+1)/min 22 (Log 51/50)n 0.7514n
(n+1)2 = 10 <10 < 1007514n,

These numerical formulae show that the inequality (10) certainly holds if
103.41817L > 100‘3067%’4—0.1869” qu,
Le., if
1()2-9245m -~ qlo’
and they further give
10. 101 230 (n + 1) 926n < 100 3319n+0.7514n +7,8268n __ 108 9101n
We thus have proved the following result:

“Let p and q be two positive integers such that p << 4q, and let n be an
integer for which

(12) ‘n > 50, 102924n = 10,
Then
(13) 'n — Jql, ~ 10891010 g—10

5. This result be further simplified. Define n as function of ¢ by
the inequalities

102.9245(n——1) < q10 < 102.924511‘



33

This choice of n is permissible provided ¢ is so large that
qIO > 102.9245>< 49 10143.3005.

It suffices then to make the further assumption that

(14) g = 2.14 x 1014,

because then
q10 > 10143,304'

Since n > 50 and therefore n — 1 > {3 n, we have now
ql() > 102‘9245X0.98n > 102.866111,

hence, by (13),
(15) ’75 _— % I > q-—(8.9101/2.8661)><10—10 > q—41.09 > q——4..

The proof assumed, as we saw, that p << 4¢ and that (14) is satisfied.
If (14) holds, but p > 4q, then trivially

In—§,>4—n>q_42

~

and (15) remains true.

6. It is now of greater interest that the remaining condition (14) can
be replaced by a more natural one.

Theorem 1: If p and q = 2 are positive integers, then

P —42
7T ——=|>qg "
’ ql 1

Proof: By what has already been shown, it suffices to verify that there
are no pairs of positive integers p, ¢ for which

2 q < 2,14 % 101,

ot

If such pairs of integers exist, they necessarily have the additional
property that

P !
T 27
because otherwise
1 P — —42 - &
Z]—‘Zg S'I“‘—q-'i*Qq 4‘, (]‘“’:sz, q<2,

which is false. Tt follows then, by the theory of continued fractions, that
plg must be one of the convergents p,/g, of the continued fraction

Tl

‘() + I {bw blr bz’- ]

7w =0
0o | Dy
for r; here the incomplete denominators by, b,, b, . .. are positive integers.

According to J. Warwis, the development begins as follows:

o= [3:07,15,01,202 1, 1,1, 21,3, 1, 14, 2, 1, 1, 2, 2. 2 2 1, 84,

21,1, 15, 3, 13, 1, 4, 2, 6, 6, 1,...].

=
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A trivial computation shows that the convergent belonging to the incom-
plete denominator 13 is already greater than 2.14 x 10!, The largest of

the preceding incomplete denominators is 292. Hence, by the theory of
continued fractions, we find that

1
@u(Qn+1 -+ qn) -

Pn
qn

T —

1 1
= - >
i1+ 1) gn+ QnAI} (bp+1+2)¢2 & 29442

for every convergent the denominator of which lies in the range we are
considering. There are therefore no pairs of integers p, ¢ of the required
kind. This completes the proof.

The theorem required that ¢ > 2. If one is satisfied with an estimate
for |7—(p/q)| valid when ¢ is greater than some large value g,, then the
exponent 42 can be replaced by 30. No new ideas being involved, the
proof may be omitted.

7> q, "

7. As a second application of the lemma in §1 we study now the
approximation of & by arbitrary algebraic numbers.

Let @ be a real or complex algebraic number of degree » over the
Gaussian field K(¢), and let

f(z) = 0, where f(z) = a2 + a2 '+ ... + a,
and where further the coefficients a, =+ 0, a;, ..., a, are integers in K (),
be an irreducible equation for @ over this field. Denote by
a = max (g"L0!7 {a/lt C !avl)
the height of this equation and by
Wy = W, Wy, « oy Wy_y

its roots. These roots are all different, and it is well known that

(16) o Sa+ b (=01 r—1).

8. In the case when o is a real algebraic number, the defining equation
f(z) = 0 may be assumed to have rational integral coefficients. For. let

F(z) =0, where F(z)= A4p" + 4251+ ... + Ay,

and where 4, = 0, 4,, ..., 4y are rational integers, be an equation for
o irreducible over the rational field. It suffices to show that this equation
is also irreducible over K (i), hence that F(z) differs from f(z) only by a
constant factor different from zero.

Let the assertion be false. Then F(z) can be written as

= {A(2) +1iB(2)} {C(2) + iD(2)}
where A(z), B(z), C'(z), and D(z) are polynomials with rational coefficients
such that neither A(z) + iB(z) nor C(z) + ¢D(z) is a constant. Since [F'(z)
is a real polynomial, also
Fe) — {A() — iBE)} {00 — iDE)
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and therefore, on multiplying the two equations,
F(z)* = {A(2)2 + B(2)*} {C(2)* + D(2)3.

Since unique factorization holds for polynomials in one variable over the
rational field, this formula implies that

F(z) = c{A()? + B(2)*
where ¢ =+ 0 is a rational constant.

Put now z = w. Then F(z) and therefore A(z)2 + B(z)? vanish, hence
also both A(z) and B(z). This means that A(z) and B(z) are divisible by
z— o, thus F(z) by (z— w)%. This is impossible because F(z) is irre-
ducible, so that it cannot have multiple linear factors.

9. Substitute now

x =1, logx:n?, Y=o

for x, log x, and y in the identity
(2) Rh(z) - Sh(x> Z/) - Th(x: 7/) (IOg X — y)
of §1, and assume further that

lo| < 4, m = 3.

One proves just as in §2 and §3 that

—(3n m 7+ (718 § (m+1)n
(17 | R, ()| < m! 27602 (¢ [pym+1 gnat (a2 <—7X+’;)
and
(18) | T (2,9)] < 2mm « m) 2m=6uD (4 1)20+2 ()/32)m+1n

On the other hand, the then given lower bound for S, (z, %) is no longer
valid and must be replaced by a more involved expression.

10. Since the determinent D(x) does not vanish, there is again an
index Ak = h, such that ‘

S, @) = Sy, (i o g) £ 0.

This means that also the » — 1 numbers

Sh, (@, W, §>, Sy, (@, W, ?)’ vees Sy, (z, W, ?>

obtained from S, (¢, wi/2) on replacing w by its conjugates wy, w,,. . .,0,_;
with respect to K(i) do not vanish. For let z be a variable. The expres-
sion S, (¢,2¢/2) is a polynomial in z with coefficients in K (¢) which does
not vanish at z = w. Therefore the polynomial cannot be divisible by
the irreducible polynomial f(z) of which w is a root, and so it admits
none of its other roots w;.
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It follows then that the product

»—1
o= 118, (@ ; )

j=0 ' ’2
does not vanish. This product is a symmetric polynomial in o, w,,. . .,m,_,
which is in each w; of degree m; moreover,' the coefficients of this
polynomial are elements of K(¢), and their common denominator is a
divisor of 2. Therefore ¢ itself lies in the Gaussian field, and its denomi-
nator is in absolute value not greater than

omy Jaoim < my gm.

Since ¢ is not zero, the inequality

2mr gm |G| =1,

holds, and we find that

(19) |8, (2, y)| = {2’” an I I lSho i o; z)l;_l'

11. By definition,

Si08) -3 w0 o)

Here, by (16),
lo;| < a+ 1,
so that

m

2

k=0

2
CO]'?

25 < (R

since a > 1. Therefore

ISh“ 1, 0; 2>l<(m—[—1)am max | A4,,(7)],
hk=0,1,....m

......

whence, by the lemma in 1.),

S, (i,w,-é—) l < am (m + 1)) 20— (5 | 1)m+2 ()/33)mtn,
Therefore, from (19),

(20) lShm (x’y)l > {va am (a/m (m + 1)!2m—(3n/2)(n + 1)2m+2(]/§§)(m+1m)v—1}-—1_

12. From now on we proceed in a similar way as in 4.). Let again
m > 3 and n be chosen such that

(a) _ By (@) < 51Sh,(2, )5
then from the identity (2),
(b) WSi(@,y)| < 2|1y, (%, y) (log & — y)I,

so that a lower bound for

2llogz —y| = |7 — o]
is obtained.
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By (17) and (20), the condition (a) is certainly satisfied if

— 1/57 (m+1n
m) 2—En/2) (eVn)m+1 gt (2) (m—{:l> <

< % {217” am (am (WL 4 1)( 2m—(3n/2) (n + 1)2m+2 (l/gé)(m-rl)n)v—l}—l,

or, what is the same, if

. 4(77L+1) (m+1m
@) ()=

(m-1)"™ n p B
= m+1> 22 = lim—(Enw/2) +1 C’”‘L"”“”/))“(in n 4 1) Dymt1 e

Under this hypothesis, we find from (b), by (18) and (20), that
In . (l)| > {2mu am (&m ()n_|_ 1)1 2m~(3n/2) (7’L + 1)2m+2 (1/51;)(711+1)n)v—1}—1 %

% {Qm m - m! 2m-(3n/2) (7L + 1)2m +2 (Vﬁ)(nﬁﬂ)n}—l.
whence, after some trivial simplification,

1

(22) |7—-o|> { (1 - 1)1 20 Dim—(urf2) (g ] )20mct 0w (/33 yomt ?mv}

-+ 1

In order to put (21) and (22) into a more convenient form, we now
apply the well-known inequality

(77L + l)‘ < eV?_n"{_—l (/)n _l— [)m+1 ew(%“%l)_

It follows that (21) is satisfied if

4(m - 1)\(m+1n N
( éawi)> > ¢ (1) W21 (g 1)+ U7 gt Dy 920+ 1r—2r—lm + D (Bur2) +2 o
2

5 elm+ 1)+t (/2) ( ( V”

Nmtl
(n-1)2 )

(n + 1) am,

/

and so even more if

‘ 4(771—!»1))"”’1 >4c”/"(nH 1)@20—1(ef4)r (e/2)ym+1(4/e)tm+ 1w
(23) ?(—937/27, = (n 1) D2 ’ (n Lym+1

(7/7/—1— 1)(m+1 (n+ )2(mfl)uamv'

. (6”' 2—(3v)/-2)n X

Therefore, assuming that (23) holds, by (22)

TT—( l_l < 7)7,7+ i e”(m -+ 1)”/‘-’ (7n + 1)(m 1y p—(m -+ 1)v 92vim+ 1)—2v+ (m+1)—(3ny/2)— 1 X
X (n + 1)2m+1y (Vg_z_)(m+1)m- am,
whence
(24) |7'E»—w I—l < <%)V (m . l)”/2 (é){erl)v 9m+1 zﬂn/znv—l,(m + 1)(m+1)v (n + 1)2(m+1)vx
c 5 »

x (Vgé')(m-l—l)nv am,

13. So far m > 3 and » are restricted solely by the condition (23).
In order further to simplify (23) and (24), assume from now on that

(25) m + 1 = 20. 200, n = (m + 1) log (m + 1).
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Since §log 2 > 1, by the first of these conditions,
m+ 1220122201+ (v —1)) = 20y > 3.
The second condition implies then that
n 2= 20v log (200).
Now 20 log 20 > 59, 20 log 40 > 73, and so
n = 60y,

both when » = 1 and when » > 2.
As a first application of (25), we determine an upper estimate for the

expression
A (77& + )v/n( n + 1)2:-/71.
Since n = 60y = 60,

61 61\2/n 61\1/30 61\1/30 .
n+ 1< 50 ™ (——-) < <——> , Ay < <——> (m + ])u/n ni, — BO say.

60 60 60
Next
Q log B, v 2y
T T log (m + 1) — — (logn —1)

is negative because log n = log 60 > 1. Therefore B, is not decreased on
replacing n by (m + 1)log (m + 1), and we find that

61\1/30 (ylog (m-+ L) +2v (log (m+1) +loglog (m-1))
Ay = <eo> oxXP (m-+1)log (m 1) }

or

A Q>1/30) { 3v 2v loglog (m+1))
<60 - m—rl—f—m%—l log (m-1) |

loglog (m—+1)
Here log (m+-1)
= log 20 >¢; hence
loglog (m+1) log log 20 ~1

log (m—+1) — log20 2
whence finally,

61\1/30 Sv+v 61\1/30 _ _ -
< (= YT — (= 1/5 5
4,=(5) e (52) () eP <t

We next discuss certain factors that occur on the right-hand sides
of (23) and (24).
In

decreases with increasing m because log (m + 1) >

de7/2 (m - 1)02—1 (¢/4)
(n-+1 ) (m+1)/2 >

A, =
evidently
log (m+1)>e, n+1=(m+1) log(m-+1) > e(m+1), m+1=200, (c/4) <1,

whence
4 em2 (m-T1)r2—1.]
1e(m—-1)}10v

4, <
Next let

< 4(1(:!/2)*10 ('NZ + 1)*—9» < 1.

(g/‘z)m +1 (4V/g)<m + 1w

Ay~ (ntLym+1
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Then by the last inequalities and by (25),

(e/2)t (4]e)r ym+1 (e/2) (4feyr \m+D 25/2 \m+1
4, < { eon+1) ; < {;2—0-25(”—1)/2} = (206-23”/2> <1

Let further
Ay = (en.g—(?w/m)l/(m%-l).

Since v > 1 and m + 1 = 20,
A, < (en.2~(3/2))1/20 <8

Consider finally the expression

A, = (E)v (7% + 1)1’/2 <é>(m+1)v 2(m+1)——(3nv/2)—1
4 py .

4
Here
v
v =1, G) 21 1, m+ 1< emtl, n>=(m+ 1)log (m + 1),
so that
4\ (m+1p i 8 e—1/2 (m+ 1w
(m+1)v/2 [ = S (m+1w—(3/2) (m+1wlog (m+1) __ -
A4 < € (6) P4 " - ((m+1)(3/2)log2) °

Since now 3log 2 >1 and m + 1= 20, we find that

—1/2\ (m+1)v
A, < (2 65 ) <
14. The inequalities for the A’s lead easily to a great simplification

of the result in 12.).
The right-hand side of (23) can be written as

Al A2 Agm%—l)n A&m+1)n am

and so, by what has just been proved, is less than

1.1. <§)(m+1)n (é)(m%—l)n A1y (%)(m-!—l)n Qm+1y
5 4 2 ’

Similarly the right-hand side of (24) has the value
A4 Agm-l—lm 2(5/2) (m~+1)ny amr

and is therefore smaller than

B
<2 . o(s/zw)“"“” om0
4 i (e .

We have therefore the following result:
“Let m and n satisfy the inequalities (25) and let further

e ey = G e
Then
(27) 7o) > | (G-20) @ |

The proof assumed that [w| < 4, but we may now dispense with this
condition. For if |w| = 4, then trivially,

1 5 n_\—(m+1)
|n——-w|>4~n>5>{(z-2(5/2’”) a”} .
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15. The first inequality (25) is satisfied if
(28) m = [20. 262 06—

for then
20 x 262 0= < g 1 < 20.262 06D 4 T,

This choice of m means that

2 4(m41) 2 4x20  20)2
3% kr = 3  BEa  3a

The condition (26) is therefore certainly fulfilled if

> e.

e > a’, ie., n = vloga.

Let then from now on n be defined by the formula,
(29) n = [max ((m + 1) log (m + 1), vlog a)] + 1,
so that both inequalities (25) and (26) hold, hence also the inquality
(27) for |%# — w].

It is now convenient to distinguish two cases.

If, firstly,

a< (m + 1)(m+1)lv’
then
(m + 1) log (m + 1) >vlog a,
and therefore, by (29),
n=[m+1log(m+1)]+1<(m+ 1)log(m + 1)+ 1.

Further

g o612y _ _17% 90. 26/206—1) m+1 _m+l

— s

V8 e
whence

<§ 2(5/2)v>n 2 < (mj_l)(ﬂH-l) log (m+1)+1 (m 4 1)m+1 _ m:—l plm+1) {log (m+1)}

Let, secondly,
a > (m + 1)(m+1),’v,

so that
(m + 1)log (m + 1) < vlog a.
Now
n=[rvlogal+1<vloga+ 1,
hence

(§ 2<5/2’”)n a’ < (mH)”O“ﬂ a = 2L groeimy
4 e e :

The following result has therefore been obtained:

Theorem 2: Let w be a real or complex algebraic number. Denote by
R the rational field K if w is real, and the Gaussian tmaginary field K(t) if
w is non-real. Further denote by v the degree of w over R, by

ag? + a2+ .. +a, =0 (ag #~ 0)
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an equation for o with integral coefficients in R which is irreducible over
this field, and by

| a — max (Jagl |l ... [a,)
the height of this equation. Put
m o= [20.26R 0=V 5 = max (a, (m+ 1)™ V),
Then
(30) |7 —w|> <mjl>_(mﬂ) g—(m+ 1w log m+1),

Remarks: 1) We note that the theorem remains true if & is replaced
by any larger number.

2) When

a < (m -+ 1)mrol,
the estimate (30) is not as good as that by N. I. Fer'pmax (Izvestiya
Akad. Nauk SSSR, ser. mat. 15, 1951, 53-74), viz.

T —w| >exp {—yp (I +vlogy +loga)log (2 4+ vlogv + log a)j,
where v, just as v, in the next line, is a positive ‘absolute constant.
Fel’dman’s inequality implies that

A — [a"] >exp { — yyn? (log n)?
for all sufficiently large positive integers », while my result yields a much
less good lower estimate.
If, however,
a > ('7)7/ _+_ 1)(77L+])/1/’
then Theorem 2 is much stronger, and it furthermore gives a lower bound

1

for m — | free of unknown constants. The exponent of 1/a,
(m + 1) v log (m + 1),
is not greater than
(20 - 262 0=D 1 1)y log (20 . 202 0=1 1)
and therefore, for large n, is of the order
0 (2(5/2» %)

16. As an application of Theorem 2, let us determine a lower bound
for |sin wa| when a is a fixed positive algebraic number and u is a positive
integral variable such that w > z/a.

Define a second positive integer v by

7 7
—?<ua—vn<-2—.
Then
a a a 2a
—u<—u—r<v<—u+i<=—u
27 T @ 2 == w2 x

and therefore
B 2a 2a
max (%, v) << max (u,—;u) < (7,_ + 1) u
Let, say, a have the degree v over the rational field, and let it satisfy
the irreducible equation
A + Azt 4+ ... +4,=0 (4y += 0)



with rational integral coefficients of height
A = max (!AOI’ IAllr L] ]Avl) > 1.
Then the rational multiple of a,

u
w =—a,
v

is a root of the equation
Aw? + A2 1 4+ ...+ 40 =0
of height

a =max |4y, |Aduv™, ..., |4, w]) <A (max (u,v)) <<%%+1>',Au”.

Let again
m = [20 - 26P¢=D] " 3 — max (a, (m + 1)m+0PY),
so that
a4 < max ((—27!1 + I)DA w, (m+ l)fm“)/”), = a* say,

whence, by Theorem 2,

m -+ 1\—m+1)
7 o> <_'é+_) g*—(m+ 1 log (m+1)_

On the other hand,
. 2 . 7
lsint| ==t if [t <5,
hence
|sin wa| =| sin (wa—wvx)| >—§-v]n—w|,

and we find, finally, that

m-- 1)"‘”” Vo r—m+ 1w log (m+1)

. a
| sin ua]>n—2u< -

In the special case when a = 1, Theorem 1 gives a stronger result, viz.
. 1
[sinu|> = .
4

This inequality has been proved for u > =z, i.e. for u > 4, but it is easily
verified that it holds also for 1 < u < 3.
By way of example, the power series
S _w
WSy sinua
has the radius of convergence 1, and the Dirichlet series
X s
w=1 Sinua

converges when the real part of s is greater than (m + 1)» log (m + 1).
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